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Abstract. Blockmodelling is an important technique for detecting
underlying patterns in graphs. Existing blockmodelling algorithms are
unsupervised and cannot take advantage of the existing information that
might be available about objects that are known to be similar. This back-
ground information can help finding complex patterns, such as hierar-
chical or ring blockmodel structures, which are difficult for traditional
blockmodelling algorithms to detect. In this paper, we propose a new
semi-supervised framework for blockmodelling, which allows background
information to be incorporated in the form of pairwise membership infor-
mation. Our proposed framework is based on the use of Lagrange multi-
pliers and can be incorporated into existing iterative blockmodelling algo-
rithms, enabling them to find complex blockmodel patterns in graphs.
We demonstrate the utility of our framework for discovering complex
patterns, via experiments over a range of synthetic and real data sets.
Code related to this paper is available at: https://people.eng.unimelb.
edu.au/mganji/.
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1 Introduction

Understanding the latent structure beneath real world complex interactions
allows us to gain a deeper insight into the underlying reason and purpose of these
interactions. Representing these interactions as a graph allows us to discover
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these informative structures. Community structure has been extensively studied
in the context of graph mining and many algorithms have been introduced to
locate communities in graphs [2,12]. Commonly, communities are defined as a
group of vertices that are densely connected among themselves but have sparse
connections to the rest of the graph.

However, graphs may contain other inherent and latent structures as well. For
example, consider a network of interactions in a question answering forum where
members ask or answer questions. In such forums often there is a group of novices
who ask many questions but rarely reply to questions, and a group of experts
who answer questions but may not ask many questions. If you consider the graph
representing such a question answering relationship, community detection fails
to find the underlying groups as it mixes all the members (novices and experts)
together due to the many edges between them. Hence, a more general approach
is needed that not only detects communities but is also able to reveal deeper
patterns in the network.

Blockmodelling is a powerful approach that partitions graphs into groups
of equivalent vertices (also called blocks or positions) that play a similar role
in the graph [22]. Equivalent vertices have connections to similar vertices that
may or may not be in the same group. For example, vertices in a community
structure mainly link to their own community, while for the question answer-
ing forum example, the expert group (answerers) have similar connections (e.g.,
they are mainly connected to novices), and vice versa. Hence, blockmodelling
is a general approach to discover deeper graph structures, not only communi-
ties. In blockmodelling, the inherent structure of the graph can be identified by
visualizing the interactions within and between blocks, which is captured in the
so-called image matrix. Given k, the number of blocks, the image matrix is a
k × k non-negative real-valued matrix whose elements represent the probability
of interaction between and within the blocks. For instance, the image matrix of a
graph with a community structure, would have high values along the main diago-
nal showing the highly probability of edges appearing inside the community and
low off-diagonal values showing the sparse connections between communities.

Blockmodelling so far has been studied as an unsupervised task that just
relies on the network topology to discover latent patterns and structures, ignoring
any potential existing background information about the latent groups.

However, rather than relying completely on unsupervised structure discovery,
there may be pre-existing knowledge available about expected patterns in the
graph. For example, in the question answering forum, a subset of participants
may be known as experts, or some indicators such as the number of upvotes for
forum participants may highlight participants as experts. As another example,
side-information may be derived using an expensive/invasive medical test that
discovers ground truth (block membership) for a small sample of objects. Back-
ground information is typically represented as known labels (such as “expert” or
“novice”) or pairwise information, which can be seen as constraints that show
whether two vertices should be in same group (must-link constraint) or they
should belong to different groups (cannot-link constraint). An example of pair-
wise side-information is a must-link between two sets of proteins with known
same functionality in a protein-protein interaction network.
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Fig. 1. An example of comparision between unsupervised blockmodeling (top row)
and our semi-supervised blockmodelling (bottom row, ML = must-link, CL = cannot-
link) on an almost-bipartite graph. (a) The original almost-bipartite graph and the
ground truth. (b) Resulting membership assignments, represented by colors. (c) Result-
ing image matrices and their visualization. (d) The reordered adjacency matrices with
dash lines representing the block borders.

Incorporating such background knowledge in the blockmodelling process can
improve the performance and result in a more accurate role discovery of vertices.
In addition, it can enable existing blockmodelling algorithms to discover complex
structures that they would not be able to find otherwise. For instance, consider an
almost bipartite graph shown in Fig. 1, similar to the question answering forum
example in which the two groups of askers and answerers (left and right groups)
communicate densely to each other but the interactions within the groups are
sparse. However, as it is shown in part (b) of Fig. 1, the unsupervised blockmod-
elling algorithm (top-row) cannot find the true block assignments and mixes
the two groups together while the bottom row of the figure shows that by just
incorporating one must-link and one cannot-link supervision, our proposed semi-
supervised blockmodelling is able to correctly group the vertices. Parts (c) and
(d) in Fig. 1 compare how accurately the structure of the graph is captured in
the image matrix and the reordered adjacency matrix respectively. As explained
earlier, one would expect low diagonal values and high anti-diagonal values in the
image matrix of an almost bipartite graph. This has been accurately captured
by our semi-supervised method where the higher probabilities in anti-diagonal
elements represent the bipartite nature of the graph while the image matrix
from the unsupervised blockmodelling does not reflect such a pattern. Simi-
larly, no bipartite pattern is captured in the reordered adjacency matrix of the
unsupervised blockmodelling method. However, the higher density of links in
the top-right and bottom-left sections of the reordered adjacency matrix of our
semi-supervised method illustrates the bipartite characteristic of the graph.
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Incorporating side-information and background knowledge has been shown
to improve the results for other machine learning tasks. For instance, the effect
of must-link and cannot-link constraints has been studied on clustering [8,9] and
community detection [10,14,15], and it has been shown that they can improve
the quality of the solutions and robustness to noise [8,10,13,14].

However, to the best of our knowledge, none of the existing blockmodelling
algorithms offers the flexibility to incorporate side information in the form of
pairwise constraints. Hence, the side information is ignored by these methods
even if the constraints are required or highly desirable to be satisfied.

Klein et al. [18] showed that partitioning in the presence of cannot-link con-
straints is NP-complete because it can be represented as a reduction from the
Graph K-Colorability problem (K-Color). We extended this NP-Completeness
proof for blockmodelling in Appendix A (see supplementary material). It has
been shown that the CL-feasibility problem is NP-complete even when the num-
ber of constraints is linear in the number of points [7]. Note that applying an
unsupervised partitioning and then fixing the constraint violations afterwards
(by flipping the 0/1 assignments in the output result) is also shown to be NP-
complete [7]. In addition, in the case of blockmodelling, this does not naturally
reflect the constraints in the structure captured by the image matrix, causing
inconsistencies in the results.

In this paper, we propose a semi-supervised blockmodelling framework based
on the method of Lagrange multipliers, which can be coupled with several state
of the art algorithms in blockmodelling to benefit from pairwise supervision in
the form of must-link and cannot-link constraints. The method of Lagrange mul-
tipliers is a powerful constrained optimization technique, which has performed
very well in difficult NP-hard graph coloring problems and has been used suc-
cessfully for constrained community detection and clustering problems [13,15].
In this paper we focus on nonnegative matrix tri-factorization based blockmod-
elling [5,19,21] to discover the membership assignments and graph structure at
the same time. Our Lagrange multipliers method encourages satisfaction of the
supervision constraints throughout the blockmodelling task by introducing and
increasing the penalty for violated constraints from one iteration to the next.
The main contributions of this paper are as follows:

– We present a flexible method of blockmodelling that allows background and
expert knowledge to be incorporated in the form of pairwise constraints, which
results in improved ability to find complex patterns in graphs;

– We demonstrate the high accuracy and noise resistance of our framework
using synthetic and real-life data sets.

2 Background

Consider a graph G(V,E) where V is a set of vertices and E is a set of edges.
The graph can be represented by its adjacency matrix, A, where for each pair i
and j, Aij indicates whether or not an edge exists between i and j (or from i to
j in a directed graph).
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Blockmodelling aims to decompose the graph into groups of equivalent
vertices, which are called positions. Relations between positions are captured
by an image matrix whose entries show the probability of communication
(edges) between positions. The positions and the image matrix together form
a blockmodel. Blockmodelling has been modeled as a nonnegative matrix tri-
factorization problem [5,19,21] in which positions are represented by a mem-
bership matrix C ∈ [0, 1]n×k and M ∈ [0, 1]k×k represents the image matrix
where n is the number of graph vertices and k is the number of blocks or posi-
tions. The membership matrix shows the assignment of vertices to blocks and
the image matrix summarizes the communications within and between posi-
tions. The decomposition aims to approximate the graph adjacency matrix A
as CMCT . Blockmodelling is then the task of finding M � 0 and C � 0 that
minimizes a pre-defined approximation error function, for instance, the sum of
squared differences (Eq. (1)) where ||.||F is the Frobenius norm.

arg min
M,C

||A − CMCT ||2F (1)

It is known that blockmodelling of three or more positions is NP-hard [11].
Hence, most blockmodelling algorithms try to find locally optimal M and C.
One common approach is to iteratively solve the optimization problem for C
given that M is fixed, and then solve the optimization problem for M given that
C is fixed. The iteration of these alternating steps continues until the algorithm
converges. The optimization is done using update rules. In optimizing/updating
the membership (image) matrix, the entries can be forced to accept binary or
real values, which are called hard or soft membership (image), respectively. It
is also possible to turn soft membership to hard membership assignments by
assigning each vertex i to the position k with maximum Cik value.

There are several types of equivalence for blockmodelling. In this paper,
we focus on structural equivalence [22], according to which, two vertices are
in the same position if they have similar sets of in and out neighbours. For
instance, if two students have the same supervisor, the students are structurally
equivalent. According to structural equivalence, the elements of the image matrix
have densities ideally close to 0 or 1.

3 Related Work

It has been shown that even unsupervised blockmodelling is an NP-hard problem
[11]. Therefore, blockmodelling algorithms try to find a good solution which has
a (locally) minimal approximation error. Blockmodelling has been formulated as
a nonnegative matrix tri-factorization problem [5,19,21]. Zhang et al. [23] intro-
duced a coordinate descent optimization approach for overlapping blockmod-
elling. Karrer and Newman [17] considered the heterogeneity in vertex degrees
and proposed a stochastic blockmodelling approach. Chan et al. [5] proposed a
framework focusing on sparse and noisy graphs. They also introduced objective
functions and proposed an incremental approach for optimizing the member-
ship matrix, which only updates the necessary entries of the C matrix each
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time. The same authors later [4] introduced a soft membership formulation that
ensured the vertex to cluster memberships sum to 1, and showed that this made
a significant difference to the discovered blockmodels. Reichardt and White [20]
used a simulated annealing method to optimize an objective function based on
the difference between the adjacency matrix and its blockmodel approximation.
However, none of the existing blockmodelling techniques, to the best of our
knowledge, can incorporate pairwise background information to find complex
structures in graphs.

In some existing algorithms [5,20], an instance of the desired structure can
be applied as an initialization of the image matrix. In another approach [3], new
forms of equivalence were introduced and a blockmodel could consist of differ-
ent block types (each corresponding to a different type of equivalence). These
blockmodels can incorporate supervision in the form of desired block types.
But for all these algorithms, there is no guarantee that they will eventually
find the specified structure. In addition, none of the algorithms can incorporate
pairwise instance level constraints. Recently, constraint programming has been
coupled with a non-negative matrix tri-factorization method to force some struc-
tural patterns in image-constrained blockmodelling [16]. While, in contrast to
the earlier approaches, the constraint programming framework can incorporate
block(image)-level supervision in blockmodelling, it is not able to incorporate
pairwise instance-level information, e.g., must-links and cannot-links. Hence, in
this paper we close this gap in the literature by proposing semi-supervised block-
modelling incorporating pairwise instance-level constraints. Our method also has
the advantage that it can be coupled with the existing approaches above to enable
them to benefit from instance-level information.

The effect of must-link and cannot-link constraints has been studied for
clustering tasks using a SAT formulation [8], constraint programming [9] and
Lagrange multiplier methods [13]. Community detection has also been shown to
benefit from pairwise supervision [10,15]. Ganji et al. [14] used constraint pro-
gramming to model several constraint types for community detection, including
community size, distribution and pairwise instance level constraints. However,
scalability is an issue for this method. In addition, even by incorporating con-
straints, none of the existing semi-supervised community detection and cluster-
ing methods can find other structural patterns in the graph such as the groups
in the question answering forum example.

To the best of our knowledge, incorporating pairwise background knowledge
has not been studied for blockmodelling and none of the existing methods are
able to incorporate pairwise constraints. This paper addresses this gap and pro-
poses a semi-supervised framework for blockmodeling based on non-negative
matrix tri-factorization and Lagrange multipliers.

4 Proposed Semi-supervised Framework

In this section we elaborate on our proposed framework and provide more details
on modeling and optimization of our semi-supervised blockmodelling method.
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4.1 Method for Modelling Semi-supervised Blockmodelling Using
Lagrange Multipliers

Pairwise information for blockmodelling is given in two ways. A must-link (ML)
constraint between two vertices (i, j) requires that the two vertices are mapped
to the same position, i.e., they are known to take the same role in the graph. A
cannot-link (CL) constraint between two vertices (i, j) requires that they are not
mapped to the same position, i.e., they are known to take different roles in the
graph. Let ML be the set of must-link constraints and CL the set of cannot-link
constraints.

We enforce these constraints using the Lagrange multipliers method which
requires mapping them to a penalty term for each violation and adding the
penalties to the original objective function to guide the optimization algorithm
towards satisfying the constraints.

In order to define the penalty terms, we introduce matrices QML and QCL

which represent the cost coefficients for each pairwise constraint. QML and QCL

are n × n non-negative real valued matrices quantifying the cost of violating
each of the must-link and cannot-link constraints respectively. If no must-link
and cannot-link are imposed on the pair (i, j), then the corresponding element
in QML and QCL is equal to zero, meaning assignments of the pair (i, j) to same
or different blocks will not have any supervision violation cost. If the pair (i, j)
is involved in a must-link constraint (ML(i, j) or ML(j, i)), then QML(i, j) and
QML(j, i) are equal to the corresponding Lagrange multiplier for that constraint,
denoted by λ[i,j]. Similarly QCL(i, j) = QCL(j, i) = μ[i,j] if and only if there
exist a cannot-link constraint between i and j. Note that λ and μ are vectors (of
Lagrange multipliers corresponding to each constraint type) whose lengths are
equal to the number of must-link and cannot-link constraints respectively; the
notation [i, j] is only for indexing these vectors and the order is not important.

Given the cost matrix QML and a partition represented by C, the total
cost associated with must-link constraint violation can be obtained using
1
2 (1 − C) ⊗ (QML × C) where 1 is the matrix of the same size as C whose
elements are equal to 1 and ⊗ denotes element-wise multiplication (and then
sum). R = (QML × C) is a n × k matrix which has a straightforward interpre-
tation. Considering the binary membership case, Rik represents the (must-link)
cost of not assigning vertex i to position k. Hence, the total cost for all vertices
can be captured by element-wise multiplication of 1/2(1−C) to R. The constant
coefficient is because each violated constraint has been penalized twice in our
matrix representation. Note that one could prevent this by defining the QML

as an upper triangular matrix. However, R would no longer have the explained
interpretation.

Similarly, given the cost matrix QCL and a partition represented by C, the
total cost associated with cannot-link constraint violation can be obtained using
1
2C ⊗ (QCL × C). The interpretation of R′ = (QCL × C) in this case is R′

ik

represents the (cannot-link) cost of assigning vertex i to position k.
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These penalty functions for must-link and cannot-link constraint violations
naturally generalize to the soft membership version of the problem, where C
may not have a unique non-zero (1-valued) entry for each row.

The Lagrangian objective function shown in Eq. (2) can be calculated by
the addition of the penalty terms corresponding to must-link and cannot-link
constraint violations to the original blockmodelling objective of Eq. (1). The
problem of constrained blockmodelling is then equivalent to finding a good M
and C that minimize the Lagrangian function of Eq. (2).

L(M,C,QML, QCL) = ||A−CMCT ||2F +
1
2
(1−C)⊗(QML×C)+

1
2
C⊗(QCL×C)

(2)

Example: We illustrate the calculations of the violation penalty terms in Eq. (2)
using the following small example. Note that we consider a hard (or binary) mem-
bership in this example. However, our method naturally works for soft member-
ships as well.

Let n = 3 and in our first scenario, suppose we have two must-link con-
straints, ML(1, 2) and ML(1, 3). Given the following membership matrix C, we
aim to calculate the ML penalty term as follows:

QML =

⎡
⎣

0 λ[1,2] λ[1,3]

λ[1,2] 0 0
λ[1,3] 0 0

⎤
⎦ C =

⎡
⎣

1 0
1 0
0 1

⎤
⎦ R = QML × C =

⎡
⎣

λ[1,2] λ[1,3]

λ[1,2] 0
λ[1,3] 0

⎤
⎦

(3)
And finally, the must-link penalty value for the partition C is equal to 1/2(1−C)
⊗ (QML ×C) = λ[1,3]. This occurs because ML(1, 3) is the only violation within
partition C.

In the second scenario, consider the same membership matrix C but this time
suppose we only have the cannot-link constraints CL(1, 3).

QCL =

⎡
⎣

0 0 μ[1,3]

0 0 0
μ[1,3] 0 0

⎤
⎦ R′ = QCL×C =

⎡
⎣

0 μ[1,3]

0 0
μ[1,3] 0

⎤
⎦ 1

2
C ⊗(QCL×C) = 0

(4)
We find that the cannot-link penalty is zero since no cannot-link constraints
were violated in C.

4.2 Optimization Procedure

In this section we elaborate upon the optimization procedure to minimize the
Lagrangian function of Eq. (2). Recall that blockmodelling algorithms attempt
to find good M and C matrices that satisfy Eq. (1). Coordinate descent [23]
and projected gradient descent [1] are the two main approaches for optimizing
image and membership matrices in a soft manner. If hard membership is desired,
the incremental approach of [5] can be used, which only updates the necessary
entries of the C matrix and hence is more efficient than recomputing the entire
objective value for each single vertex and position.
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For our semi-supervised blockmedelling approach, we use a similar itera-
tive approach where we iteratively optimize for C given fixed M , and M given
fixed C, to minimize the Lagrangian objective function. In the optimization
of the image matrix, M , we can directly use the existing unsupervised coordi-
nate descent [23] or projected gradient descent [1] or other image optimization
approaches. This is because the image matrix, M , does not participate in any of
the penalty terms in our Lagrangian objective function. Hence, the M matrix is
only responsible in minimizing the first part of the Lagrangian function, which
is the original unsupervised blockmodelling objective function.

However, in optimizing the membership matrix C, we adapt the hard mem-
bership algorithm of [5] to update the C matrix in order to minimize the
Lagrangian function (2). After each iterative optimization for both M and C
is done, our algorithm updates (increases) the Lagrange multipliers λ and μ cor-
responding to the violated must-link and cannot-link constraints based on the
update rule in Eqs. (5) and (6). This is the main mechanism of the Lagrange
multipliers method to encourage satisfying the constraints from one iteration
to the next. The corresponding cost matrices QML and QCL are then updated
based on the updated Lagrange multipliers λ and μ.

λi,j = λi,j + α(1 − (Ci. × Cj.)) ∀(i, j) ∈ ML (5)
μi,j = μi,j + α(Ci. × Cj.) ∀(i, j) ∈ CL (6)

In the update shown in Eqs. (5) and (6), α is the learning rate determining how
fast each penalty increases if a constraint remains violated from one iteration to
the next and Ci. refers to the ith row of the membership matrix C.

Pseudo-code of our proposed semi-supervised blockmodelling framework is
shown in Fig. 2. As shown in Fig. 2, after random initialization of the image and
membership matrices, the Lagrange multipliers are initialized with the value 1
and the corresponding cost matrices are built. The algorithm then iterates until
the improvement on the objective value L(M,C,QML, QCL) is smaller than a
threshold (ε), which indicates convergence of the algorithm. In each iteration,
the image and membership matrices are updated according to a given optimiza-
tion approach. Note that, in optimizing the M matrix assuming C is fixed, the
Lagrange penalty terms for must-link and cannot-link constraints are constant
values because they are only dependant to the membership matrix C, which is
fixed throughout the image optimization. Hence, the optimization of the image
matrix (the Image Optimizer in Fig. 2) can be done using existing unsupervised
approaches such as projected gradient descent [1] or coordinate descent [23] and
the objective function of Eq. (1).

In optimizing the membership matrix, we use the incremental hard member-
ship algorithm of Chan et al. [5], where each vertex is assigned to a position
such that the objective value is locally minimized, and it iterates until no vertex
changes position. Chan et al. suggested some precomputed elements to calculate
the change in the objective value by flipping a vertex to a different position rather
than recomputing the whole objective. We also follow a similar idea for calcu-
lating the change in the penalty values, rather than checking all the constraints.
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Hence, in membership optimization, a vertex is flipped to another position only
if this results in a drop in the L(M,C,QML, QCL) value, which means a drop
in the original approximation error and/or a decrease in the constraint violation
penalty.

After optimizing the membership matrix, the Lagrange multipliers are
updated (lines 9 and 10). If a constraint remains violated, its corresponding
Lagrange multiplier is increased by a factor α > 1, while it remains the same
as in the previous iteration if the constraint is satisfied. This increase in the
Lagrange multipliers imposes a higher penalty on violating the same constraint
in the next iteration, driving the algorithm to satisfy that constraint eventually.

Fig. 2. Semi-supervised blockmodelling algorithm

5 Experiments and Discussion

In this section we evaluate our proposed semi-supervised blockmodelling method
and compare it with other state of the art blockmodelling algorithms.

We compare with the best algorithms proposed by Chan et al. [5]: hard
incremental membership algorithm with coordinate descent (Coord) and gradi-
ent descent (Grad) image optimization algorithms. These two algorithms have
been shown to outperform other algorithms proposed in [5] and also the block-
modelling algorithm of Reichardt and White [20].

Our semi-supervised framework has the advantage that it can be integrated
with different unsupervised blockmodelings. Our two semi-supervised block-
modelling algorithms in this section are semi-supervised gradient descent based
(called S-Grad) and semi-supervised coordinate descent based (called S-Coord)
blockmodelling algorithms. The learning rate α in our experiments is set to 1.5.
We observed that our proposed methods are mostly robust to the choice of α.
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To evaluate the quality and accuracy of the discovered blockmodels, we use
Normalized Mutual Information (NMI) [6], which is an information theoretic
measure to evaluate the quality of each solution in comparison to the ground
truth. All the experiments in this section are performed on a 8 GB RAM, 2.7 GHz
Core i5 Mac. The source code and data sets used in our experiments are available
at http://people.eng.unimelb.edu.au/mganji.

5.1 Experiments on Real Benchmarks

In this experiment, we compare the performance of the unsupervised and our
semi-supervised blockmodelling algorithms on a set of real benchmark data sets
that are commonly used for finding community structure. We randomly gener-
ated pairwise constraints (equally divided into must-link and cannot-link con-
straints) from the ground truth. To generate the must-link (cannot-link) con-
straints, we pick a vertex randomly and pair it with another randomly selected
vertex of the same (different) block based on the ground truth (the true labels).

The real data sets used in this experiment are benchmarks from Mark New-
man’s homepage1 and Pajek repository2. The statistics of the data sets and
constraints are shown in Table 1 where n, k and #const refer to the number of
vertices, blocks and pairwise constraints respectively.

The results of this experiment are shown in Table 2 where the average quality
of the solutions (NMI) and number of violated constraints are reported. As
shown in this table, our semi-supervised blockmodelling techniques (S-Grad and
S-Coord) improve the performance of both baseline methods significantly. Note
that the Lagrange methods are not guaranteed to satisfy every constraint, since
they are simply treated as penalties. However, there are very few constraints
left unsatisfied compared to the original methods that ignore them. A pairwise
Friedman statistical test is performed between each pair of the unsupervised
method and our corresponding semi-supervised method. The hypothesis of the
statistical tests is that the ranking of the two sets of average results are not
different. The consistently small p-values indicate that the difference is highly
unlikely due to random chance which confirms the statistically significant effect
of incorporating side-information into blockmodelling.

Table 1. Real data sets and number of generated constraints

Data Karate Strike Sampson Mexican Dolphin Polbooks Adjword Polblogs

n 34 24 25 35 62 105 112 1490

k 2 3 2 2 2 3 2 2

#Const 34 24 24 34 62 104 112 1490

1 http://www-personal.umich.edu/∼mejn/.
2 http://vlado.fmf.uni-lj.si/pub/networks/pajek/.

http://people.eng.unimelb.edu.au/mganji
http://www-personal.umich.edu/~mejn/
http://vlado.fmf.uni-lj.si/pub/networks/pajek/
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Table 2. Solution quality (NMI, higher is better) and number of violated constraints
on real benchmarks

Data NMI Violation count

Grad S-Grad Coord S-Coord Grad S-Grad Coord S-Coord

Karate 0.08 0.54 0.09 0.61 7.91 0.00 8.35 0.00

Strike 0.29 0.40 0.32 0.57 4.45 0.00 4.21 0.00

Sampson 0.12 0.54 0.11 0.77 5.51 0.00 5.08 0.01

Mexican 0.07 0.58 0.07 0.66 6.95 0.03 7.09 0.00

Dolphin 0.07 0.55 0.06 0.81 13.73 0.00 13.72 0.00

Political books 0.16 0.39 0.26 0.68 21.86 0.01 18.80 0.00

Adjacent word 0.06 0.59 0.06 0.71 29.33 0.00 28.78 0.00

Political blogs 0.01 0.19 0.01 0.17 365.63 73.91 358.06 82.04

P-value 0.0047 0.0047 0.0047 0.0047

Table 3. Solution quality (NMI, higher is better) and number of violations on synthetic
data

Data k NMI Violation count

Grad S-Grad Coord S-Coord Grad S-Grad Coord S-Coord

ring 5 0.76 0.82 0.94 1.00 26.88 5.34 7.05 0.17

star 5 0.44 0.61 0.46 0.68 63.45 10.48 62.46 5.24

chain 5 0.67 0.79 0.88 0.99 37.17 5.83 13.43 0.68

hierarchy 5 0.68 0.76 0.86 0.91 35.67 6.76 15.26 1.72

bipartite 2 0.53 0.91 0.80 1.00 23.32 0.08 10.38 0.00

core-periphery 3 0.58 0.85 0.65 0.95 24.01 0.18 20.24 0.07

P-value 0.014 0.014 0.014 0.014

5.2 Experiments on Synthetic Benchmarks

In this experiment, we evaluate the performance of our method on different graph
structures other than community structures. For this purpose, we generated
synthetic datasets with ring, star, hierarchy, chain, bipartite and core-periphery
structures according to the method described in [5]. Given random memberships
(C) and the image matrix (M), the adjacency matrix (A) is generated using
A = CMCT . To generate C, first the block sizes are drawn from a uniform
distribution and then the position memberships of vertices are determined by
drawing from a multivariate hyper-geometric distribution according to which the
probability of each position is relative to its size. Different graph structures such
as ring and star are also replicated in M . Uniform random background noise is
also added to M , with an specific noise ratio in each experiment.

In this experiment, for each graph structure, we generated 10 different graphs
of 100 vertices and perturbed the structure with 20% uniformly distributed
noise. We generated three sets of constraints (n must-link and n cannot-link
constraints) based on the ground truth of each of the generated graphs. The
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structures and number of positions, k, as well as the average results based on
NMI and the number of constraint violations are shown in Table 3. The results
show a substantial improvement in accuracy of the semi-supervised methods
over the unsupervised ones, and a substantial reduction in the number of vio-
lated constraints.

Fig. 3. Effect of supervision on latent block discovery for different structures. Ground
truth Image diagram (top row), discovered image matrix by unsupervised (middle row)
and proposed semi-supervised (bottom row) methods.

5.3 Effect of Supervision on Latent Structure Discovery

So far we investigated the effect of adding supervision constraints (and the perfor-
mance of our semi-supervised blockmodelling) on finding accurate vertex assign-
ments to positions. Apart from that, in blockmodelling, the latent structure of
the graph is discovered by the image matrix. In this section we evaluate the effect
of adding supervision constraints, and the performance of our semi-supervised
framework, on structure discovery of the graph.

We generated synthetic data sets of different structures containing 4 blocks
and 40% background noise, according to the procedure described in Sect. 3.
Figure 3 shows the visualized ground truth block interactions using image dia-
grams and also visualized image matrices found by the coordinate descent block-
modelling method and our corresponding semi-supervised S-Coord algorithm
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(incorporating n must-link and n cannot-link constraints) on a sample graph of
different structures3. As shown in Fig. 3, the inherent structure of the graphs
are not clear in the image matrices found by the unsupervised method. How-
ever, the latent structure is clearly captured in the image matrices found by our
semi-supervised framework including the ring structure (1 − 2 − 4 − 3 − 1), star
structure (1 − 3, 2 − 3, 4 − 3) and chain structure (1 − 2 − 3 − 4).

Fig. 4. Sensitivity to noise on ring (left), hierarchy (middle), and chain structure (right)

5.4 Sensitivity to Noise

In this experiment, we evaluate the performance as background noise increases.
We generated data sets of ring, hierarchy and chain structures with 100 vertices
and 5 blocks. We increased the background noise ratio for each data set from 0
to 0.9 and recorded the performance of different algorithms. The results shown
in Fig. 4 are the sample mean and 95% confidence interval for the mean of 10
different data sets, 3 different constraint sets (100 must-link and 100 cannot-link
constraints) for each data set and 20 different initializations (600 executions).
The results shown in Fig. 4 demonstrate that the addition of background infor-
mation to blockmodelling improves the noise resistance of the baseline methods.
We can see that when the noise ratio increases, the performance of (Coord) and
(Grad) drops significantly in comparison to the corresponding proposed semi-
supervised (S-Coord and S-Grad) versions of the algorithms, respectively.

5.5 Sensitivity to the Number of Constraints

In this experiment we evaluate to what degree the supervision constraints affect
the quality of blockmodel solutions and runtime of the algorithms. We generated
data sets with ring, hierarchy and chain structures containing 100 vertices and
5 blocks. We increased the number of supervision constraints, derived from the
ground truth labels, from zero to ten percent of the total number of possible pair-
wise constraints4. The results are shown in Fig. 5. Clearly, our semi-supervised
algorithms (S-Coord and S-Grad) improve the solution quality significantly when
3 We observed similar images from other samples in our experiments as well.
4 The total amount of pairwise information for a graph of size n is n× (n− 1)/2.
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Fig. 5. Sensitivity to the amount of constraints: NMI (top row, higher is better) and
runtime (bottom row) for ring (left), hierarchy (middle), and chain (right) structures

more and more supervision information is available, whereas the unsupervised
algorithms ignore the information.

Incorporating the pairwise information, however, increases the runtime of
the algorithms so that according to Fig. 5, in the worst case, S-Coord and
S-Grad are around 2 to 4.5 times slower than their corresponding unsupervised
algorithms. This increased runtime is partly due to the cost of updating the
Lagrange multipliers in each iteration but mainly, depending on the constraints,
the possibility of requiring more iterations to converge. However, more pairwise
constraints do not always increase the runtime. After some amount (around 4%),
adding more constraints decreases the runtime because the stronger information
requires fewer iterations to converge.

6 Conclusion

In this paper we proposed a semi-supervised blockmodelling framework that is
able to incorporate background knowledge to better find the latent structure
and position assignments in complex networks. Our framework is based on the
method of Lagrange multipliers and can be coupled with existing iterative opti-
mzation approaches for blockmodeling. It has been shown in our experiments
on real and synthetic data sets that our framework improves the quality of the
solution and noise resistance of the blockmodelling algorithms. An interesting
direction for future research is to exploit other types of domain knowledge in
semi-supervised blockmodelling and also further scaling it.
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