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Abstract. In this work, we consider the problem of combining link,
content and temporal analysis for community detection and prediction
in evolving networks. Such temporal and content-rich networks occur
in many real-life settings, such as bibliographic networks and question
answering forums. Most of the work in the literature (that uses both
content and structure) deals with static snapshots of networks, and they
do not reflect the dynamic changes occurring over multiple snapshots.
Incorporating dynamic changes in the communities into the analysis can
also provide useful insights about the changes in the network such as
the migration of authors across communities. In this work, we propose
Chimera (https://github.com/renatolfc/chimera-stf), a shared factoriza-
tion model that can simultaneously account for graph links, content, and
temporal analysis. This approach works by extracting the latent seman-
tic structure of the network in multidimensional form, but in a way that
takes into account the temporal continuity of these embeddings. Such
an approach simplifies temporal analysis of the underlying network by
using the embedding as a surrogate. A consequence of this simplification
is that it is also possible to use this temporal sequence of embeddings to
predict future communities. We present experimental results illustrating
the effectiveness of the approach. Code related to this paper is available
at: https://github.com/renatolfc/chimera-stf.

1 Introduction

Structural representations of data are ubiquitous in different domains such as
biological networks, online social networks, information networks, co-authorship
networks, and so on. The problem of community detection or graph clustering
aims to identify densely connected groups of nodes in the network [8], one of
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the central tasks in network analysis. Examples of useful applications include
that of finding clusters in protein-protein interaction networks [24] or groups
of people with similar interests in social networks [31]. Recently, it has become
easier to collect content-centric networks in a time-sensitive way, enabling the
possibility of using tightly-integrated analysis across different factors that affect
network structure. Aggregate topological and content information can enable
more informative community detection, in which cues from different sources are
integrated into more powerful models.

Another important aspect of complex networks is that such networks evolve,
meaning that nodes may move from one community to another, making some
communities grow, and others shrink. For example, authors that usually publish
in the data mining community could move to the machine learning community.
Furthermore, the temporal aspects of changes in community structure could
interact with the content in unusual ways. For example, it is possible for an
author in a bibliographic network to change their topic of work, preceding a
corresponding change in community structure. The converse is also possible,
with a change in community structure affecting content-centric attributes.

Matrix factorization methods are traditional techniques that allow us to
reduce the dimensional space of network adjacency representations. Such meth-
ods have broad applicability in various tasks such as clustering, dimensionality
reduction, latent semantic analysis, and recommender systems. The main point
of matrix factorization methods is that they embed matrices in a latent space
where the clustering characteristics of the data are often amplified. A useful
variant of matrix factorization methods is shared matrix factorization, which
factors two or more different matrices simultaneously. Shared matrix factoriza-
tion is not new, and is used in various settings where different matrices define
different parts of the data (e.g., links and content). This method could be used
to embed link and content in a shared feature space, which is convenient because
it allows the use of traditional clustering techniques, such as k-means. However,
incorporating a temporal aspect to the shared factorization process adds some
challenges concerning the adjustment of the shared factorization as data evolves.

Related to the problem of community detection is that of community pre-
diction, in which one attempts to predict future communities from previous
snapshots of the network. It is notoriously difficult to predict future clustering
structures from a complex combination of data types such as links and con-
tent. However, the matrix factorization methodology provides a nice abstrac-
tion, because one can now use the multidimensional representations created by
sequences of matrices over different snapshots. The basic idea is that we can
consider each of the entries in the latent space representation as a stream of
evolving entries, which implicitly creates a time-series.

In this work, we present Chimera, a method that uses link and content from
networks over time to detect and predict community structure. To the best of our
knowledge, there is no work addressing these three aspects simultaneously for both
detection and prediction of communities. The main contributions of this paper are:
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– An efficient algorithm based on shared matrix factorization that uses link and
content over time; the uniform nature of the embedding allows the use of any
traditional clustering algorithm on the corresponding representation.

– A method for predicting future communities from embeddings over snapshots.

2 Related Work

In this section, we review the existing work for community detection using link
analysis, content analysis, temporal analysis and their combination. Since these
methods are often proposed in different contexts (sometimes even by different
communities), we will organize these methods into separate sections.

Topological Community Detection: These methods are based mainly on links
among nodes. The idea is to minimize the number of edges across nodes belong-
ing to different communities. Thus, the nodes inside the community should have
a higher density (number of edges) with other nodes inside the community than
with nodes outside the community. There are several ways of defining and quan-
tifying communities based on their topology, modularity [4], conductance [16],
betweeness [9], and spectral partition [1]. More information can be found in
Fortunato [8].

Content-Centric Community Detection: Topic modeling is a common approach
for content analysis and is often used for clustering, in addition to dimensionality
reduction. PLSA-PHITS [12] and LDA [6] are the most traditional methods
for content analysis, but they are susceptible to words that appear very few
times. Extended methods that are more reliable are Link-PLSA-LDA [20] and
Community-User-Topic model [35]. In most cases, the combination of link and
content provides insights that are missing with the use of a single modality.

Link and Temporal Community Detection: A few authors address the problem of
temporal community detection that aims to identify how communities emerge,
grow, combine, and decay over time [15,17]. Tang and Yang [30] use tempo-
ral Dirichlet processes to detect communities and track their evolution. Chen,
Kawadia, and Urgaonkar [5] tackle the problem of overlapping temporal commu-
nities. Bazzi et al. [2] propose the detection of communities in temporal networks
represented as multilayer networks. Pietilänen and Diot [23] identify clusters of
nodes that are frequently connected for long periods of time, and such sets of
nodes are referred to as temporal communities. He and Chen [11] propose an
algorithm for dynamic community detection in temporal networks, which takes
advantage of community information at previous time steps. Yu, Aggarwal and
Wang [34] present a model-based matrix factorization for link prediction and also
for community prediction. However, their work uses only links for the prediction
process.
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Link and Content-Centric Community Detection: In recent years, some
approaches were developed to use link and content information for community
detection [18,26,32,33]. Among them, probabilistic models have been applied to
fuse content analysis and link analysis in a unified framework. Examples include
generative models that combine a generative linkage model with a generative
content-centric model through some shared hidden variables [7,21]. A discrimi-
native model is proposed by Yang et al. [33], where a conditional model for link
analysis and a discriminative model for content analysis are unified. In addition
to probabilistic models, some approaches integrate the two aspects from other
directions. For instance, a similarity-based method [36] adds virtual attribute
nodes and edges to a network, and computes the similarity based on the aug-
mented network. Gupta et al. [10] use matrix factorization to combine sources to
improving tagging. It is evident that none of the aforementioned works combine
all the three factors of link, content, and temporal information within a unified
framework; caused in part by the fact that these modalities interact with one
another in complex ways. Therefore, the use of latent factors is a particularly
convenient way to achieve this goal.

Community Prediction: There has been a growing interest in the dynamics of
communities in evolving social networks, with recent studies addressing the prob-
lem of building a predictive model for community detection. Most of the com-
munity prediction techniques described in these works are about community
evolution prediction that aim to predict events such as growth, survival, shrink-
age, splits and merges [27,29]. İlhan and Öğüdücü [13] use ARIMA models to
predict community events in a network without using any previous community
detection method. İlhan and Öğüdücü [14] propose to use a small number of
features to predict community events. Pavlopoulou [22] employ several struc-
tural and temporal features to represent communities and improve community
evolution prediction.

The community prediction addressed in our work can predict not only com-
munity evolution but also a more accurate prediction about each node of the
network, in which community the node will be and if its community will change
or not. We do so by using topological characteristics and also content associated
with nodes.

3 Problem Definition

We assume we have T graphs G1 . . . GT that form a time-series. The graphs
are defined over a fixed set of nodes N of cardinality n. In each timestamp,
a different set of edges may exist over time. For example, in the case of a co-
authorship network, the node set may correspond to the authors in the network,
and the graph Gt might correspond to the co-author relations among them in the
tth year. These co-author relations are denoted by the n × n adjacency matrix
At. Note that the entries in At need not be binary, but might contain arbitrary
weights. For example, in a co-authorship network, the entries might correspond
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to the number of publications between a pair of authors. For undirected graphs,
the adjacency matrix At is symmetric, while in directed graphs the adjacency
matrix is asymmetric. Our approach can handle both settings. Hence, the graph
Gt is denoted by the pair Gt = (N , At).

We assume that for each timestamp t, we have an n × d content matrix
Ct. Ct contains one row for each node, and each row contains d attribute val-
ues representing the content for that node at the tth timestamp. For example,
in the case of the co-authorship network, d might correspond to the lexicon size,
and each row might contain the word frequencies of various keywords in the
titles. Therefore, one can fully represent the content and structural pair at the
tth timestamp with the triplet (N , At, Ct).

In this paper, we study the problem of content-centric community detection
in networks. We study two problems: temporal community detection, and com-
munity prediction. While the problem of temporal community detection has been
studied in the literature, as presented in Sect. 2, the problem of community pre-
diction, as defined in this work, has not been studied to any significant extent.
We define these problems as follows.

Definition 1 (Temporal Community Detection). Given a sequence of
snapshots of graphs G1 . . . GT , with n × n adjacency matrices A1 . . . AT , and
n × d content matrices C1 . . . CT , create a clustering of the nodes into k parti-
tions at each timestamp t ≤ T .

The clustering of the nodes at each timestamp t may use only the graph
snapshots up to and including time t. Furthermore, the clusters in successive
timestamps should be temporally related to one another. Such a clustering pro-
vides better insights about the evolution of the graph. In this sense, the clustering
of the nodes for each timestamp will be somewhat different from what is obtained
using an independent clustering of the nodes at each timestamp.

Definition 2 (Temporal Community Prediction). Given a sequence of
snapshots of graphs G1 . . . GT with n×n adjacency matrices A1 . . . AT , and n×d
content matrices C1 . . . CT , predict the clustering of the nodes into k partitions
at future timestamp T + r.

The community prediction problem attempts to predict the communities at
a future timestamp, before the structure of the network is known. To the best of
our knowledge, this problem is new, and it has not been investigated elsewhere
in the literature. Note that the temporal community prediction problem is more
challenging than temporal community detection, because it requires us to predict
the community structure of the nodes without any knowledge of the adjacency
matrix at that timestamp.

Temporal prediction is generally a much harder problem in the structural
domain of networks as compared to the multidimensional setting. In the mul-
tidimensional domain, one can use numerous time-series models such as the
auto-regressive (AR) model to predict future trends. However, in the structural
domain, it is far more challenging to make such predictions.
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4 Mathematical Model

In this section, we discuss the optimization model for converting the temporal
sequences of graphs and content to a multidimensional time-series. To achieve
this goal, we use a non-negative matrix factorization framework. Although the
non-negativity is not essential, one advantage is that it leads to a more inter-
pretable analysis. Consider a setting in which the rank of the factorization is
denoted by k. The basic idea is to use three sets of latent factor matrices in a
shared factorization process, which is able to combine content and structure in
a holistic way:

1. The matrix Ut is an n×k matrix, which is specific to each timestamp t. Each
row of the matrix Ut describes the k-dimensional latent factors of the corre-
sponding node at time stamp t, while taking into account both the structural
and content information.

2. The matrix V is an n×k matrix, which is global to all timestamps. Each row of
the matrix V describes the k-dimensional latent factors of the corresponding
node over all time stamps, based on only the structural information.

3. The matrix W is an d × k matrix, which is global to all timestamps. Each
row of the matrix W describes the k-dimensional latent factors of one of the
d keywords over all time stamps, based on only the content information.

The matrices U1 . . . UT are more informative than the other matrices, because
they contain latent information specific to the content and structure, and they
are also specific to each timestamp. However, the matrices V and W are global,
and they contain only information corresponding to the structure and the con-
tent in the nodes, respectively. This is a setting that is particularly suitable to
shared matrix factorization, where the matrices U1 . . . UT are shared between the
factorization of the adjacency and content matrices.

Therefore, we would like to approximately factorize the adjacency matri-
ces A1 . . . AT as At ≈ UtV

T , for all t ∈ {1 . . . T}. Similarly, we would like to
approximately factorize the content matrices C1 . . . CT as Ct ≈ UtW

T . With
this setting, we propose the following optimization problem:

Minimize J =
T∑

t=1

‖At − UtV
T ‖2 + β

T∑

t=1

‖Ct − UtW
T ‖2 + λ1Ω(Ut, V,W ) . (1)

where β is a balancing parameter, λ1 is the regularization parameter, and
Ω(Ut, V,W ) is a regularization term to avoid overfitting. The notation ‖ · ‖2
denotes the Frobenius norm, which is the sum of the squares of the entries in
the matrix. The regularization term is defined as

Ω(Ut, V,W ) = ‖V ‖2 + ‖W‖2 +
T∑

t=1

‖Ut‖2 . (2)

We would also like to ensure that the embeddings between successive timestamps
do not change suddenly because of random variations. For example, an author
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might publish together with a pair of authors every year, but might not be
publishing in a particular year because of random variations. To ensure that the
predicted values do not change suddenly, we add a temporal regularization term:

Ω2(U1 . . . UT ) =
T−1∑

t=1

‖Ut+1 − Ut‖2 (3)

This additional regularization term ensures the variables in any pair of successive
years do not change suddenly. The additional regularization term is added to the
objective function, after multiplying it with λ2. The enhanced objective function
is defined as

J =
T∑

t=1

‖At − UtV
T ‖2 + β

T∑

t=1

‖Ct − UtW
T ‖2+

+ λ1

(
‖V ‖2 + ‖W‖2 +

T∑

t=1

‖Ut‖2
)

+ λ2

T−1∑

t=1

‖Ut+1 − Ut‖2 .

(4)

In order to ensure a more interpretable solution, we impose non-negativity
constraints on the factor matrices

Ut ≥ 0, V ≥ 0,W ≥ 0 . (5)

One challenge with this optimization model is that it can become very large.
The main size of the optimization model is a result of the adjacency matrix. The
content matrix is often manageable, because one can often reduce the keyword-
lexicon in many real settings. However, the adjacency matrix scales with the
square of the number of nodes, which can be onerous in real settings. An impor-
tant observation here is that the adjacency matrix is sparse, and most of its
values are zeros. Therefore, one can often use sampling on the zero entries of the
adjacency matrix in order to reduce the complexity of the problem. This also
has a beneficial effect of ensuring that the solution is not dominated by the zeros
in the matrix.

4.1 Solving the Optimization Model

In this section, we discuss a gradient-descent approach for solving the optimiza-
tion model. The basic idea is to compute the gradient of J with respect to the
various parameters. Note that UtV

T can be seen as the “prediction” of the value
of At. Obviously, this predicted value may not be the same as the observed
entries in the adjacency matrices. Similarly, while the product UtW

T predicts
Ct, the predicted values may be different from the observed values. The gradient
descent steps are dependent on the errors of the prediction. Therefore, we define
the error for the structural and content-centric entries as ΔA

t = At − UtV
T and

ΔC
t = Ct − UtW

T . Also let ΔU
t = Ut − Ut+1, with ΔU

T = 0, since the difference
is not defined at this boundary value.
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Our goal is to compute the partial derivative of J with respect to the various
optimization variables, and then use it to construct the gradient-descent steps.
By computing the partial derivatives of (4) with respect to each of the decision
variables, we obtain

∂J

∂Ut
= 2λ1Ut − 2

(
ΔA

t V + βΔC
t W

)
+ 2λ2Δ

U
t , (6)

∂J

∂Vt
= 2λ1Vt − 2

T∑

t=1

[
ΔA

t

]
Ut (7)

∂J

∂Wt
= 2λ1Wt − 2β

T∑

t=1

[
ΔC

t

]
Ut. (8)

The gradient-descent steps use these partial derivatives for the updates. The
gradient-descent steps may be written as

Ut ← Ut − α
∂J

∂Ut
∀t , (9)

V ← Vt − α
∂J

∂V
, (10)

W ← Wt − α
∂J

∂W
. (11)

Here, α > 0 is the step-size, which is a small value, such as 0.01. The matrices Ut,
V , and W are initialized to non-negative values in (0, 1), and the updates (9–11)
are performed until convergence or until a pre-specified number of iterations is
performed. Non-negativity constraints are enforced by setting an entry in these
matrices to zero whenever it becomes negative due to the updates.

ΔA
t is a sparse matrix, and should be stored using sparse data structures.

As a practical matter, it makes sense to first compute those entries in ΔA
t that

correspond to non-zero entries in A, and then store those entries using a sparse
matrix data structure. This is because a n × n matrix may be too large to hold
using a non-sparse representation.

Combining Eqs. (6–11), we obtain the following update rule:

Ut ← Ut(1 − 2αλ1) + 2αΔA
t V + 2αβΔC

t W + 2λ2Δ
U
t

V ← V (1 − 2αλ1) + 2α

T∑

t=1

[ΔA
t ]TUt

W ← W (1 − 2αλ1) + 2αβ

T∑

t=1

[ΔC
t ]TUt.

(12)

The set of updates above are typically performed “simultaneously” so that
the entries in Ut, V and W (on the right-hand side) are fixed to their values in
the previous iteration during a particular block of updates. Only after the new
values of Ut, V , and W have been computed (using temporary variables), can
they be used in the right-hand side in the next iteration.
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4.2 Complexity Analysis

With the algorithm fully specified, we can now analyze its asymptotic complexity.
Per gradient descent iteration, the computational cost of the algorithm is the
sum of (i) the complexity of evaluating the objective function (4) and (ii) the
complexity of the update step (12). Recall from Sect. 4 that At, Ct, Ut, V , and
W have dimensions n × n, n × d, n × k, n × k, and d × k, respectively. Since
matrix factorization reduces the dimensions of the data, we can safely assume
n 	 k and that d 	 k.

Assuming the basic matrix multiplication algorithm is used, the complexity
of multiplying matrices of dimensions m × p and p × n is O(mnp). Therefore,
the complexity of computing ‖UtV

T ‖2 = O(n2k) + O(n2), since the norm can
be computed by iterating over all elements of the matrix, squaring and summing
them. Hence, the complexity of evaluating the objective function (4) is

J = T
[
O(n2k) + O(n2) + O(dkn) + O(dn) + O(kn) + O(kn)

]
+ O(kn) + O(dk)

= O(max(n2k, dkn)).

To obtain the asymptotic complexity of the updates, note that ΔA
t =

At − UtV
T , and ΔC

t = Ct − UtW
T . Hence, ΔA

t V = O(n2k), [ΔA
t ]TUt = O(n2k),

ΔC
t W = O(dkn), and [ΔC

t ]TUt = O(dkn). Therefore, the asymptotic com-
plexity of the gradient descent update is T [O(kn) + O(n2k) + O(dkn)] =
O(max(n2k, dkn)) .

5 Applications to Clustering

5.1 Temporal Community Detection

The learned factor matrices can be used for temporal community detection. In
this context, the matrix Ut is very helpful in determining the communities at
time t, because it accounts for structure, content, and smoothness constraints.
The overall approach is:

1. Extract the n·T rows from U1 . . . UT , so that each of the n·T rows is associated
with a timestamp from {1 . . . T}. This timestamp will be used in step 3 of
the algorithm.

2. Cluster the n · T rows into k clusters C1 . . . Ck using a k-means clustering
algorithm.

3. Partition each Ci into its T different timestamped clusters C1
i . . . CT

i , depend-
ing on the timestamp of the corresponding rows.

In most cases, the clusters will be such that the T different avatars of the ith
row in U1 . . . UT will belong to the same cluster. However, in some cases, rows
may drift from one cluster to the other. Furthermore, some clusters may shrink
with time, whereas others may increase with time. All these aspects provide
interesting insights about the community structure in the network. Even though
the data is clustered into k groups, it is often possible for one or more timestamps
to contain clusters without any members. This is likely when the number of
clusters expands or shrinks with time.
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5.2 Temporal Community Prediction

This approach can also be naturally used for community prediction. The basic
idea here is to treat U1 . . . UT as a time-series of matrices, and predict how the
weights evolve with time. The overall approach is as follows:

1. For each (i, j) of the non-zero entries of matrix A, represent the time series
Tij .

2. Use an autoregressive model on Tij to predict ut+r
ij for each (i, j) of the non-

zero entries. Set all other entries in Ut+r to 0.
3. Perform node clustering on the rows of Ut+r to create the predicted node

clusters at time (t + r). This provides the predicted communities at a future
timestamp.

Thus, Chimera can provide not only the communities in the current timestamp,
but also the communities in a future timestamp.

6 Experiments

This section describes the experimental results of the approach. We describe the
datasets, evaluation methodology, and the results obtained.

A key point in choosing a dataset to evaluate algorithms such as Chimera
is that there must be co-evolving interactions between network and content. In
order to check our model’s consistency, and to have a fair comparison with other
state-of-the-art algorithms, we generated a couple of synthetic dataset.

Synthetic dataset: The synthetic dataset was generated in the following way:
first, we create the matrix A1 with 5 groups. Then, we follow a randomized
approach to rewire edges. According to some probability, we connect edges from
one group to another. In this dataset, all link matrices (A) have 5,000 nodes
and 20,000 edges. For the content matrices (C), we generate five groups of five
words. As in the link case, we have a probability of a word being in more than one
group. Due to the nature of its construction, all content matrices have 25 words.
For transitioning between timestamps, we have another probability that defines
whether a node changes group or not. The transitions are constrained to be at
most 10% of the nodes. We generated 3 timestamps for each synthetic dataset.
The rewire probabilities 1 − p used in each synthetic dataset were p = 0.75
(Synthetic 1) and p = 0.55 (Synthetic 2).

Real Dataset: We used the arXiv API1 to download information about preprints
submitted to the arXiv system. We extracted information about 7107 authors
during a period of five years (from 2013 to 2017). We used the papers’ titles and
abstracts to build the author-content network with 10256 words, and we selected
words with more than 25 occurrences after removal of stop words and stemming.

1 https://arxiv.org/help/api/index.

https://arxiv.org/help/api/index
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Since every preprint submitted to the arXiv has a category, we used the category
information as a group label. We selected 10 classes: cs.IT, cs.LG, cs.DS, cs.CV,
cs.SI, cs.AI, cs.NI, cs, math, and stat. Authors were added to the set of authors
if they published for at least three years in the five-year period we consider. In
years without publications, we assume authors belong to the temporally-closest
category.

There are several metrics for evaluating cluster quality. We use two well-
known supervised metrics: the Jaccard index and cluster purity. Cluster
purity [19] measures the quality of the communities by examining the domi-
nant class in a given cluster. It ranges from 0 to 1, with higher purity values
indicating better clustering performance.

We compared our approach with state-of-the-art algorithms in four cate-
gories: Content-only, Link-only, Temporal-Link-only and Link-Content-only. By
following this approach, we are also able to isolate the specific effects of using
data in different modalities.

Content-Only Method. We use GibbsLDA++ as a baseline for the content-
only method. As input for this method, we considered that a document consists
of the words used in the title and abstract of a paper.

Link-Only Method. For link we use the Louvain [4] method for community
detection.

Temporal-Link-Only Method. For temporal link-only method we used the
work presented by He and Chen [11], which we refer to as DCTN.

Combination of Link and Content2. For link and content combination, we
used the work presented by Liu et al. [18], with algorithms CPRW-PI, CPIP-PI,
CPRW-SI, CPIP-SI. Since all them perform very similarly and we have a space
constraint we will report only the results obtained with CPIP-PI.

6.1 Evaluation Results

In this section, we present the results of our experiments.
The Louvain and DCTN methods are based on link structure and do not allow

fixed numbers of clusters. They use topological structure to find the number of
communities. All methods in the baseline were used in their default configuration.

First, we present the results with synthetic data we generated (Synthetic 1
and Synthetic 2) in Table 1. In synthetic datasets we use α = 0.00001, β = 1000,
λ = 0.1 and λ2 = 0.0001 with k = 5 and 1000 steps.

The only methods that are able to find the clusters in all datasets are CPIP-PI
and Chimera, both using content and link information. In the synthetic data the
changes between timestamps were small. Thus, CPIP-PI and Chimera performed
similarly. However, Chimera displayed almost perfect performance in all datasets
and timestamps. Louvain and DCTN, which use only link information, were not

2 Code from authors obtained from https://github.com/LiyuanLucasLiu/Content-
Propagation.

https://github.com/LiyuanLucasLiu/Content-Propagation
https://github.com/LiyuanLucasLiu/Content-Propagation
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able to find the clusters. Despite the purity of 1, they cluster all the data into only
one cluster. DCTN finds clusters only for the two first timestamps of synthetic 2,
obtaining 3 and 4 clusters respectively. Louvain found 3 clusters in timestamps
1 and 3 of synthetic 2.

Table 1. Jaccard (J) and Purity (P) of the Synthetic 1 and Synthetic 2 dataset from
all timestamps and methods. Chimera outperforms baseline methods in almost every
year.

Algorithm Synthetic 1 Synthetic 2

1 2 3 1 2 3

J P J P J P J P J P J P

Louvain 0.4 1 0.2 1 0.4 1 0.2 1 0.2 1 0.2 1

GibbsLDA++ 0.542 0.714 0.267 0.463 0.399 0.611 0.279 0.473 0.533 0.657 0.326 0.575

CPIP-PI 0.909 1 1 1 0.866 0.917 1 1 0.999 0.997 0.999 0.995

DCTN 0.4 1 0.2 1 0.2 1 0.2 1 0.2 1 0.2 1

Chimera 1 1 1 1 1 1 0.999 0.994 0.998 0.992 0.997 0.990

Table 2. Purity (P) and Jaccard (J) Index obtained in the arXiv dataset for all years
and methods. Chimera outperforms baseline methods in almost every year.

Algorithm 2013 2014 2015 2016 2017

J P J P J P J P J P

Louvain 0 0.041 0 0.062 0 0.073 0 0.100 0 0.086

GibbsLDA++ 0.087 0.373 0.080 0.394 0.182 0.387 0.166 0.399 0.168 0.389

CPIP-PI 0.096 0.523 0.097 0.518 0.149 0.412 0.090 0.365 0.105 0.361

DCTN 0 0.039 0 0.052 0 0.069 0 0.077 0 0.085

Chimera 0.078 0.456 0.261 0.601 0.281 0.610 0.105 0.573 0.291 0.628

Table 2 presents the Jaccard and Purity metrics over all methods for the real
dataset arXiv. In arXiv, the Louvain method found 3636, 2679, 2006, 1800 and
2190 communities respectively for each year. CDTN, which is based on Louvain
has a very similar result with 3636, 2656, 1829, 1500 and 1791 communities
respectively for each year. Since they are methods based on link, they consider
specially disconnected nodes as isolated communities. Methods that combine
link and content use content to aggregate such nodes in a community. Also, as
we can note in Table 2, our method can learn with time and improve its results
in the following years. GibbsLDA++ presents a nice performance because the
content was much more stable and had more quality over the years than the link
information. This is another reason to combine various sources to achieve better
performance.

To tune the hyperparameters of Chimera, we used Bayesian Optimiza-
tion [3,28] to perform a search in the hyperparameter space. Bayesian Opti-
mization is the appropriate technique in this setting, because minimizing the
model loss (4) does not necessarily translate into better performance. We defined
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an objective function that minimizes the mean silhouette coefficient [25] of the
labels assigned by Chimera, as described in Sect. 5.1. We used Bayesian Opti-
mization to determine the number of clusters as well. With this approach, the
optimization process is completely unsupervised and, although we have access
to the true labels, they were not used during optimization, a situation closer to
reality. With Bayesian Optimization, our model was able to learn that the actual
number of clusters was in the order of 10. The full set of hyperparameters and
their ranges are shown in Table 3, with best results shown in bold face.

Table 3. Hyperparameters used for tuning Chimera with Bayesian Optimization. Ele-
ments in bold indicate the best parameter for that hyperparameter. The set of all
elements in bold defines the hyperparameters used for training the model.

Hyperparameter Values

α {0.01,0.1}
β {0.1, 0.25, 0.5, 0.75,0.9}
λ1 {1× 10−5, 1 × 10−6}
λ2 {1 × 10−4,1× 10−5}
K {10, 20, 30, 40, 50}
Clusters {2, 4, 8,10, 16, 18, 32}

Table 4. The Jaccard index and Purity of arXiv for prediction. In the “Original U’s”
row, we used the original matrices to make the prediction in 2015, 2016 and 2017.
Whereas in the “Predicted U’s” row, we used the output of Chimera to make the
predictions. Hence, for 2016 we used the prediction for 2015, and for 2017 we used the
predictions of both 2015 and 2016.

2015 2016 2017

Jaccard Purity Jaccard Purity Jaccard Purity

Original U’s 0.0709 0.5180 0.2273 0.4395 0.1145 0.3766

Predicted U’s 0.0589 0.5177 0.0765 0.4981

In Table 4 we show our results for prediction. Here, we will not compare our
results with other methods that estimate or evaluate the size of each community.
The idea here is to predict in which community an author will be in the future.
One advantage of our method is that we can augment our time series with our
predictions. Clearly, doing so will add noise to further predictions, but the results
presented are very similar to the ones present in the original dataset. Chimera is
the only one that allows us to do that kind of analysis in an easy way, since the
embeddings create multidimensional representations of the nodes in the graph.
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7 Conclusions

In this work, we presented Chimera a novel shared factorization overtime model
that can simultaneously take the link, content, and temporal information of
networks into account improving over the state-of-the-art approaches for com-
munity detection. Our approach model and solve in efficient time the problem
of combining link, content and temporal analysis for community detection and
prediction in network data. Our method extracts the latent semantic structure of
the network in multidimensional form, but in a way that takes into account the
temporal continuity of the embeddings. Such approach greatly simplifies tempo-
ral analysis of the underlying network by using the embedding as a surrogate. A
consequence of this simplification is that it is also possible to use this temporal
sequence of embeddings to predict future communities with good results. The
experimental results illustrate the effectiveness of Chimera, since it outperforms
the baseline methods. Our experiments also show that the prediction is efficient
in using embeddings to predict near future communities, which opens a vast
array of new possibilities for exploration.

Acknowledgments. Charu C. Aggarwal’s research was sponsored by the Army
Research Laboratory and was accomplished under Cooperative Agreement Number
W911NF-09-2-0053. The views and conclusions contained in this document are those
of the authors and should not be interpreted as representing the official policies, either
expressed or implied, of the Army Research Laboratory or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for Government
purposes notwithstanding any copyright notation here on.

References

1. Barnes, E.R.: An algorithm for partitioning the nodes of a graph. SIAM J. Algebr.
Discret. Methods 3(4), 541–550 (1982). https://doi.org/10.1137/0603056

2. Bazzi, M., Porter, M.A., Williams, S., McDonald, M., Fenn, D.J., Howison, S.D.:
Community detection in temporal multilayer networks, with an application to cor-
relation networks. Multiscale Model. Simul. 14(1), 1–41 (2016)

3. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: Hyperparam-
eter optimization in hundreds of dimensions for vision architectures. In: Interna-
tional Conference on Machine Learning, pp. 115–123 (2013)

4. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. J. Stat. Mech.: Theory Exp. 2008(10), P10008
(2008)

5. Chen, Y., Kawadia, V., Urgaonkar, R.: Detecting overlapping temporal community
structure in time-evolving networks. arXiv preprint arXiv:1303.7226 (2013)

6. Cohn, D., Hofmann, T.: The missing link: a probabilistic model of document con-
tent and hypertext connectivity. In: Proceedings of the 13th International Con-
ference on Neural Information Processing Systems, NIPS 2000, pp. 409–415. MIT
Press (2000)

7. Cohn, D., Hofmann, T.: The missing link-a probabilistic model of document con-
tent and hypertext connectivity. In: Advances in Neural Information Processing
Systems, pp. 430–436 (2001)

https://doi.org/10.1137/0603056
http://arxiv.org/abs/1303.7226


Temporal Community Detection and Prediction in Content-Centric Networks 17

8. Fortunato, S.: Community detection in graphs. Phys. Rep. 486(3), 75–174 (2010)
9. Girvan, M., Newman, M.E.: Community structure in social and biological networks.

Proc. Natl. Acad. Sci. 99(12), 7821–7826 (2002)
10. Gupta, S.K., Phung, D., Adams, B., Tran, T., Venkatesh, S.: Nonnegative shared

subspace learning and its application to social media retrieval. In: Proceedings of
the 16th ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, pp. 1169–1178. ACM (2010)

11. He, J., Chen, D.: A fast algorithm for community detection in temporal network.
Phys. A: Stat. Mech. Appl. 429, 87–94 (2015). https://doi.org/10.1016/j.physa.
2015.02.069

12. Hofman, J.M., Wiggins, C.H.: Bayesian approach to network modularity. Phys.
Rev. Lett. 100(25), 258701 (2008)
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