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Abstract. We introduce a new unsupervised anomaly detection ensem-
ble called SPI which can harness privileged information—data avail-
able only for training examples but not for (future) test examples.
Our ideas build on the Learning Using Privileged Information (LUPI)
paradigm pioneered by Vapnik et al. [17,19], which we extend to unsu-
pervised learning and in particular to anomaly detection. SPI (for Spot-
ting anomalies with Privileged Information) constructs a number of
frames/fragments of knowledge (i.e., density estimates) in the privi-
leged space and transfers them to the anomaly scoring space through
“imitation” functions that use only the partial information available for
test examples. Our generalization of the LUPI paradigm to unsupervised
anomaly detection shepherds the field in several key directions, includ-
ing (i) domain-knowledge-augmented detection using expert annotations
as PI, (ii) fast detection using computationally-demanding data as PI,
and (iii) early detection using “historical future” data as PI. Through
extensive experiments on simulated and real datasets, we show that
augmenting privileged information to anomaly detection significantly
improves detection performance. We also demonstrate the promise of
SPI under all three settings (i–iii); with PI capturing expert knowledge,
computationally-expensive features, and future data on three real world
detection tasks. Code related to this paper is available at: http://www.
andrew.cmu.edu/user/shubhras/SPI.

1 Introduction

Outlier detection in point-cloud data has been studied extensively [1]. In this
work we consider a unique setting with a much sparser literature: the problem of
augmenting privileged information into unsupervised anomaly detection. Simply
put, privileged information (PI) is additional data/knowledge/information that
is available only at the learning/model building phase for (subset of) training
examples, which however is unavailable for (future) test examples.
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The LUPI Framework. Learning Using Privileged Information (LUPI) has
been pioneered by Vapnik et al. first in the context of SVMs [17,19] (PI-
incorporated SVM is named SVM+), later generalized to neural networks [18].
The setup involves an Intelligent (or non-trivial) Teacher at learning phase, who
provides the Student with privileged information (like explanations, metaphors,
etc.), denoted x∗

i , about each training example xi, i = 1 . . . n. The key point
in this paradigm is that privileged information is not available at the test phase
(when Student operates without guidance of Teacher). Therefore, the goal is to
build models (in our case, detectors) that can leverage/incorporate such addi-
tional information but yet, not depend on the availability of PI at test time.

Example: The additional information x∗
i ’s belong to space X∗ which is, generally

speaking, different from space X. In other words, the feature spaces of vectors
x∗

i ’s and xi’s do not overlap. As an example, consider the task of identifying
cancerous biopsy images. Here the images are in pixel space X. Suppose that
there is an Intelligent Teacher that can recognize patterns in such images relevant
to cancer. Looking at a biopsy image, Teacher can provide a description like
“Aggressive proliferation of A-cells into B-cells” or “Absence of any dynamic”.
Note that such descriptions are in a specialized language space X∗, different
from pixel space X. Further, they would be available only for a set of examples
and not when the model is to operate autonomously in the future.

LUPI’s Advantages: LUPI has been shown to (i) improve rate of convergence
for learning, i.e., require asymptotically fewer examples to learn [19], as well as
(ii) improve accuracy, when one can learn a model in space X∗ that is not much
worse than the best model in space X (i.e., PI is intelligent/non-trivial) [18].
Motivated by these advantages, LUPI has been applied to a number of problems
from action recognition [13] to risk modeling [14] (expanded in Sect. 5). However,
the focus of all such work has mainly been on supervised learning.

LUPI for Anomaly Detection. The only (perhaps straightforward) extension
of LUPI to unsupervised anomaly detection has been introduced recently, gen-
eralizing SVM+ to the One-Class SVM (namely OC-SVM+) [2] for malware
and bot detection. The issue is that OC-SVM is not a reliable detector since it
assumes that normal points can be separated from origin in a single hyperball—
experiments on numerous benchmark datasets with ground truth by Emmott
et al. that compared popular anomaly detection algorithms find that OC-SVM

ranks at the bottom (Table 1, pg. 4 [6]; also see our results in Sect. 4). We note
that the top performer in [6] is the Isolation Forest (iForest) algorithm [11], an
ensemble of randomized trees.

Our Contributions: Motivated by LUPI’s potential value to learning and the
scarcity in the literature of its generalization to anomaly detection, we propose
a new technique called SPI (pronounced ‘spy’), for Spotting anomalies with
Privileged Information. Our work bridges the gap (for the first time) between
LUPI and unsupervised ensemble based anomaly detection that is considered
state-of-the-art [6]. We summarize our main contributions as follows.
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– Study of LUPI for anomaly detection: We analyze how LUPI can
benefit anomaly detection, not only when PI is truly unavailable at test
time (as in traditional setup) but also when PI is strategically and will-
ingly avoided at test time. We argue that data/information that incurs over-
head on resources ($$$/storage/battery/etc.), timeliness, or vulnerability, if
designated as PI, can enable resource-frugal, early, and preventive detection
(expanded in Sect. 2).

– PI-incorporated detection algorithm: We show how to incorporate
PI into ensemble based detectors and propose SPI, which constructs
frames/fragments of knowledge (specifically, density estimates) in the priv-
ileged space (X∗) and transfers them to the anomaly scoring space (X)
through “imitation” functions that use only the partial information available
for test examples. To the best of our knowledge, ours is the first attempt to
leveraging PI for improving the state-of-the-art ensemble methods for anomaly
detection within an unsupervised LUPI framework. Moreover, while SPI aug-
ments PI within the tree-ensemble detector iForest [11], our solution can easily
be applied to any other ensemble based detector (Sect. 3).

– Applications: Besides extensive simulation experiments, we employ SPI on
three real-world case studies where PI respectively captures (i) expert knowl-
edge, (ii) computationally-expensive features, and (iii) “historical future”
data, which demonstrate the benefits that PI can unlock for anomaly detec-
tion in terms of accuracy, speed, and detection latency (Sect. 4).

Reproducibility: Implementation of SPI and real world datasets used in exper-
iments are open-sourced at http://www.andrew.cmu.edu/user/shubhras/SPI.

2 Motivation: How Can LUPI Benefit Anomaly
Detection?

The implications of the LUPI paradigm for anomaly detection is particularly
exciting. Here, we discuss a number of detection scenarios and demonstrate that
LUPI unlocks advantages for anomaly detection problems in multiple aspects.

In the original LUPI framework [19], privileged information (hereafter PI) is
defined as data that is available only at training stage for training examples but
unavailable at test time for test examples. Several anomaly detection scenarios
admit this definition directly. Interestingly, PI can also be specified as strategi-
cally “unavailable” for anomaly detection. That is, one can willingly avoid using
certain data at test time (while incorporating such data into detection models at
train phase1) in order to achieve resource efficiency, speed, and robustness. We
organize detection scenarios into two with PI as (truly) Unavailable vs. Strategic,
and elaborate with examples below. Table 1 gives a summary.

1 Note that training phase in anomaly detection does not involve the use of any labels.

http://www.andrew.cmu.edu/user/shubhras/SPI
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Table 1. Types of data used in anomaly detection with various overhead on resources
($$$, storage, battery, etc.), timeliness, and/or risk, if used as privileged information
can enable resource-frugal, early, as well as preventive detection.

Properties vs. type of privileged info Unavailable
vs. Strategic

Need
Resources

Cause
Delay

Incur
Risk

1. “historical future” data U n/a n/a n/a

2. after-the-fact data U n/a n/a n/a

3. advanced technical data U n/a n/a n/a

4. restricted-access data U, S ✓

5. expert knowledge U, S ✓ ✓

6. compute-heavy data S ✓ ✓

7. unsafe-to-collect data S ✓ ✓

8. easy-target-to-tamper data S ✓

Unavailable PI: This setting includes typical scenarios, where PI is (truly)
unknown for test examples.

1. “historical future” data: When training an anomaly detection model with
offline/historical data that is over time (e.g., temporal features), one may use
values both before and after time t while creating an example for each t. Such
data is PI; not available when the model is deployed to operate in real-time.

2. after-the-fact data: In malware detection, the goal is to detect before it
gets hold of and harms the system. One may have historical data for some (train-
ing) examples from past exposures, including measurements of system variables
(number of disk/port read/writes, CPU usage, etc.). Such after-the-exposure
measurements can be incorporated as PI.

3. advanced technical data: This includes scenarios where some (training)
examples are well-understood but those to be detected are simply unknown. For
example, the expected behavior of various types of apps on a system may be
common domain knowledge that can be converted to PI, but such knowledge
may not (yet) be available for new-coming apps.

Strategic PI: Strategic scenarios involve PI that can in principle be acquired
but is willingly avoided at test time to achieve gains in resources, time, or risk.

4. restricted-access data: One may want to build models that do not assume
access to private data or intellectual property at test time, such as source code
(for apps or executables), even if they could be acquired through resources. Such
information can also be truly unavailable, e.g. encrypted within the software.

5. expert knowledge: Annotations about some training examples may be avail-
able from experts, which are truly unavailable at test time. One could also strate-
gically choose to avoid expert involvement at test time, which (a) may be costly
to obtain and/or (b) cause significant delay, especially for real-time detection.
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6. compute-heavy data: One may strategically choose not to rely on features
that are computationally expensive to obtain, especially in real-time detection,
but rather use such data as PI (which can be extracted offline at training phase).
Such features not only cause delay but also require compute resources (which
e.g., may drain batteries in detecting malware apps on cellphones).

7. unsafe-to-collect data: This involves cases where collecting PI at test time
is unsafe/dangerous. For example, the slower a drone moves to capture high-
resolution (privileged) images for surveillance, not only it causes delay but more
importantly, the more susceptible it becomes to be taken down.

8. easy-target-to-tamper data: Finally, one may want to avoid relying on fea-
tures that are easy for adversaries to tamper with. Examples to those features
include self-reported data (like age, location, etc.). Such data may be available
reliably for some training examples and can be used as PI.

In short, by strategically designating PI one can achieve resource, timeliness,
and robustness gains for various anomaly detection tasks. Designating features
that need resources as PI → allow resource-frugal (“lazy”) detection; features
that cause delay as PI → allow early/speedy detection; and designating features
that incur vulnerability as PI → allow preventive and more robust detection.

In this subsection, we laid out a long list of scenarios that make LUPI-
based learning particularly attractive for anomaly detection. In our experiments
(Sect. 4) we demonstrate its premise for scenarios 1., 5. and 6. above using three
real world datasets, while leaving others as what we believe interesting future
investigations.

3 Privileged Info-Augmented Anomaly Detection

The Learning Setting. Formally, the input for the anomaly detection model
at learning phase are tuples of the form

D = {(x1,x
∗
1), (x2,x

∗
2), . . . , (xn,x∗

n)},

where xi = (x1
i , . . . , x

d
i ) ∈ X and x∗

i = (x∗1
i , . . . , x∗p

i ) ∈ X∗. Note that this is an
unsupervised learning setting where label information, i.e., yi’s are not available.
The privileged information is represented as a feature vector x∗ ∈ R

p that is in
space X∗, which is additional to and different from the feature space X in which
the primary information is represented as a feature vector x ∈ R

d.
The important distinction from the traditional anomaly detection setting is

that the input to the (trained) detector at testing phase are feature vectors

{xn+1,xn+2, . . . ,xn+m}.

That is, the (future) test examples do not carry any privileged information.
The anomaly detection model is to score the incoming/test examples and make
decisions solely based on the primary features x ∈ X.

In this text, we refer to space X∗ as the privileged space and to X as the deci-
sion space. Here, a key assumption is that the information in the privileged space
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is intelligent/nontrivial, that is, it allows to create models f∗(x∗) that detect
anomalies with vectors x∗ corresponding to vectors x with higher accuracy than
models f(x). As a result, the main question that arises which we address in
this work is: “how can one use the knowledge of the information in space X∗ to
improve the performance of the desired model f(x) in space X?”.

In what follows, we present a first-cut attempt to the problem that is a
natural knowledge transfer between the two feature spaces (called FT for feature
transfer). We then lay out the shortcomings of such an attempt, and present our
proposed solution SPI. We compare to FT (and other baselines) in experiments.

3.1 First Attempt: Incorporating PI by Transfer of Features

A natural attempt to learning under privileged information that is unavailable
for test examples is to treat the task as a missing data problem. Then, typical
techniques for data imputation can be employed where missing (privileged) fea-
tures are replaced with their predictions from the available (primary) features.

In this scheme, one simply maps vectors x ∈ X into vectors x∗ ∈ X∗ and then
builds a detector model in the transformed space. The goal is to find the trans-
formation of vectors x = (x1, . . . , xd) into vectors φ(x) = (φ1(x), . . . , φp(x))
that minimizes the expected risk given as

R(φ) =
p∑

j=1

min
φj

∫
(x∗j − φj(x))2p(x∗j ,x)dx∗jdx, (1)

where p(x∗j ,x) is the joint probability of coordinate x∗j and vector x, and
functions φj(x) are defined by p regressors.

Here, one could construct approximations to functions φj(x), j = {1, . . . , p}
by solving p regression estimation problems based on the training examples

(x1, x
∗j
1 ), . . . , (xn, x∗j

n ), j = 1, . . . , p,

where xi’s are input to each regression φj and the jth coordinate of the cor-
responding vector x∗

i , i.e. x∗j
i ’s are treated as the output, by minimizing the

regularized empirical loss functional

R(φj) = min
φj

n∑

i=1

(x∗j
i − φj(xi))2 + λjpenalty(φj), j = 1, . . . , p. (2)

Having estimated the transfer functions φ̂j ’s (using linear or non-linear
regression techniques), one can then learn any desired anomaly detector f(φ̂(x))
using the training examples, which concludes the learning phase. Note that the
detector does not require access to privileged features x∗ and can be employed
solely on primary features x of the test examples i = n + 1, . . . ,m.
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3.2 Proposed SPI: Incorporating PI by Transfer of Decisions

Treating PI as missing data and predicting x∗ from x could be a difficult task,
when privileged features are complex and high dimensional (i.e., p is large). Pro-
vided f∗(x∗) is an accurate detection model, a more direct goal would be to
mimic its decisions—the scores that f∗ assigns to the training examples. Map-
ping data between two spaces, as compared to decisions, would be attempting to
solve a more general problem, that is likely harder and unnecessarily wasteful.

The general idea behind transferring decisions/knowledge (instead of data)
is to identify a small number of elements in the privileged space X∗ that well-
approximate the function f∗(x∗), and then try to transfer them to the decision
space—through the approximation of those elements in space X. This is the
knowledge transfer mechanism in LUPI by Vapnik and Izmailov [17]. They illus-
trated this mechanism for the (supervised) SVM classifier. We generalize this
concept to unsupervised anomaly detection.

The knowledge transfer mechanism uses three building blocks of knowledge
representation in AI, as listed in Table 2. We first review this concept for SVMs,
followed by our proposed SPI. While SPI is clearly different in terms of the task
it is addressing as well as in its approach, as we will show, it is inspired by and
builds on the same fundamental mechanism.

Table 2. Three building blocks of knowledge representation in artificial intelligence,
in context of SVM-LUPI for classification [17] and SPI for anomaly detection [this
paper].

SVM-LUPI SPI (Proposed)

1. Fundamental elements of knowledge Support vectors Isolation trees

2. Frames (fragments) of the knowledge Kernel functions Tree anomaly scores

3. Structural connections of the frames Weighted sum Weighted sum (by L2R)

Knowledge Transfer for SVM: The fundamental elements of knowledge in
the SVM classifier are the support vectors. In this scheme, one constructs two
SVMs; one in X space and another in X∗ space. Without loss of generality, let
x1, . . . ,xt be the support vectors of SVM solution in space X and x∗

1 , . . . ,x∗
t∗

be the support vectors of SVM solution in space X∗, where t and t∗ are the
respective number of support vectors.

The decision rule f∗ in space X∗ (which one aims to mimic) has the form

f∗(x∗) =
t∗∑

k=1

ykα∗
kK∗(x∗

k ,x∗) + b∗, (3)

where K∗(x∗
k ,x∗) is the kernel function of similarity between support vector x∗

k

and vector x∗ ∈ X∗, also referred as the frames (or fragments) of knowledge.
Equation (3) depicts the structural connection of these fragments, which is a
weighted sum with learned weights α∗

k’s.
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The goal is to approximate each fragment of knowledge K∗(x∗
k ,x∗),

k = 1, . . . , t∗ in X∗ using the fragments of knowledge in X; i.e., the t kernel func-
tions K(x1,x), . . . , K(xt,x) of the SVM trained in X. To this end, one maps
t-dimensional vectors z = (K(x1,x), . . . , K(xt,x)) ∈ Z into t∗-dimensional vec-
tors z∗ = (K∗(x∗

1 ,x∗), . . . ,K∗(x∗
t∗ ,x∗)) ∈ Z∗ through t∗ regression estimation

problems. That is, the goal is to find regressors φ1(z), . . . , φt∗(z) in X such that

φk(zi) ≈ K∗(x∗
k ,x∗

i ), k = 1, . . . , t∗ (4)

for all training examples i = 1, . . . , n. For each k = 1, . . . , t∗, one can construct
the approximation to function φk by training a regression on the data

{(z1,K
∗(x∗

k ,x∗
1)), . . . , (zn,K∗(x∗

k ,x∗
n))}, k = 1, . . . , t∗,

where we regress vectors zi’s onto scalar output K∗(x∗
k ,x∗

i )’s to obtain φ̂k.
For the prediction of a test example x, one can then replace each K∗(x∗

k ,x∗)
in Eq. (3) (which requires privileged features x∗) with φ̂k(z) (which mimics it,
using only the primary features x—to be exact, by first transforming x into z
through the frames K(xj ,x), j = 1, . . . , t in the X space).

Knowledge Transfer for SPI: In contrast to mapping of features from space
X to space X∗, knowledge transfer of decisions maps space Z to Z∗ in which
fragments of knowledge are represented. Next, we show how to generalize these
ideas to anomaly detection with no label supervision. Figure 1 shows an overview.

To this end, we utilize a state-of-the-art ensemble technique for anomaly
detection, called Isolation Forest [11] (hereafters iF, for short), which builds a
set of extremely randomized trees. In essence, each tree approximates density
in a random feature subspace and anomalousness of a point is quantified by the
sum of such partial estimates across all trees.

In this setting, one can think of the individual trees in the ensemble to consti-
tute the fundamental elements and the partial density estimates (i.e., individual
anomaly scores from trees) to constitute the fragments of knowledge, where the
structural connection of the fragments is achieved by an unweighted sum.

Similar to the scheme with SVMs, we construct two iFs; one in X space and
another in X∗ space. Let T = T1, . . . , Tt denote the trees in the ensemble in
X and T ∗ = T ∗

1 , . . . , T ∗
t∗ the trees in the ensemble in X∗, where t and t∗ are

the respective number of trees (prespecified by the user, typically a few 100s).
Further, let S∗(T ∗

k ,x∗) denote the anomaly score estimated by tree T ∗
k for a

given x∗ (the lower the more anomalous; refer to [11] for details of the scoring).
S(Tk,x) is defined similarly. Then, the anomaly score s∗ for a point x∗ in space
X∗ (which we aim to mimic) is written as

s∗(x∗) =
t∗∑

k=1

S∗(T ∗
k ,x∗), (5)

which is analogous to Eq. (3). To mimic/approximate each fragment of knowledge
S∗(T ∗

k ,x∗), k = 1, . . . , t∗ in X∗ using the fragments of knowledge in X; i.e., the
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Fig. 1. Anomaly detection with PI illustrated. FT maps data between spaces (Sect. 3.1)
whereas SPI (and “light” version SPI-lite) mimic decisions (Sect. 3.2).

t scores for x: S(T1,x), . . . , S(Tt,x) of the iF trained in X, we estimate t∗

regressors φ1(z), . . . , φt∗(z) in X such that

φk(zi) ≈ S∗(T ∗
k ,x∗

i ), k = 1, . . . , t∗ (6)

for all training examples i = 1, . . . , n, where zi = (S(T1,xi), . . . , S(Tt,xi)).
Simply put, each φ̂k is an approximate mapping of all the t scores from the
ensemble T in X to an individual score (fragment of knowledge) by tree T ∗

k of
the ensemble T ∗ in X∗. In practice, we learn a mapping from the leaves rather
than the trees of T for a more granular mapping. Specifically, we construct
vectors zi = (z′

i1, . . . ,z
′
it) where each z′

ik is a size �k vector in which the value at
index leaf(Tk,xi) is set to S(Tk,xi) and other entries to zero. Here, �k denotes
the number of leaves in tree Tk and leaf(·) returns the index of the leaf that xi

falls into in the corresponding tree (note that xi belongs to exactly one leaf of
any tree, since the trees partition the feature space).

SPI-lite: A “light” version. We note that instead of mimicking each individ-
ual fragment of knowledge S∗(T ∗

k ,x∗)’s, one could also directly mimic the “final
decision” s∗(x∗). To this end, we also introduce SPI-lite, which estimates a
single regressor φ(zi) ≈ s∗(x∗

i ) for i = 1, . . . , n (also see Fig. 1). We compare
SPI and SPI-lite empirically in Sect. 4.

Learning to Rank (L2R) Like in X∗: An important challenge in learning to
accurately mimic the scores s∗’s in Eq. (5) is to make sure that the regressors
φk’s are very accurate in their approximations in Eq. (6). Even then, it is hard
to guarantee that the final ranking of points by

∑t∗

k=1 φ̂k(zi) would reflect their
ranking by s∗(x∗

i ). Our ultimate goal, after all, is to mimic the ranking of the
ensemble in X∗ space since anomaly detection is a ranking problem at its heart.

To this end, we set up an additional pairwise learning to rank objective as
follows. Let us denote by φi = (φ̂1(zi), . . . , φ̂t∗(zi)) the t∗-dimensional vector
of estimated knowledge fragments for each training example i. For each pair of
training examples, we create a tuple of the form ((φi,φj), p∗

ij) where

p∗
ij = P (s∗

i < s∗
j ) = σ(−(s∗

i − s∗
j )), (7)



96 S. Shekhar and L. Akoglu

Algorithm 1. SPI-Train: Incorporating PI to Unsupervised Anomaly Detector
Input: training examples {(x1, x

∗
1 ), . . . , (xn, x∗

n)}
Output: detection model (ensemble-of-trees) T in X space; regressors φ̂k’s, k =

1, . . . , t∗; β (or γ for kernelized L2R)
1: Learn t∗ isolation trees T ∗ = {T ∗

1 , . . . , T ∗
t∗} on x∗

i ’s i = 1, . . . , n
2: Learn t isolation trees T = {T1, . . . , Tt} on xi’s i = 1, . . . , n
3: Construct leaf score vectors zi’s, i = 1, . . . , n, based on T
4: for each k = 1, . . . , t∗ do
5: Learn regressor φ̂k of zi’s onto S∗(T ∗

k , x∗
i )’s

6: Obtain β by optimizing C in (9) (or γ for kernelized Cψ)
7: end for

Algorithm 2. SPI-Test: PI-Augmented Unsupervised Anomaly Detection
Input: test examples {xn+1, . . . , xn+m}; T , φ̂k’s k = 1, . . . , t∗, β (or γ if kernelized)
Output: estimated anomaly scores {sn+1, . . . , sn+m} for all test examples
1: for each test example xe, e = n + 1, . . . , n + m do
2: Construct leaf score vector ze = (z′

e1, . . . , z
′
et) where entry in each z′

ek for index
leaf(Tk, xe) is set to S(Tk, xe) and to 0 o.w., for k = 1, . . . , t

3: Construct φe = (φ̂1(ze), . . . , φ̂t∗(ze))
4: Estimate anomaly score as se = βφT

e (or se =
∑n

l=1 γlK(φl, φe) if kernelized)
5: end for

which is the probability that i is ranked ahead of j by anomalousness in X∗

space (recall that lower s∗ is more anomalous), where σ(v) = 1/(1 + e−v) is the
sigmoid function. Notice that the larger the gap between the anomaly scores of
i and j, the larger this probability gets (i.e., more surely i ranks above j).

Given the training pair tuples above, our goal of learning-to-rank is to esti-
mate β ∈ R

t∗
, such that

pij = σ(Δij) = σ(βφT
i − βφT

j ) = σ(−ŝ∗
i + ŝ∗

j )) ≈ p∗
ij , ∀i, j ∈ {1, . . . , n}. (8)

We then utilize the cross entropy as our cost function over all (i, j) pairs, as

min
β

C =
∑

(i,j)

−p∗
ij log(pij) − (1 − p∗

ij) log(1 − pij) =
∑

(i,j)

−p∗
ijΔij + log(1 + eΔij ) (9)

where p∗
ij ’s are given as input to the learning as specified in Eq. (7) and pij is

denoted in Eq. (8) and is parameterized by β that is to be estimated.
The objective function in (9) is convex and can be solved via a gradient-based

optimization, where dC
dβ =

∑
(i,j)(pij −p∗

ij)(φi−φj) (details omitted for brevity).
More importantly, in case the linear mapping s∗

i ≈ βφT
i is not sufficiently accu-

rate to capture the desired pairwise rankings, the objective can be kernelized
to learn a non-linear mapping that is likely more accurate. The idea is to write
βψ =

∑n
l=1 γlψ(φl) (in the transformed space) as a weighted linear combination

of (transformed) training examples, for feature transformation function ψ(·) and
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parameter vector γ ∈ R
n to be estimated. Then, Δij in objective (9) in the

transformed space can be written as

Δij =
n∑

l=1

γl[ψ(φl)ψ(φi)T −ψ(φl)ψ(φj)T ] =
n∑

l=1

γl[K(φl,φi)−K(φl,φj)]. (10)

The kernelized objective, denoted Cψ, can also be solved through gradient-
based optimization where we can show partial derivatives (w.r.t. each γl) to be
equal to ∂Cψ

∂γl
=

∑
(i,j)(pij − p∗

ij)[K(φl,φi) − K(φl,φj)]. Given the estimated
γl’s, prediction of score is done by

∑n
l=1 γlK(φl,φe) for any (test) example e.

The SPI Algorithm: We outline the steps of SPI for both training and test-
ing (i.e., detection) in Algorithms 1 and 2, respectively. Note that the test-time
detection no longer relies on the availability of privileged features for the test
examples, but yet be able to leverage/incorporate them through its training.

4 Experiments

We design experiments to evaluate our methods in two different settings:

1. Benchmark Evaluation: We show the effectiveness of augmenting PI (see
Table 3) on 17 publicly available benchmark datasets.2

2. Real-world Use Cases: We conduct experiments on LingSpam3 and
BotOrNot4 datasets to show that (i) domain-expert knowledge as PI improves
spam detection, (ii) compute-expensive PI enables fast detection at test time,
and (iii) “historical future” PI allows early detection of bots.

Baselines. We compare both SPI and SPI-lite to the following baselines:

1. iF(X-only): Isolation Forest [11] serves as a simple baseline that operates
solely in decision space X. PI is not used neither for modeling nor detection.

2. OC-SVM+ (PI-incorporated): OC+ for short, is an extension of (unsuper-
vised) One-Class SVM that incorporates PI as introduced in [2].

3. FT(PI-incorporated): This is the direct feature transfer method that incor-
porates PI by learning a mapping X → X∗ as we introduced in Sect. 3.1.

* iF
* (X∗-only): iF that operates in X∗ space. We report performance by iF

*

only for reference, since PI is unavailable at test time.

4.1 Benchmark Evaluation

The benchmark datasets do not have an explicit PI representation. Therefore,
in our experiments we introduce PI as explained below.
2 http://agents.fel.cvut.cz/stegodata/Loda.zip.
3 http://csmining.org/index.php/ling-spam-datasets.html.
4 https://botometer.iuni.iu.edu/bot-repository/datasets/caverlee-2011/caverlee-

2011.zip.

http://agents.fel.cvut.cz/stegodata/Loda.zip
http://csmining.org/index.php/ling-spam-datasets.html
https://botometer.iuni.iu.edu/bot-repository/datasets/caverlee-2011/caverlee-2011.zip
https://botometer.iuni.iu.edu/bot-repository/datasets/caverlee-2011/caverlee-2011.zip
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Table 3. Mean Average Precision (MAP) on benchmark datasets (avg’ed over 5 runs)
for γ = 0.7. Numbers in parentheses indicate rank of each algorithm on each dataset.
iF

* (for reference only) reports MAP in the X∗ space.

Datasets p + d n iF OC+ FT SPI-lite SPI iF
*

breast-cancer 30 357 0.1279 (4) 0.0935 (6) 0.0974 (5) 0.4574 (3) 0.5746 (2) 0.6773 (1)

ionosphere 33 225 0.0519 (4) 0.2914 (1) 0.0590 (3) 0.0512 (5) 0.0470 (6) 0.0905 (2)

letter-recognition 617 4197 0.0889 (6) 0.1473 (4) 0.0908 (5) 0.3799 (3) 0.6413 (2) 0.9662 (1)

multiple-features 649 1200 0.1609 (5) 0.1271 (6) 0.2044 (4) 0.6589 (3) 0.8548 (2) 1.0000 (1)

wall-following-robot 24 2923 0.1946 (5) 0.2172 (4) 0.1848 (6) 0.4331 (3) 0.5987 (2) 0.7538 (1)

cardiotocography 27 1831 0.2669 (5) 0.6107 (4) 0.2552 (6) 0.6609 (3) 0.6946 (2) 0.8081 (1)

isolet 617 4497 0.1533 (5) 0.1561 (4) 0.1303 (6) 0.5084 (3) 0.7124 (2) 0.9691 (1)

libras 90 216 0.1368 (5) 0.4479 (4) 0.0585 (6) 0.5175 (3) 0.6806 (2) 1.0000 (1)

parkinsons 22 147 0.0701 (6) 0.0964 (4) 0.0714 (5) 0.1556 (3) 0.1976 (1) 0.1778 (2)

statlog-satimage 36 3594 0.2108 (6) 0.5347 (5) 0.5804 (4) 0.9167 (3) 0.9480 (2) 0.9942 (1)

gisette 4971 3500 0.1231 (4) 0.0814 (6) 0.0977 (5) 0.5593 (3) 0.8769 (2) 0.9997 (1)

waveform-1 21 3304 0.1322 (4) 0.1481 (3) 0.0841 (6) 0.1234 (5) 0.1556 (2) 0.4877 (1)

madelon 500 1300 0.7562 (5) 0.1167 (6) 0.9973 (2) 0.9233 (4) 0.9925 (3) 1.0000 (1)

synthetic-control 60 400 0.3207 (6) 0.7889 (4) 0.6870 (5) 0.8103 (3) 0.8539 (2) 0.9889 (1)

waveform-2 21 3304 0.1271 (5) 0.2828 (2) 0.1014 (6) 0.1778 (3) 0.1772 (4) 0.2944 (1)

statlog-vehicle 18 629 0.1137 (6) 0.3146 (5) 0.6326 (4) 0.6561 (3) 0.7336 (2) 1.0000 (1)

statlog-segment 18 1320 0.1250 (6) 0.2323 (4) 0.1868 (5) 0.3304 (3) 0.3875 (2) 0.7399 (1)

(Average Rank) (5.11) (4.23) (4.88) (3.29) (2.35) (1.11)

Generating Privileged Representation. For each dataset, we introduce PI
by perturbing normal observations. We designate a small random fraction (= 0.1)
of n normal data points as anomalies. Then, we randomly select a subset of p
attributes and add zero-mean Gaussian noise to the designated anomalies along
the selected subset of attributes with matching variances of the selected features.
The p selected features represent PI since anomalies stand-out in this subspace
due to added noise, while the rest of the d attributes represent X space. Using
normal observations allows us to control for features that could be used as PI.
Thus we discard the actual anomalies from these datasets where PI is unknown.

We construct 4 versions per dataset with varying fraction γ of perturbed
features (PI) retained in X∗ space. In particular, each set has γp features in X∗,
and (1 − γ)p + d features in X for γ ∈ {0.9, 0.7, 0.5, 0.3}.

Results. We report the results on perturbed datasets with γ = 0.75 as fraction
of features retained in space X∗. Table 3 reports mean Average Precision (area
under the precision-recall curve) against 17 datasets for different methods. The
results are averaged across 5 independent runs on stratified train-test splits.

5 The results with γ ∈ {0.9, 0.5, 0.3} are similar and reported in the supplementary
material available at http://www.andrew.cmu.edu/user/shubhras/SPI.

http://www.andrew.cmu.edu/user/shubhras/SPI
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Fig. 2. Average rank of algorithms
(w.r.t. MAP) and comparison by the
Nemenyi test. Groups of methods not
significantly different (at p-val = 0.05)
are connected with horizontal lines.
CD depicts critical distance required to
reject equivalence. Note that SPI is sig-
nificantly better than the baselines.

Our SPI outperforms competition in
detection performance in most of the
datasets. To compare the methods statis-
tically, we use the non-parametric Fried-
man test [5] based on the average ranks.
Table 3 reports the ranks (in parenthe-
ses) on each dataset as well as the aver-
age ranks. With p-value = 2.16 × 10−11,
we reject the null hypothesis that all the
methods are equivalent using Friedman
test. We proceed with Nemenyi post-hoc
test to compare the algorithms pairwise
and to find out the ones that differ sig-
nificantly. The test identifies performance
of two algorithms to be significantly dif-
ferent if their average ranks differ by at least the “critical difference” (CD). In
our case, comparing 6 methods on 17 datasets at significance level α = 0.05,
CD = 1.82.

Results of the post-hoc test are summarized through a graphical represen-
tation in Fig. 2. We find that SPI is significantly better than all the baselines.
We also notice that SPI has no significant difference from iF

* which uses PI at
test time, demonstrating its effectiveness in augmenting PI. While all the base-
lines are comparable to SPI-lite, its average rank is better (also see last row in
Table 3), followed by other PI-incorporated detectors, and lastly iF with no PI.

Average Precision (AP) is a widely-accepted metric to quantify overall perfor-
mance of ranking methods like anomaly detectors. We also report average rank
of the algorithms against other popular metrics including AUC of ROC curve,
ndcg@10 and precision@10 in Fig. 3. Notice that the results are consistent
across measures, SPI and SPI-lite performing among the best.

Fig. 3. SPI and SPI-lite outperform competition w.r.t. different evaluation metrics.
Average rank (bars) across benchmark datasets. iF* shown for reference.

4.2 Real-World Use Cases

Data Description. LingSpam dataset (see footnote 3) consists of 2412 non-
spam and 481 spam email messages from a linguistics mailing-list. We evaluate
two use cases (1) domain-expert knowledge as PI and (2) compute-expensive PI
on LingSpam.
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BotOrNot dataset (see footnote 4) is collected from Twitter during December
30, 2009 to August 2, 2010. It contains 22,223 content polluters (bots) and 19,276
legitimate users, along with their number of followings over time and tweets.
For our experiments, we select accounts with age less than 10 days (for early
detection task) at the beginning of dataset collection. The subset contains 901
legitimate (human) accounts and 4535 bots. We create 10 sets containing all
the legitimate and a random 10% sample of the bots. We evaluate use case (3)
“historical future” as PI and report the results averaged over these sets.

Case 1: Domain-Expert Knowledge as PI for Email Spam Detection.
X∗ space: The Linguistic Inquiry and Word Count (LIWC) software6 is

a widely used text analysis tool in social sciences. It uses a manually-curated
keyword dictionary to categorize text into 90 psycholinguistic classes. Construc-
tion of LIWC dictionary relies exclusively on human experts which is a slow
and evolving process. For the LingSpam dataset, we use the percentage of word
counts in each class (assigned by LIWC software) as the privileged features.

X space: The bag-of-word model is widely used as feature representation in
text analysis. As such, we use the term frequencies for our email corpus as the
primary features.

Fig. 4. Detection performance on Case
1: using expert knowledge as PI. Leg-
end depicts the AUC values. PI-
incorporated detectors (except OC-

SVM+) outperform non-PI iF and
achieve similar performance to iF

*.

Figure 4 shows the detection perfor-
mance7 of algorithms in ROC curves
(averaged over 15 independent runs on
stratified train-test splits). We find that
iF, which does not leverage PI but oper-
ates solely in X space, is significantly
worse than most PI-incorporated meth-
ods. OC-SVM+ is nearly as poor as iF

despite using PI—this is potentially due
to OC-SVM being a poor anomaly detec-
tor in the first place, as shown in [6]
and as we argued in Sect. 1. All knowl-
edge transfer methods, SPI, SPI-lite,
and FT, perform similarly on this case
study, and are as good as iF

*, directly
using X∗.

Case 2: Compute-Expensive Features as PI for Email Spam Detection.
X∗ space: Beyond bag-of-words, one can use syntactic features to capture

stylistic differences between spam and non-spam emails. To this end, we extract
features from the parse trees of emails using the StanfordParser8. The parser

6 https://liwc.wpengine.com/.
7 See supplementary material quantifying the performance of methods against other

ranking metrics.
8 https://nlp.stanford.edu/software/lex-parser.shtml.

https://liwc.wpengine.com/
http://www.andrew.cmu.edu/user/shubhras/SPI
https://nlp.stanford.edu/software/lex-parser.shtml
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provides the taxonomy (tree) of Part-of-Speech (PoS) tags for each sentence,
based on which we construct (i) PoS bi-gram frequencies, and (ii) quantitative
features (width, height, and horizontal/vertical imbalance) of the parse tree.

On average, StanfordParser requires 66 s9 to parse and extract features from a
single raw email in LingSpam. Since the features are computationally demanding,
we incorporate those as PI to facilitate faster detection at test time.

X space: We use the term frequencies as the primary features as in Case 1.
Figure 5(a) shows the detection performance (see footnote 7) of methods in

terms of AUC under ROC. We find that iF*using (privileged) syntactic features
achieves lower AUC of ∼0.65 as compared to ∼0.83 using (privileged) LIWC
features in Case 1. Accordingly, all methods perform relatively lower, suggesting
that the syntactic features are less informative of spam than psycholinguistic
ones. Nonetheless, we observe that the performance ordering remains consistent,
where iF ranks at the bottom and SPI and SPI-lite get closest to iF

*.

Fig. 5. Comparison of detectors on Case 2: using computationally-expensive features
as PI. (a) detection performance, legend depicts AUC values; and (b) wall-clock time
required (in seconds, note the logarithmic scale) vs. test data size [inset plot on top
right: AUC vs. time (methods depicted with symbols)].

Figure 5(b) shows the comparison of wall-clock time required by each detector
to compute the anomaly scores at test time for varying fraction of test data.
On average, SPI achieves 5500× speed-up over iF

* that employs the parser at
test time. This is a considerable improvement of response time for comparable
accuracy. Also notice the inset plot showing the AUC vs. total test time, where
our proposed SPI and SPI-lite are closest to the ideal point at the top left.

Case 3: “Historical Future” as PI for Twitter Bot Detection.
We use temporal data from the activity and network evolution of an account
to capture behavioral differences between a human and a bot. We construct
temporal features including volume, rate-of-change, and lag-autocorrelations of
the number of followings. We also extract temporal features from text such as
count of tweets, links, hash-tags and mentions.

9 Using a single thread on 2.2 GHz Intel Core i7 CPU with 8 cores and 16 GB RAM.
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X∗ space: All the temporal features within ft days in the future (relative
to detection at time t) constitute privileged features. Such future values would
not be available at any test time point but can be found in historical data.

X space: Temporal features within ht days in the past as well as static user
features (from screen name and profile description) constitute primary features.

Figure 6(a) reports the detection performance of algorithms in terms of ROC
curves (averaged over 10 sets) at time t = 2 days after the data collection started;
for ht = 2, ft = 7.10 The findings are similar to other cases: SPI and SPI-lite

outperform the competing methods in terms of AUC and OC-SVM+ performs
similar to non-PI iF; demonstrating that knowledge transfer based methods are
more suitable for real-world use cases.

Figure 6(b) compares the detection performance of SPI and iF over time;
for detection at t = {0, 1, 2, 3, 4}. As time passes, historical data grows as
ht = {0, 1, 2, 3, 4} where “historical future” data is fixed at ft = 7 for PI-
incorporated methods. Notice that at time t = 1, SPI achieves similar detection
performance to iF’s performance at t = 2 that uses more historical data of
2 days. As such, SPI enables 24 h early detection as compared to non-PI iF

for the same accuracy. Notice that with the increase in historical data, the per-
formances of both methods improve, as expected. At the same time, that of
SPI improves faster, ultimately reaching a higher saturation level, specifically
∼7% higher relative to iF. Moreover, SPI gets close to iF

*’s level in just around
3 days.

Fig. 6. Comparison of detectors on Case 3: using “historical future” data as PI. (a)
SPI outperforms competition in performance and is closest to iF

*’s; (b) SPI achieves
same detection performance as iF 24 h earlier, and gets close to iF

*in 3 days of history.

5 Related Work

We review the history of LUPI, follow up and related work on learning with
side/hidden information, as well as LUPI-based anomaly detection.

10 Same conclusions can be drawn for ft ∈ {1, 3, 5, 7} (see supplementary material).

http://www.andrew.cmu.edu/user/shubhras/SPI
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Learning Under Privileged Information: The LUPI paradigm is introduced
by Vapnik and Vashist [19] as the SVM+ method, where, Teacher provides
Student not only with (training) examples but also explanations, comparisons,
metaphors, etc. which accelerate the learning process. Roughly speaking, PI
adjusts Student’s concept of similarity between training examples and reduces
the amount of data required for learning. Lapin et al. [10] showed that learning
with PI is a particular instance of importance weighting in SVMs. Another such
mechanism was introduced more recently by Vapnik and Izmailov [17], where
knowledge is transferred from the space of PI to the space where the decision
function is built. The general idea is to specify a small number of fundamental
concepts of knowledge in the privileged space and then try to transfer them; i.e.,
construct additional features in decision space via e.g., regression techniques in
decision space. Importantly, the knowledge transfer mechanism is not restricted
to SVMs, but generalizes, e.g. to neural networks [18].

LUPI has been applied to a number of different settings including clustering
[7,12], metric learning [8], learning to rank [15], malware and bot detection [2,3],
risk modeling [14], as well as recognizing objects [16], actions and events [13].

Learning with Side/Hidden Information: Several other work, particularly in com-
puter vision [4,20], propose methods to learn with data that is unavailable at test
time referred as side and hidden information (e.g., text descriptions or tags for
general images, facial expression annotations for face images, etc.). In addition,
Jonschkowski et al. [9] describe various patterns of learning with side informa-
tion. All of these work focus on supervised learning problems.

LUPI-Based Anomaly Detection: With the exception of One-Class SVM
(OC-SVM+) [2], which is a direct extension of Vapnik’s (supervised) SVM+,
the LUPI framework has been utilized only for supervised learning problems.
While anomaly detection has been studied extensively [1], we are unaware of any
work other than [2] leveraging privileged information for unsupervised anomaly
detection. Motivated by this along with the premises of the LUPI paradigm,
we are the first to design a new technique that ties LUPI with unsupervised
tree-based ensemble methods, which are considered state-of-the-art for anomaly
detection.

6 Conclusion

We introduced SPI, a new ensemble approach that leverages privileged infor-
mation (data available only for training examples) for unsupervised anomaly
detection. Our work builds on the LUPI paradigm, and to the best of our
knowledge, is the first attempt to incorporating PI to improve the state-of-
the-art ensemble detectors. We validated the effectiveness of our method on
both benchmark datasets as well as three real-world case studies. We showed
that SPI and SPI-lite consistently outperform the baselines. Our case studies
leveraged a variety of privileged information—“historical future”, complex fea-
tures, expert knowledge—and verified that SPI can unlock multiple benefits for
anomaly detection in terms of detection latency, speed, as well as accuracy.
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