
Efficient Estimation of AUC
in a Sliding Window

Nikolaj Tatti(B)

F-Secure, Helsinki, Finland
nikolaj.tatti@gmail.com

Abstract. In many applications, monitoring area under the ROC curve
(AUC) in a sliding window over a data stream is a natural way of detect-
ing changes in the system. The drawback is that computing AUC in a
sliding window is expensive, especially if the window size is large and the
data flow is significant.

In this paper we propose a scheme for maintaining an approximate
AUC in a sliding window of length k. More specifically, we propose an
algorithm that, given ε, estimates AUC within ε/2, and can maintain
this estimate in O((log k)/ε) time, per update, as the window slides.
This provides a speed-up over the exact computation of AUC, which
requires O(k) time, per update. The speed-up becomes more significant
as the size of the window increases. Our estimate is based on grouping
the data points together, and using these groups to calculate AUC. The
grouping is designed carefully such that (i) the groups are small enough,
so that the error stays small, (ii) the number of groups is small, so that
enumerating them is not expensive, and (iii) the definition is flexible
enough so that we can maintain the groups efficiently.

Our experimental evaluation demonstrates that the average approxi-
mation error in practice is much smaller than the approximation guaran-
tee ε/2, and that we can achieve significant speed-ups with only a modest
sacrifice in accuracy. Code related to this paper is available at: https://
bitbucket.org/orlyanalytics/streamauc.

Keywords: AUC · Approximation guarantee · Sliding window

1 Introduction

Consider monitoring prediction performance in a stream of data points. That
is, we first receive a data point d without the label, and we predict the missing
label with a score of s, after the prediction we receive the true label �. We are
interested in monitoring how well s predicts � as the stream evolves over time.

A good example of such a task is a monitoring system for corporate computers
that detects abnormal behavior based on event logs. Here the positive label
represents an abnormal event that requires a closer inspection, and such a label
can be given, for example, by an expert or triggered automatically. The produced

c© Springer Nature Switzerland AG 2019
M. Berlingerio et al. (Eds.): ECML PKDD 2018, LNAI 11051, pp. 671–686, 2019.
https://doi.org/10.1007/978-3-030-10925-7_41

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10925-7_41&domain=pdf
https://bitbucket.org/orlyanalytics/streamauc
https://bitbucket.org/orlyanalytics/streamauc
https://doi.org/10.1007/978-3-030-10925-7_41

672 N. Tatti

score can be used for decision making, and can be a specific feature or a simple
statistic, or the result of some classifier, such as logistic regression. It is vital to
monitor such a system continuously to notice breakdowns early. Possible causes
may be changes in the underlying distribution or a system failure, due to the
software update.

A natural choice to monitor the predictive power of a real-valued score is the
area under the ROC curve (AUC) in a sliding window over the stream of events
as proposed by Brzezinski and Stefanowski [5]. Unfortunately, maintaining the
exact AUC requires O(k) time, per new event, where k is the size of the window.
This may be too expensive if k is large and the rate of the events is significant.

In this paper we propose a technique for estimating AUC efficiently in a slid-
ing window. Namely, we propose an approximation scheme that has ε/2 approx-
imation error guarantee while having O((log k)/ε) update time. That is, the
scheme provides a trade-off between the accuracy and computational complex-
ity.

Our approach is straightforward. Computing AUC exactly requires sorting
data points and summing over all data points (see Eq. 1 for the exact formula).
Maintaining points sorted can be done using binary search trees. However, esti-
mating the sum requires additional tricks. We approach the problem by grouping
neighboring data points together, that is, treating them as if the classifier given
them the same score.

The key step is to design a grouping such that 3 properties hold at the same
time: (i) the groups are small enough so that the relative error is small, more
specifically, | ∼auc −auc|/auc ≤ ε/2, (ii) the number of groups is small enough,
more specifically, it should be in O((log k)/ε), and (iii) the definition should be
flexible enough so that we can do quick updates whenever points arrive or leave
the sliding window.

Roughly speaking, in order to accommodate all 3 demands, we will maintain
the groups with the two following properties: (i) the number of positive labels
in a group is less than or equal to (1 + ε) than the total number of positive
labels in all the previous groups, (ii) the number of positive labels in a group,
and the next group, is larger than (1 + ε) than the total number of positive
labels in all the previous groups. The first property will yield the approximation
guarantee, while the second property guarantees that the number of groups
remains small. Moreover, these properties are flexible enough so we can perform
update procedures quickly.

The rest of the paper is organized as follows. We begin by reminding our-
selves the definition of AUC in Sect. 2. Updating the groups of data points quickly
requires several auxiliary structures, which we introduce in Sect. 3. We then pro-
ceed describing AUC estimation in Sect. 4. The related work is given in Sect. 5.
In Sect. 6, we demonstrate that the relative error in practice is much smaller
than the guaranteed bound, as well as, study the trade-off between the error
and the computational cost. Finally, we conclude the paper with discussion in
Sect. 7.

Efficient Estimation of AUC in a Sliding Window 673

2 Preliminaries

We start with the definition of AUC, and provide a formula for computing it.
Assume that we are given a set of k pairs W = (si, �i)k

i , where �i is the true
label of the ith instance, �i = 0, 1, and si is score produced by the classification
algorithm. The larger si, the more we believe that �i should be 0.1

In order to predict a label, we need a threshold σ, and predict that �i = 0
if si ≥ σ, and �i = 1 otherwise. The ROC curve is obtained by varying σ and
plotting true positive rate as a function of false positive rate. AUC is the area
under the ROC curve. To compute AUC, we can use the following formula. Let

n(s) = |{i | si = s, �i = 0}| and p(s) = |{i | si = s, �i = 1}|

be the counts of labels with a score of s. Define also hp(s) =
∑

t<s p(t). Then,

auc =
1
A

∑

s

(hp(s) +
1
2
p(s))n(s) , (1)

where A = |{i | �i = 0}||{i | �i = 1}| is the normalization factor. Equation 1 can
be computed in O(k log k + k) time by first sorting W , computing hp, and enu-
merating over the sum of Eq. 1.

In a streaming setting, W is a sliding window, and our goal is to compute
AUC as W slides over a stream of predictions and labels.

3 Supporting Data Structures for Estimating AUC

In this section we introduce supporting data structures that are needed to com-
pute AUC in a streaming setting. Additional structures and the actual logic for
computing AUC are given in the next section. We begin by describing the data
structures, then follow with introducing the needed query operations, and finally
finish with explaining the update procedures.

3.1 Data Structures

Assume that we have a sequence of pairs W = (si, �i)k
i=1, where si is the score

produced by the classifier, and �i ∈ {0, 1} is the true label.
We store W in a red-black tree T sorted by the scores si. Let v ∈ T be a

node in T . We will denote the corresponding score of v by s(v). We store and
maintain the following information:

– Counter p(v) = |{i | si = s(v) , �i = 1}|, number of pairs in W with a score
s(v) and a positive label.

– Counter n(v) = |{i | si = s(v) , �i = 0}|, number of pairs in W with a score
s(v) and a negative label.

1 We chose this direction due to the notational convenience.

674 N. Tatti

– Counter accpos(v), the total sum of p(w), where w ranges over all descendant
nodes of v in T , including v itself.

– Counter accneg(v), the total sum of n(w), where w ranges over all descendant
nodes of v in T , including v itself.

For simplicity, we will add two sentinel nodes to T . The first node will have a
score of −∞ and the second node has a score ∞. We will assume that the actual
entries will never achieve these values. Both sentinel nodes have 0 positive labels
and 0 negative labels.

Note that if the scores si are unique, then we have either p(v) = 1, n(v) = 0,
or p(v) = 0, n(v) = 1. However, if there are duplicate scores, then we may have
any integer combinations.

In addition to red-black trees, we need to maintain several linked lists, for
which we will now introduce the notation. Assume that we are given a subset
U of nodes in T . We would like to maintain U in a linked list L, sorted by the
score. For that we will need two pointers for each node u ∈ U , namely, next(u;L)
indicating the next node in L, and prev(u;L) indicating the previous node in L.
Let u ∈ U and assume that v = next(u;L) exists. Let

B = {w ∈ T | s(u) ≤ s(w) < s(v)}
be the set of nodes in T between u and v. We define

gp(u;L) =
∑

w∈B

p(w) and gn(u;L) =
∑

w∈B

n(w)

to be the total sums of the labels in the gap B. We will refer to L as weighted
linked list. Note that deleting an element from L and maintaining the gap coun-
ters can be done in constant time. We will refer to the deletion algorithm by
Remove(L, v). Moreover, adding a new element, say v, to L after u can be also
done in constant time, if we already know the total sums of labels, say p and n,
between u and v. We will refer to the insertion algorithm by Add(L, u, v, p, n).

We say that the node v ∈ T is positive, if p(v) > 0. Similarly, we say that the
node v is negative, if n(v) > 0. Note that v can be both negative and positive.

We maintain all positive nodes in a weighted linked list, which we will refer
as P . Finally, we also store all positive nodes in its own dedicated red-black tree,
denoted by TP . For simplicity, we also store the sentinel nodes of T in P and
TP as the first and the last nodes.

3.2 Query Procedures

The first query that we need is MaxPos(s), returning the positive node v with
the largest score such that s(v) ≤ s. This can be done in O(log k) time using
TP , where k is the number of elements in the window.

Maintaining accpos(v) and accneg(v) allows us to query a cumulative sums
of counts. Specifically, given a score s, we are interested in

hp(v) =
∑

v∈T |s(v)<s

p(v) and hn(v) =
∑

v∈T |s(v)<s

n(v) . (2)

Efficient Estimation of AUC in a Sliding Window 675

Algorithm 1. HeadStats(s), computes the cumulative counts of labels,
hp(v) and hn(v). Assumes that a node in T with a score s exists.
1 hp ← 0; hn ← 0;
2 v ← root of T ;
3 while true do
4 if s(v) < s then
5 v ← left(v);
6 else
7 if left(v) then
8 hp ← hp + accpos(left(v));
9 hn ← hn + accneg(left(v));

10 if s(v) = s then
11 return hp, hn;
12 else
13 hp ← hp + p(v);
14 hn ← hn + n(v);
15 v ← right(v);

We can compute both of these sums with HeadStats(s), given in Algorithm 1.
The algorithm assumes that there is a node in T containing s, and proceeds

to find it; during the search whenever we go the right branch we add the accu-
mulative sums from the left branch. We omit the trivial proof of correctness.
Since the tree is balanced, the running time of HeadStats(s) is O(log k), where
k is the number of entries in the window.

3.3 Update Procedures

We now continue to the maintenance procedures as we slide the window. This
comes down to two procedures: (i) removing an entry from the window and (ii)
adding an entry to the window.

We will first describe removing an entry with a positive label and a score s.
First we will find the node, say v, with the score s, and reduce the counter p(v)
by 1. We will need to update the accpos counters. However, we only need to do
it for the ancestors of v, and there are only O(log k) of them, where k is the
number of entries in the window, since T is balanced. We also reduce gp(v;P)
by 1. In the process, v may become non-positive, and we need to delete it from
TP as well as from P .

Finally, if p(v) = n(v) = 0, we need to delete the node from T . This may
result in rebalancing of the tree, and during the balancing we need to make sure
that the counters accpos and accneg are properly updated. Luckily, the red-black
tree balancing is based on left and right rotations. During these rotations it is
easy to maintain the counters without additional costs.

We will refer to this procedure as RemoveTreePos(s) and the pseudo-code
is given in Algorithm 2. RemoveTreePos(s) runs in O(log k) time.

676 N. Tatti

Algorithm 2. RemoveTreePos(s, T,TP , P), removes an entry to T with
a positive label and a score s.
1 v ← node with score s in T ;
2 update p(v), gp(v; P), and accpos counters of the ancestors of v;
3 if p(v) = 0 then remove v from the linked list P and the search tree TP ;
4 if p(v) = n(v) = 0 then remove v from T ;

Deleting an entry with a negative label and a score s is simpler. First, we
find the node, say v, with the score s, and reduce the n(v) counter by 1. If
needed, we delete v from T . Finally we use MaxPos(s) to find u, the largest
positive node with s(u) ≤ u, and reduce gn(u;P) by 1. The procedure, referred
as RemoveTreeNeg, runs in O(log k) time.

Next, we will describe the addition of a positive entry with a score s. First,
we will add the entry s to T , possibly creating a new node in the process. Let v
be the node in T with the score s.

If v is a new node, then we need to add it to the weighted linked list P . First,
we find the node, say w = MaxPos(s), after which v is supposed to be added.
We need to compute the new gap counter gn(v;P). By definition, this value is
equal to the total count of negative labels of nodes between w and v, including
w. Thus, this new gap counter is equal to hn(w) − hn(v). Both counters can be
obtained using HeadStats in O(log k) time.

We will refer to this procedure as AddTreePos(s), and the pseudo-code is
given in Algorithm 3. AddTreePos(s) runs in O(log k) time.

Algorithm 3. AddTreePos(s), adds an entry to T with a positive label
and a score s.
1 w ← MaxPos(s);
2 add s to T (possibly creating new node), and update accpos and p counters;
3 v ← node with score s in T ;
4 if w �= v then
5 add v to TP ;
6 p1, n1 ← HeadStats(s(w));
7 p2, n2 ← HeadStats(s(v));
8 Add(P, w, v, 1, n2 − n1) ;

9 return v;

Adding an entry with negative label and a score s is simpler. First, we will
add the entry s to T , possibly creating a new node in the process. Let v be
the node in T with a score s. Then, we use MaxPos(s) to find u, the largest
positive node with s(u) ≤ u, and increase gn(u) by 1. The procedure, referred
as AddTreeNeg, runs in O(log k) time.

Efficient Estimation of AUC in a Sliding Window 677

4 Estimating AUC Efficiently

In order to approximate AUC, we will use Eq. 1 as a basis. However, instead of
enumerating over every node we will enumerate only over some selected nodes.
The key is how to select the nodes such that we will obtain the approximation
guarantee while keeping the number of nodes small.

We will maintain a weighted linked list C . Given α > 1, we say that C is
α-compressed, if for every two consecutive nodes in C , say v and w, it holds that

hp(w) ≤ α(hp(v) + p(v)), (3)

and if u = next(w;C) exists, then

hp(u) > α(hp(v) + p(v)). (4)

Equation 3 will yield the approximation guarantee, while the Eq. 4 will guar-
antee the running time.

4.1 Computing Approximate AUC

Our next step is to show how we can approximate AUC using a compressed list L
in O(L) time. The idea is as follows. Let B be the set of nodes between two con-
secutive nodes v and w in L. Normally, we would have to go over each individual
node in B when computing AUC. Instead, we will group B to a single node. We
will use the total number of positive labels in B, that is, gp(v;L) − p(v), for the
number of positive labels for this node. Similarly, we will use gn(v;L)−n(v) for
the negative labels. The pseudo-code for the algorithm is given in Algorithm 4.

Algorithm 4. ApproxAUC(L) computes approximate AUC using a
weighted linked list.
1 hp ← 0; a ← 0;
2 while v ∈ L do
3 p ← p(v); n ← n(v);
4 a ← a + (hp + p/2)n;
5 hp ← hp + p;
6 p ← gp(v; L) − p(v); n ← gn(v; L) − n(v);
7 a ← a + (hp + p/2)n;
8 hp ← hp + p;

9 A ← (total number of positive labels) × (total number of negative labels);
10 return a/A;

Let us first establish that ApproxAUC produces an accurate estimate.

Proposition 1. Let L be (1 + ε)-compressed list constructed from the search
tree T . Let ∼auc= ApproxAUC(L) be an approximate AUC, and let auc be the
correct AUC. Then | ∼auc −auc| ≤ εauc/2.

678 N. Tatti

Proof. Let A be as defined in ApproxAUC. Let v ∈ T be a node, and let u be
the node in L with the largest score such that s(u) < s(v). Let w = next(u;L)
be the next node. Define

cv =
1
2
(hp(u) + p(u) + hp(w)) .

Then, ApproxAUC returns

∼auc=
1
A

∑

v∈L

(hp(v) +
1
2
p(v))n(v) +

∑

v∈T\L

cvn(v) . (5)

We will argue the approximation guarantee by comparing the terms in Eqs. 1
and 5. Let v be a node in L. Then the corresponding term can be found in sums
of both equations.

Let v ∈ T \ L, and write b = hp(v) + 1
2p(v). Let u be the node in L with

the largest score such that s(u) ≤ s(v). Let w = next(u;L) be the next node.
By definition, we have hp(u) + p(u) ≤ b ≤ hp(w). Since cv is the average of the
lower bound and the upper bound, we have

|b − cv| ≤ 1
2
(hp(w) − hp(u) − p(u)) ≤ ε

2
(hp(u) + p(u)) ≤ εb

2
,

where the second inequality follows since L is (1 + ε)-compressed.
We have shown that the approximation holds for individual terms. Conse-

quently, it holds for the summands ∼auc and auc, completing the proof. ��
Two remarks are in order. First, since AUC is always smaller than 1, Propo-

sition 1 implies that the approximation is also absolute, | ∼auc −auc| ≤ ε/2. The
relative approximation is more accurate if AUC is small. However, if AUC is close
to 1, it may make sense to reverse the approximation guarantee, that is, mod-
ify the algorithm such that we have a guarantee of | ∼auc −auc| ≤ (1 − auc)ε/2.
This can be done by flipping the labels, and using 1 − ApproxAUC(C) as the
estimate.

ApproxAUC runs in O(|L|) time. Next we establish that |L| is small.

Proposition 2. Let L be (1 + ε)-compressed list. Then |L| ∈ O
(

log k
ε

)
, where k

is the number of entries in the sliding window.

Proof. Write L = u0, . . . , um. Since L is (1 + ε)-compressed, hp(u2) ≥ 1 and
hp(ui+2) > (1+ ε)hp(ui). Since hp(um) ≤ k, we have (1+ ε)�m/2�−1 ≤ k. Solving
for m leads to m ∈ O

(
log k

log 1+ε

)
⊆ O

(
log k

ε

)
. ��

4.2 Updating the Data Structures

Our final step is to describe procedures for maintaining C as the data window
slides. In the previous section, we already described how to update the search

Efficient Estimation of AUC in a Sliding Window 679

trees T and TP as well as the weighed linked list P . Our next step is to make
sure that the weighted linked list C stays α-compressed.

We will need two utility routines. The first routine, AddNext, given in
Algorithm 5, takes as input a node included in both P and C , and adds to C
the next node in P . This procedure will be used extensively to add extra nodes
to C so that Eq. 3 is satisfied.

Algorithm 5. AddNext(v, L, P), adds the following node of v in P to L.
Here P is the weighted linked list of all positive labels, and v is a node in
P and L.
1 w ← next(v, P);
2 p ← gp(v, P); n ← gn(v, P);
3 if w /∈ L then Add(L, v, w, p, n);

Next, we demonstrate how AddNext enforces Eq. 3.

Lemma 1. Assume that a linked list L satisfies Eq. 3 for consecutive positive
nodes v and w. Add or remove a single positive entry with a score s, and assume
that v and w are still positive. Let u be the next positive node from v in P , and
let L′ be the list obtained from L by adding a positive node u. Then Eq. 3 holds
for L′ for the nodes v and u as well as for the nodes u and w.

Proof. Let us write cx = hp(x) before modifying T , and c′
x = hp(x) after the

modification. Similarly, write bx = p(x) before the modification, and b′
x = p(x)

after the modification.
Since u is the next positive node of v, we have c′

u = c′
v + b′

v ≤ α(c′
v + b′

v),
proving the case of v and u.
If s ≥ s(w), then c′

w = cw ≤ α(cv + bv) = αcu = αc′
u ≤ α(c′

u + b′
u).

If we are adding s and s < s(w), then

c′
w = cw + 1 ≤ α(cv + bv + 1) ≤ α(c′

v + b′
v + 1) = α(c′

u + 1) ≤ α(c′
u + b′

u),

where the last inequality holds since u is a positive node.
If we are removing s and s < s(w), then cv + bv − 1 ≤ c′

v + b′
v, and so

c′
w ≤ cw ≤ α(cv + bv) ≤ α(c′

v + b′
v + 1) = α(c′

u + 1) ≤ α(c′
u + b′

u).

This proves the case for u and w, and completes the proof. ��
Note that the execution of AddNext is done in constant time, the key step

for this being able to obtain gp(v, P) = p(v) and gn(v, P) in constant time. This
is the main reason why we maintain P .

While the first utility algorithm adds new entries to C , our second utility
algorithm, Compress, given in Algorithm 6 tries to delete as many entries as
possible. It assumes that the input list C already satisfies Eq. 3, and searches

680 N. Tatti

for violations of Eq. 4. Whenever such violation is found, the algorithm proceeds
deleting the middle node. Note that deleting this node will not violate Eq. 3.
Consequently, upon termination, the resulted linked list will be α-compressed.
The computational complexity of Compress(C , α) is O(|C |).

Algorithm 6. Compress(L,α), forces a weighted linked list L that satis-
fies Equation 3 to also satisfy Equation 4, making L α-compressed.
1 v ← first element in L;
2 c ← 0;
3 while next(next(v; L) ; L) exists do
4 w ← next(v; L);
5 if c + gp(v; L) + gp(w; L) ≤ α(c + p(v)) then
6 delete w from L;
7 else
8 c ← c + gp(v; L);
9 v ← w;

Next, we describe the update steps. We will start with the easier ones:

Adding negative entry: Given a negative entry with a score s, we first invoke
AddTreeNeg. Then we search u ∈ C with the largest score such that s(u) ≤ s.
Once this entry is found, we increase gn(u;C) by 1.

Removing negative entry: Given a negative entry with a score s, we first invoke
RemoveTreeNeg. Then we search u ∈ C with the largest score such that
s(u) ≤ s. Once this entry is found, we decrease gn(u;C) by 1.

Since the positive labels are not modified, C remains α-compressed, so
there is no need for modifying C . The running time for both routines is
O

(
log k + log k

ε

)
.

Let us now consider more complex cases:

Adding positive entry: Given a positive entry with a score s, we first invoke
AddTreePos. Then we search u ∈ C with the largest score such that s(u) ≤ s.
Once this entry is found, we increase gp(u;C) by 1. By doing so, we may have
violated Eq. 3 for u. Lemma 1 states that we can correct the problem by adding
the next positive node for each violation. However, a closer inspection of the proof
shows that there can be only one violation, namely u. Consequently, we check
if Eq. 3 holds for u, and if it fails, we add the next positive node by invoking
AddNext(u,C , P). Finally, we call Compress(C , α) to force Eq. 4; ensuring
that C is α-compressed. The pseudo-code for AddPos is given in Algorithm 7.

Efficient Estimation of AUC in a Sliding Window 681

Algorithm 7. AddPos(s, α;T,TP , P,C), adds an entry with a positive
label and a score s, updates the tree structures T and TP and the weighted
linked lists P and C .
1 v ← AddTreePos(s, T,TP , P);
2 u ← arg max {s(w) | w ∈ C , s(w) ≤ s} ;
3 gp(u; C) ← gp(u; C) + 1;
4 c ← ∑

w∈C |s(w)<s(u) gp(w; C); {c = hp(u)}
5 if c + gp(u; C) > α(c + p(v)) then AddNext(u,C , P) ;
6 Compress(C , α);

Removing positive entry: Assume that we are given a positive entry with a score
s. First we search u ∈ C with the largest score such that s(u) ≤ s. Once this entry
is found, we decrease gp(u;C) by 1. If u is no longer positive, we add the next
positive entry to C and delete u from C . The reason for this is explained later.
We proceed by deleting the entry from the search trees with RemoveTreePos.

Next we make sure that Eq. 3 holds for every consecutive nodes v and w.
There are two possible cases: (i) v and w were consecutive nodes in C before the
deletion, or (ii) u was deleted from C , and w was the next positive node before
the deletion. In the first case, Lemma 1 guarantees that using AddNext forces
Eq. 3. In the second case, note that hp(w) after the deletion is equal to hp(u)
before the deletion of u. This implies that since Eq. 3 held for v and u before
the deletion, Eq. 3 holds for v and w after the deletion. Finally, we enforce Eq. 4
with Compress. The pseudo-code for RemovePos is given in Algorithm 8.

Algorithm 8. RemovePos(s, α;T,TP , P,C), removes an entry with a
positive label and a score s, updates the tree structures T and TP and the
weighted linked lists P and C .
1 u ← arg max {s(w) | w ∈ C , s(w) ≤ s};
2 gp(u) ← gp(u) − 1;
3 if u ∈ C and p(u) = 1 then
4 AddNext(u,C , P);
5 Remove(C , u);

6 RemoveTreePos(s, T,TP , P);
7 v ← first element in C ;
8 c ← 0;
9 while next(v;C) exists do

10 w ← next(v;C);
11 x ← gp(v;C);
12 if c + x > α(c + p(v)) then AddNext(v,C , P);
13 c ← c + x;
14 v ← w;

15 Compress(C , α);

682 N. Tatti

In both routines, modifying the search trees is done in O(log k) time, while
modifying C is done in O(|C |) ⊆ O

(
log k

ε

)
time.

5 Related Work

The closest related work is a study by Bouckaert [3], where the author divided the
ROC curve area into bins, allowing only to maintain the counters for individual
bins. However, the number of the bins as well as the bins were static, and no
direct approximation guarantees were provided.

Using AUC in a streaming setting was proposed in a paper by Brzezinski and
Stefanowski [5]. Here the authors use red-black tree, similar to T , to maintain
the order of the data points in a sliding window, but they recompute the AUC
from scratch every time, leading to a update time of O(k + log k). In fact, our
approach is essentially equivalent to their approach if we set ε = 0.

Note that using AUC is useful if we do not have a threshold to binarize
the score. If we do have such a threshold, then we can easily maintain a con-
fusion matrix, which allows us to compute many metrics, such as, accuracy,
recall, F1-measure [8,9], and Kappa-statistic [2,13]. However, determining such
a threshold may be extremely difficult since it depends on the misclassification
costs. Selecting such costs may come down to a(n educated) guess.

We based our AUC calculation on a sliding window, that is, we abruptly for-
get the data points after certain period of time. The other option is to gradually
forget the data points, for example using an exponential decay (see a survey
by Gama et al. [10] for such examples). There are currently no methodology
for efficiently estimating AUC under exponential decay, and this is a promising
future line of work.

In a related line of work, training a classifier by optimizing AUC in a static
setting has been proposed by Ataman et al. [1], Brefeld and Scheffer [4], Ferri
et al. [7], Herschtal and Raskutti [12]. Here, AUC is used as an optimization
criterion, and needs to be recomputed from scratch in O(|D| log |D|) time. Nat-
urally, this may be too expensive for large databases. Calders and Jaroszewicz
[6] estimated AUC as a continuous function. This allowed to view AUC as a
smooth function, and optimize the parameters of the underlying classifier effi-
ciently using gradient descent techniques. While the underlying problem is the
same as ours, that is, computing AUC from scratch is expensive, the mainte-
nance procedures make problems orthogonal: in our settings we are required to
do updates when a single data point leaves or enters to our window, whereas here
AUC needs to be recomputed since the scores (and the order) for all existing
data points have changed. However, it may be possible and fruitful to use similar
tricks in order to speed-up the AUC calculation when optimizing classifiers. We
leave this as a future line of work.

Hand [11] proposed a fascinating alternative for AUC. Namely, the author
views AUC as the optimal classification loss averaged (with weights) over mis-
classification cost ratio. He then argues that AUC evaluates incoherently, namely

Efficient Estimation of AUC in a Sliding Window 683

the cost ratio weights depend on the ROC curve, and then he proposes a dif-
ferent coherent alternative. The computation of proposed metric, though more
complex, shares some similarity with AUC, and it may be possible to use similar
techniques as in this paper to approximate this measure efficiently in a stream.

6 Experimental Evaluation

In this section we present our experimental evaluation. We have two goals: to
demonstrate the relative error in practice as a function of the guaranteed error,
and to demonstrate the trade-off between the computational cost and the error.

We implemented calculation of AUC using C++, and conducted the experi-
ments using Macbook Air (1.6 GHz Intel Core i5 / 8 GB Memory).2 As a classifier
we used Python’s scikit implementation of logistic regression. Computing AUC
was done in a separate job from training the classifier as well as scoring new
data points; the reported running times measure only the computation of AUC
over the whole test data.

We used 3 UCI datasets3 for our experiments, see Table 1: (i) Hepmass,
a dataset containing features from simulated particle collisions, split in train-
ing and test datasets. We used the Hepmass-1000 variant. Due to the memory
restrictions of Python, we only used a sample of 500 000 data points from training
data. We used the whole test dataset. (ii) Miniboone: a data used to distinguish
electron neutrinos from muon neutrinos. Since the original data has data points
ordered by label, we permuted the dataset and split it to training and test data.
(iii) Tvads: a data containing features for identifying commercials from TV news
channels. We used BBC and CNN channels as training data, and the remaining
channels as test data.

Table 1. Basic characteristics of the benchmark datasets.

Dataset Size of training dataset Size of test dataset

Hepmass 500 000 3 500 000

Miniboone 30 064 100 000

Tvads 40 265 89 420

Actual Error vs. Guarantee: Proposition 1 states that the error cannot be
more than ε/2. First, we test the actual relative error, that is, | ∼auc −auc|/auc
as a function of ε. Here we set the sliding window size to be 1000.

The top row of Fig. 1 shows the relative error, averaged over all sliding win-
dows, and the bottom row of Fig. 1 shows the relative error, maximized over all
sliding windows. From the results we see that both maximum and average error

2 See https://bitbucket.org/orlyanalytics/streamauc for the implementation.
3 https://archive.ics.uci.edu/.

https://bitbucket.org/orlyanalytics/streamauc
https://archive.ics.uci.edu/

684 N. Tatti

Fig. 1. Actual relative error as a function of ε. Top row: average error, bottom row:
maximum error. Proposition 1 states that error cannot be larger than ε/2.

are smaller than the guaranteed. Especially, the average error is typically smaller
of several orders than the theoretical guarantee. As expected, both errors tend
to increase as ε increases.

Computational Cost vs. Error: Next, we test the trade-off between the com-
putational cost and the relative error. The top row of Fig. 2 shows the running
time as a function of the average error, while the bottom row of Fig. 2 shows the
size of (1 + ε)-compressed list as a function of the average error. Here, we used
a window size of 1000.

From the results, we see the trade-off between the error and the running time:
as the error increases, the running time drops. This is mainly due to the fewer
elements in the compressed list as demonstrated in the bottom row. The running
stabilizes for larger errors; this is due to the operations that do not depend on
ε, such as maintaining binary tree T .

Computational Cost vs. Window Size: Computing exact AUC requires
O(k) time while estimating AUC is O(log k/ε). Consequently, the speed-up
should increase as the size of the sliding window increases. We demonstrate this
effect in Fig. 3 using the Miniboone dataset. We see that the speed-up increases
as a function of window size: computing estimates using ε = 0.1 is 17 times faster
for a window size of 10 000.

Efficient Estimation of AUC in a Sliding Window 685

Fig. 2. Top row: running time as a function of average relative error. Bottom row: size
of the compressed list |C| as a function of average relative error.

Fig. 3. A speed-up of estimating AUC with ε = 0.1 against computing AUC exactly,
as a function of sliding window size. The dataset is Miniboone.

7 Concluding Remarks

In this paper we introduced an approximation scheme that allows to maintain
an estimate AUC in a sliding window within the guaranteed relative error of ε/2
in O((log k)/ε) time. The key idea behind the estimator is to group the data
points. The grouping has to be done cleverly so that the error stays small, the
number of groups stay small, and the list can be updated quickly. We achieve this
by maintaining groups, where the number of positive labels can only increase
relatively by (1 + ε) within one group, and must increase by at least (1 + ε)
within two groups. Our experimental evaluation suggests that the average error

686 N. Tatti

in practice is much smaller than the guaranteed approximation, and that we can
achieve significant speed-up, especially as the window size grows.

Our algorithm relies on the fact that the data points have no weights, speci-
fically, Lemma 1 relies on the fact that the update may change the counters
only by 1. If the data points are weighted, a different approach is required: It is
possible to construct (1+ε)-list from a scratch. The key idea here is a new query,
where, given a threshold σ, we look for a node v that has the largest hp(v) such
that hp(v) ≤ σ. This query can be done using the same trick as in HeadStats,
and it requires O(log k) time. The list can be then constructed by calling this
query with exponentially increasing thresholds O((log k)/ε) times. This leads to
a running time of O(

(log2 k)/ε
)
. An interesting direction for future work is to

improve this complexity to, say, O((log k)/ε).

References

1. Ataman, K., Streetr, W., Zhang, Y.: Learning to rank by maximizing AUC with lin-
ear programming. In: International Joint Conference on Neural Networks, IJCNN
2006, pp. 123–129. IEEE (2006)

2. Bifet, A., Frank, E.: Sentiment knowledge discovery in Twitter streaming data. In:
Pfahringer, B., Holmes, G., Hoffmann, A. (eds.) DS 2010. LNCS (LNAI), vol. 6332,
pp. 1–15. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-16184-
1 1

3. Bouckaert, R.R.: Efficient AUC learning curve calculation. In: Australasian Joint
Conference on Artificial Intelligence, pp. 181–191 (2006)

4. Brefeld, U., Scheffer, T.: AUC maximizing support vector learning. In: Workshop
on ROC Analysis in Machine Learning (2005)

5. Brzezinski, D., Stefanowski, J.: Prequential AUC: properties of the area under the
ROC curve for data streams with concept drift. KAIS 52(2), 531–562 (2017)

6. Calders, T., Jaroszewicz, S.: Efficient AUC optimization for classification. In:
PKDD, pp. 42–53 (2007)

7. Ferri, C., Flach, P., Hernández-Orallo, J.: Learning decision trees using the area
under the ROC curve. ICML 2, 139–146 (2002)

8. Gama, J.: Knowledge Discovery from Data Streams. CRC Press, Boca Raton
(2010)

9. Gama, J., Sebastião, R., Rodrigues, P.P.: On evaluating stream learning algo-
rithms. Mach. Learn. 90(3), 317–346 (2013)

10. Gama, J., Žliobaitė, I., Bifet, A., Pechenizkiy, M., Bouchachia, A.: A survey on
concept drift adaptation. ACM Comput. Surv. 46(4), 44 (2014)

11. Hand, D.J.: Measuring classifier performance: a coherent alternative to the area
under the ROC curve. Mach. Learn. 77(1), 103–123 (2009)

12. Herschtal, A., Raskutti, B.: Optimising area under the roc curve using gradient
descent. In: Proceedings of the twenty-first international conference on Machine
learning, p. 49. ACM (2004)

13. Žliobaitė, I., Bifet, A., Read, J., Pfahringer, B., Holmes, G.: Evaluation methods
and decision theory for classification of streaming data with temporal dependence.
Mach. Learn. 98(3), 455–482 (2015)

https://doi.org/10.1007/978-3-642-16184-1_1
https://doi.org/10.1007/978-3-642-16184-1_1

	Efficient Estimation of AUC in a Sliding Window
	1 Introduction
	2 Preliminaries
	3 Supporting Data Structures for Estimating AUC
	3.1 Data Structures
	3.2 Query Procedures
	3.3 Update Procedures

	4 Estimating AUC Efficiently
	4.1 Computing Approximate AUC
	4.2 Updating the Data Structures

	5 Related Work
	6 Experimental Evaluation
	7 Concluding Remarks
	References

