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Abstract. Since its inception in 1995, the Long Short-Term Memory
(LSTM) architecture for recurrent neural networks has shown promis-
ing performance, sometimes state-of-art, for various tasks. Aiming at
achieving constant error flow through hidden units, LSTM introduces a
complex unit called a memory cell, in which gates are adopted to con-
trol the exposure/isolation of information flowing in, out and back to
itself. Despite its widely acknowledged success, in this paper, we pro-
pose a hypothesis that LSTMs may suffer from an implicit functional
binding of information exposure/isolation for the output and candidate
computation, i.e., the output gate at time t − 1 is not only in charge
of the information flowing out of a cell as the response to the external
environment, but also controls the information flowing back to the cell
for the candidate computation, which is often the only source of nonlin-
ear combination of input at time t and previous cell state at time t − 1
for cell memory updates. We propose Untied Long Short Term Memory
(ULSTM) as a solution to the above problem. We test our model on
various tasks, including semantic relatedness prediction, language mod-
eling and sentiment classification. Experimental results indicate that our
proposed model is capable to at least partially solve the problem and out-
perform LSTM for all these tasks. Code related to this paper is available
at: https://github.com/HangGao/ULSTM.git.
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1 Introduction

Since its inception in 1995, recurrent neural networks with Long Short Term
Memory (LSTM) [1] have shown promising performance on modeling sequential
data. Aiming at achieving constant error flow through hidden units, LSTMs are
proven to be a scalable method that is both general and effective at capturing
long-term temporal dependencies. In fact, LSTMs are widely adopted to advance
the state-of-art for many difficult problems in various areas, including handwrit-
ing recognition [2,3] and generation [4], language modeling [5–8] and translation
[9], image caption generation [10,11], question answering [12], video to text [13]
and so on.
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The key idea behind LSTMs is a complex unit called a memory cell, self-
connected and capable of maintaining its state over time, and a set of nonlinear
gating units aiming at regulating the information flowing in, out and back to
the memory cell. At each time step, as vanilla RNNs, LSTMs are expected to
receive a new input, compose it with previous cell state, and then update the
cell memory with the guidance of those gates. For standard LSTMs, the fusion
of the new input and previous cell state is often mathematically computed as
their linear combination followed by a nonlinear transformation (activation). For
convenience, we name this fusion as cell input, while referring to the new input
as network input. Notice that the cell input is the only source of nonlinear com-
bination involving both network input and cell state, functionally as a candidate
for cell update.

However, the above architecture implicitly introduces a bias, that is, the
exposure/isolation of information to the external environment and to the gener-
ation of the cell input remains the same and can be controlled by the same gate
(output gate), i.e., they are functionally tied. This is a strong assumption since
the output gate calculated at time t − 1 is mathematically independent of the
new network input coming at time t, but is expected to guide the information
flowing out of and back to the cell to generate the cell input in order to update
its memory.

In this paper, we propose Untied Long Short Term Memory (ULSTM) as a
solution to the above problem. Our idea is to introduce a new type of gate called
a retrieve gate, dependent on the network input at each time step, to replace
the output gate in the procedure of cell input generation. We only apply the
idea to standard LSTMs in our paper, but it can also be generalized to many
LSTM variants, e.g., Convolutional LSTM [14], Dynamic Cortex Memory [15]
and Group LSTM [16].

We evaluate the proposed model on various tasks, including semantic related-
ness prediction, language modeling and sentiment classification. Our experiment
results indicate that the proposed model can outperform standard LSTMs in var-
ious conditions and is capable to at least partially solve the problem mentioned
above.

2 Long Short Term Memory

Initially Long Short Term Memory (LSTM) proposed by [1] included only mem-
ory cells, and input and output gates. Targeting at the goal of constant error
flow, LSTMs were carefully designed to protect memory cells from perturbation
by irrelevant inputs with input gates, and prevent other units from perturbation
by currently irrelevant cell content with output gates. Later, forget gates were
introduced by [17] to enable LSTMs to reset their own states instead of growing
without bound. In general, the transitions of a standard LSTM are defined as
follows:

it = σ(Wixt + Uiht−1 + bi) (1)

ft = σ(Wfxt + Ufht−1 + bf ) (2)
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ot = σ(Woxt + Uoht−1 + bo) (3)

c̃t = n(Wnxt + Unht−1 + bn) (4)

ct = it � c̃t + ft � ct−1 (5)

ht = ot � m(ct) (6)

where W s and Us are weight matrices, bs are bias vectors, xt is the network
input, it, ft and ot are the input, forget and output gate respectively, c̃t is the
cell input, ct/ct−1 and ht/ht−1 are corresponding cell state and output state at
the current and previous time steps, and m and n are activation functions, often
taken as tanh.

2.1 Peephole Connection

Peephole connections were proposed in [18] to allow all gates to inspect current
cell state even when output gates are closed. The transitions of a LSTM with
peephole connections are:

it = σ(Wixt + Uiht−1 + Pict−1 + bi) (7)

ft = σ(Wfxt + Ufht−1 + Pict−1 + bf ) (8)

c̃t = n(Wnxt + Unht−1 + bn) (9)

ct = it � c̃t + ft � ct−1 (10)

ot = σ(Woxt + Uoht−1 + Poct + bo) (11)

ht = ot � m(ct) (12)

where Pi, Pf and Po are peephole matrices. In practice, we often put constraints
on these weight matrices so that they are diagonal, i.e., each gate unit only
receives the connection from its own cell. The architecture of a LSTM with
peephole connections is presented in Fig. 1.

2.2 Full Gate Recurrence

Mentioned in [19], there is a version of LSTM called Full Gate Recurrence LSTM
(FGR-LSTM). The idea is to add connections among all gates. The transitions
thus become (with peephole),

it = σ(Wixt + Uiht−1 + Pict−1 + bi + Riiit−1 + Rifft−1 + Rioot−1) (13)

ft = σ(Wfxt + Ufht−1 + Pict−1 + bf + Rfiit−1 + Rffft−1 + Rfoot−1) (14)

c̃t = n(Wnxt + Unht−1 + bn) (15)

ct = it � c̃t + ft � ct−1 (16)

ot = σ(Woxt + Uoht−1 + Poct + bo + Roiit−1 + Rofft−1 + Rooot−1) (17)

ht = ot � m(ct) (18)

FGR requires nine additional weight matrices, which significantly increases the
number of parameters.
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Fig. 1. The architecture of a LSTM with peephole connections

3 Untied Long Short Term Memory

Here we provide the details of our proposed Untied Long Short Term Memory
(ULSTM) mentioned above. Although our model can be generalized to many
LSTM variants, in this paper, we only focus on the standard LSTM and leave
the other variants as future work.

3.1 The Problem

Let us first look at the architecture of a standard LSTM. The information flow-
ing in, back and out of each memory cell is controlled by their corresponding
input, forget and output gate. In an alternative view, input gates control the
memory write access (W), forget gates manage the memory erase access (E)
and output gates determine the memory read access (R). However, if we take a
deeper analysis by viewing ht−1 as ot−1 � tanh(ct−1), a summary in Table 1 can
be generated.

From that table, one can find that both ht and ct have controllers (it, ft or
ot) dependent on current network input xt, while c̃t and all gates are regulated
by controllers (ot−1) independent of xt. The later may lead to a problem we call
false exposure/isolation. That is, ot−1 incorrectly exposes or isolates information
from ct−1 in the procedure of computation of c̃t, it, ft and ot.

In fact, unlike it and ft, ot implicitly provides two functions: (1) respond to
the external environment at time t; (2) determine the information exposed to
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Table 1. Memory cell access at time t

Unit Direct dependents Type Memory accessed Controller Controller dependents

c̃t xt, ht−1 R ct−1 ot−1 xt−1, ht−2

ct c̃t, ct−1 E/W ct−1 it, ft xt, ht−1

ht ct R ct ot xt, ht−1

it xt, ht−1 R ct−1 ot−1 xt−1, ht−2

ft xt, ht−1 R ct−1 ot−1 xt−1, ht−2

ot xt, ht−1 R ct−1 ot−1 xt−1, ht−2

the computation of units within the LSTM cell architecture itself at time t + 1.
ot in a standard LSTM is more likely to behave incorrectly for the latter since
it is independent of xt+1, which may be crucial in the decision on whether the
information in the memory cell ct is valuable or not.

Note that LSTMs with peephole connections already provide a solution for
gate computation by introducing fixed connections from cells to gate units. In
this paper, we focus on proposing a solution for the cell input c̃t computation.

3.2 Is Peephole Connection a Solution?

It is almost natural to consider peephole connections for a solution, as has been
done with gates. However, this will probably not work. This is due to the funda-
mental difference between the functions of the cell input and gates. The latter
function as controllers on the access of memory cells while the former, instead,
function as the candidate to update those cells. A full inspection of the cell state
does not logically prevent gates from closing/opening the path from which the
information can flow through a cell, but it logically means the information stored
in the cell is fully leaked to the candidate (cell input) computation. To prevent
cells from being polluted or perturbed during the update procedure, one can
only expect the input gates to be capable to not only determine how much to
update the cells, but also separate the leaked information from useful one, which
is perhaps an even harder problem.

3.3 Retrieve Gates

Since the problem originates from the implicit binding of the two functions of
output gates, it is better to find a solution that focuses on detaching them. Out
of many potential alternatives, adding a new set of gates to replace output gates
and take over their second function is probably the simplest one. We name these
gates as retrieve gates and represent them by z in the following. A LSTM with
retrieve gates has exactly the same transitions of Eqs. (1)–(3) and (5), (6) as the
standard one, with only the modification to Eq. (4),

c̃t = n(Wnxt + Un(zt � tanh(ct−1)) + bn) (19)
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Fig. 2. The architecture of a ULSTM with peephole connections

where,
zt = σ(Wzxt + Uzht−1 + bz) (20)

Because the solution is inspired by untying the two functions of output gates,
we call the model Untied Long Short Term Memory (ULSTM). Note that zt is
now dependent on xt. We present the architecture of ULSTM in Fig. 2.

4 Experiments

Since our paper focuses on the cell input c̃t computation, we only perform tests
on ULSTM without peephole connections. We leave the peephole version as
future work. In addition, we only compare our model to standard LSTMs and
LSTMs with only peephole connections in candidate computations (PLSTM in
our experiments), which is mentioned as a potential solution in Sect. 3.2, as
our purpose is not to introduce a new model aiming at achieving state-of-art
performance for specific tasks.

We evaluate our model on three tasks: (1) predicting the semantic relat-
edness of sentence pairs; (2) word level language modeling and (3) sentiment
classification of sentences sampled from movie reviews.

4.1 Semantic Relatedness

For a given pair of sentences, the semantic relatedness task is to predict a
human-generated rating of the similarity of the two sentences in meaning. We



On Finer Control of Information Flow in LSTMs 533

use the Sentences Involving Compositional Knowledge (SICK) dataset intro-
duced by [20]. Consisting of 9927 sentence pairs, this dataset is pre-split into
train/valid/test sets with ratio 4500/500/4927. All sentences are derived from
existing image and video description datasets, with each pair annotated with a
relatedness score y ∈ [1, 5]. The higher the score, the more related the pair of
sentences are. We adopt the same similarity model and objective function as [21],
with only a slight difference on the activation function choice for hs. Instead of,

hs = σ(W (x)hx + W (+)h+ + b(h)) (21)

We use,
hs = ReLU(W (x)hx + W (+)h+ + b(h)) (22)

Table 2. Evaluation results of LSTM, PLSTM and ULSTM on SICK test data. The
best results in each subsection are marked as bold

Model Hidden size Parameters Pearson’s γ Spearman’s ρ MSE

LSTM 150 1009205 0.8545 0.7931 0.2774

PLSTM 150 1009355 0.8542 0.7926 0.2782

ULSTM 150 1077005 0.8591 0.7973 0.2686

LSTM (o=1) 150 <1009205 0.8562 0.7955 0.2747

PLSTM (o=1) 150 <1009355 0.8568 0.7948 0.2737

ULSTM (o=1) 150 <1077005 0.8604 0.7984 0.2662

LSTM 180 1088045 0.8531 0.7896 0.2803

PLSTM 180 1088225 0.8518 0.7900 0.2811

ULSTM 180 1174805 0.8609 0.8020 0.2674

LSTM (o=1) 180 <1088045 0.8550 0.7932 0.2747

PLSTM (o=1) 180 <1088225 0.8566 0.7956 0.2738

ULSTM (o=1) 180 <1174805 0.8603 0.8022 0.2674

LSTM 210 1174085 0.8525 0.7916 0.2794

PLSTM 210 1174295 0.8516 0.7905 0.2825

ULSTM 210 1281605 0.8630 0.8039 0.2641

LSTM (o=1) 210 <1174085 0.8534 0.7906 0.2789

PLSTM (o=1) 210 <1174295 0.8532 0.7936 0.2793

ULSTM (o=1) 210 <1281605 0.8620 0.8028 0.2657

LSTM 245 1283565 0.8476 0.7842 0.2902

PLSTM 245 1283810 0.8490 0.7890 0.2875

ULSTM 245 1417580 0.8609 0.8024 0.2664

LSTM (o=1) 245 <1283565 0.8521 0.7907 0.2816

PLSTM (o=1) 245 <1283810 0.8509 0.7908 0.2845

ULSTM (o=1) 245 <1417580 0.8537 0.7937 0.2776
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We adopt the publicly available Glove vectors [22] as the initialization of
word embeddings. Following [21], we do not fine tune these embeddings during
the training procedure. For the optimization algorithm, we choose Adagrad [23],
with a learning rate of 0.03 and a weight decay rate of 0.0001. We set the batch
size to be 25 and number of epochs to be 10. For the similarity model, the hidden
layer size is set to be 50. We use Pearson’s γ, Spearman’s ρ and MSE as the
evaluation metrics. We adopt early stopping and perform prediction on the test
data with the model of the highest Pearson’s γ on the validation data. For each
set of hyper-parameters, we report the mean of 5 independent runs with random
seeds 1234/2341/3451/3651/3851.

For this task, we seek to compare ULSTM, PLSTM and LSTM with (1)
varying hidden size; (2) output gates manually fixed to 1 or not; (3) the same
number of parameters. We list all evaluation results in Table 2.

Varying Hidden Size. When we look at the results of LSTM, PLSTM and
ULSTM with varying hidden size from 150 to 245, we find that ULSTM consis-
tently outperforms LSTM and PLSTM, regardless of whether output gates are
fixed to 1 or not. Besides, ULSTM can benefit from increased hidden size until
a certain point, while the performance of LSTM keeps dropping as the hidden
size increases. PLSTM, on the other hand, shows a similar but weaker trend
as LSTM. Since in this task error signals for parameter tuning only come from
the end of each sentence, ULSTM seems to be better at exploiting the benefits
brought by increased storage capacity, while LSTM and PLSTM, on the con-
trary, suffer from it due to the lack of error signals to correct memory access
management, as the former has lower requirements on the behavior of its output
gates or input gates.

Fixed Output Gates or Not. We take another look at the performance of each
model with/without fixing output gates. Out of 4 different hidden sizes, when
the output gates are not fixed to 1, LSTM noticeably performs worse under 3
cases and PLSTM performs worse under all cases, while for ULSTM, in most
scenarios, the performance is roughly the same or even better than the one with
fixed output gates. A possible explanation is that for ULSTM, output gates
are only expected to affect information exposure to the external environment
or gate computation. As discussed above, gates can be correctly opened/closed
even with information wrongfully exposed/isolated. So as long as the external
environment (the similarity model) is robust, the performance of ULSTM is
expected to remain stable or slightly worse. This is not the case for LSTM, in
which the output gates play an important role in memory candidate generation
or for PLSTM, where information in cells is simply always fully exposed to the
generation procedure.

The Same Number of Parameters. By comparing LSTM, PLSTM and ULSTM
with different hidden sizes but roughly the same number of parameters, one can
conclude that ULSTM, for this task, always performs better than either PLSTM
or LSTM, if given similar number of parameters.
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4.2 Language Modeling

The goal of a language model is to compute the probability of a sentence or a
sequence of words. We use a preprocessed version of the Penn Treebank data
set (PTB) introduced in [24], which is also adopted by [5]. PTB has long been a
central dataset for evaluation of language models. The data set is preprocessed so
that it does not contain capital letters, numbers or punctuation. The vocabulary
includes around 10000 unique words, which is small compared to many modern
datasets.

Table 3. Valid and Test PPL on PTB of LSTM, PLSTM and ULSTM with varying
number of layers. The best results in each subsection are marked as bold

Model Hidden size Layers Parameters Valid PPL Test PPL

AWD-ULSTM 400 1 5614000 84.23 81.76

AWD-PLSTM 400 1 5293600 85.62 83.14

AWD-LSTM 400 1 5293200 86.17 83.73

AWD-ULSTM 400 2 7218000 70.05 67.38

AWD-PLSTM 400 2 6577200 71.16 68.64

AWD-LSTM 400 2 6576400 72.83 70.18

AWD-ULSTM 400 3 8822000 68.47 65.41

AWD-PLSTM 400 3 7860800 69.45 67.06

AWD-LSTM 400 3 7859600 69.87 67.03

AWD-ULSTM 400 4 10426000 69.58 66.42

AWD-PLSTM 400 4 9144400 70.01 67.23

AWD-LSTM 400 4 9142800 70.58 67.51

AWD-ULSTM 400 5 12030000 70.12 67.05

AWD-PLSTM 400 5 10428000 71.1 68.51

AWD-LSTM 400 5 10426000 71.47 68.78

We adopt an implementation of AWD-LSTM [5], which regulates LSTMs
with various techniques that do not make any modification to existing model
architectures, such as variable length sequence, DropConnect and so on. For this
task, we randomly initialize word embeddings with a uniform distribution of
(−0.1, 0.1) with dimension of 400. The maximum sequence length is set to be
70. We apply dropout with rate 0.5 on the decoder, rate 0.4 on embeddings, and
rate 0.25 between hidden layers of RNNs. In addition, words from the embedding
layer are dropped with rate 0.1 and RNN hidden to hidden weight connections
are randomly dropped with rate 0.5. We set the random seed to be 141, L2
regularization rate on RNN activation to be 2, slowness regularization rate on
RNN activation to be 1 and weight decay rate to be 1.2e−6. For the optimization
algorithm, we adopt SGD with learning rate of 30 and switch to NT-ASGD [5]
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Table 4. Valid and Test PPL on PTB of LSTM, PLSTM and ULSTM with varying
hidden size. The best results in each subsection are marked as bold

Model Hidden size Layers Parameters Valid PPL Test PPL

AWD-ULSTM 300 2 6467000 72.01 69.01

AWD-PLSTM 300 2 5976300 73.49 70.52

AWD-LSTM 300 2 5975600 74.55 71.81

AWD-ULSTM 400 2 7218000 70.50 67.38

AWD-PLSTM 400 2 6577200 71.16 68.64

AWD-LSTM 400 2 6576400 72.83 70.18

AWD-ULSTM 500 2 8069000 69.65 67.12

AWD-PLSTM 500 2 7258100 69.56 67.44

AWD-LSTM 500 2 7257200 71.06 68.43

AWD-ULSTM 600 2 9020000 68.83 65.97

AWD-PLSTM 600 2 8019000 68.55 66.30

AWD-LSTM 600 2 8018000 69.42 67.03

AWD-ULSTM 720 2 10293200 67.53 64.77

AWD-PLSTM 720 2 9037680 67.48 65.23

AWD-LSTM 720 2 9036560 68.63 66.17

AWD-ULSTM 1000 2 13824000 65.49 62.95

AWD-PLSTM 1000 2 11862600 64.98 62.86

AWD-LSTM 1000 2 11861200 66.09 63.83

AWD-ULSTM 1170 2 16350200 64.55 62.14

AWD-PLSTM 1170 2 13883730 64.30 62.16

AWD-LSTM 1170 2 13882160 65.14 62.94

AWD-ULSTM 1350 2 19340000 64.04 61.73

AWD-PLSTM 1350 2 16275750 63.83 61.43

AWD-LSTM 1350 2 16274000 64.48 62.11

AWD-ULSTM 1500 2 22079000 63.97 61.21

AWD-PLSTM 1500 2 18467100 62.71 60.66

AWD-LSTM 1500 2 18465200 63.68 61.40

if its trigger criterion is satisfied. We set the logging interval to be 1 and the
non-monotone interval to be 5 for NT-ASGD. All gradients are clipped with
absolute value 0.25. The batch size is set to be 20 and the maximum number of
epochs is 500.

For this task, we seek to compare ULSTM, PLSTM and LSTM with (1) differ-
ent stacking layers; (2) varying hidden size; (3) the same number of parameters.
Note that unlike semantic relatedness prediction, in this task, both models may
receive error signals at each time step. We list all evaluation results in Tables 3
and 4.
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Different Stacking Layers. The comparison among ULSTM, PLSTM and LSTM
with fixed hidden size but different number of layers is presented in Table 3. The
results indicate that along with the increased number of layers, ULSTM always
outperforms LSTM on both validation and test data, while PLSTM is usually
better but occasionally worse than LSTM with a small margin.

Varying Hidden Size. We show the comparison among ULSTM, PLSTM and
LSTM with fixed number of layers but varying hidden sizes in Table 4. It is clear
that both ULSTM and PLSTM outperform LSTM on test data with various hid-
den sizes, indicating the existence of the proposed problem for standard LSTMs.
However, when the hidden size is not very large (<1000), ULSTM outperforms
PLSTM while when the hidden size grows large (≥1000), the latter starts to
outperform the former. A possible explanation is that the increase of hidden size
may reduce the benefits brought by the retrieve gates as cells have more storage
capacity for redundant information, thus (1) false isolation is unlikely to happen
since it requires all relevant gates to be closed at the same time; (2) false expo-
sure is more likely to occur as it is hard to make sure that not a single relevant
gate is open, when the number of cells is large. As a result, as the hidden size
increases, the performance gap between ULSTM and LSTM decreases and since
it is difficult to prevent false exposure with large hidden size, PLSTM seems to
benefit more by simply adding direct peephole connections so that other gates
are trained to work with irrelevant noise that is always present. This trend does
not occur above because in Sect. 4.1, there is not enough error signal at every
time step to correct gate behavior.

The Same Number of Parameters. From Table 4, ULSTM can outperform LSTM
with the same number of parameters when the hidden size is still small, but
along with the increase of hidden size, LSTM starts to outperform ULSTM,
which is probably due to the reasons mentioned above. However, PLSTM usually
outperforms LSTM with roughly the same number of parameters, regardless of
the number of layers or the hidden sizes.

4.3 Sentiment Classification

In this task, we predict the sentiment of sentences sampled from movie reviews.
We use the Stanford Sentiment Treebank [25]. There are two possible subtasks
for this dataset, but we only focus on the fine-grained classification task over
five classes: very negative, negative, neutral, positive, very positive. We use the
train/valid/test split provided by the dataset.

For this task, we do not control variables when comparing ULSTM, PLSTM
and LSTM. Instead we perform hyper-parameter search on the number of lay-
ers from the set [1, 2, 3] and hidden size from the set [50, 100, 150, 200, 250,
300] to find the best hyper-parameter setting for each model. We initialize word
embeddings with Glove vectors [22] and fine-tune them during the training pro-
cedure. We use SGD followed by NT-ASGD [5] if the trigger criterion is satisfied.
We set the logging interval to be 1 and the non-monotone interval to be 5 for
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NT-ASGD. The learning rate is set to be 1. We apply dropout with rate 0.4 on
embeddings, rate 0.25 between hidden layers of RNNs. In addition, RNN hidden
to hidden weight connections are randomly dropped with rate 0.5. We set the
random seed to be 141, L2 regularization rate on RNN activation to be 2, slow-
ness regularization rate on RNN activation to be 1 and weight decay rate to be
1.2e−6. The number of epochs is set to be 50.

We report the test accuracy of each model with the hyper-parameter set
chosen on validation data in Table 5. ULSTM still shows better performance
than LSTM for the sentiment classification task, for both validation and test
accuracy. Note that both LSTM and ULSTM share the same hyper-parameter
set when they achieve the highest validation accuracy, indicating that like other
tasks, ULSTM is likely to perform better than LSTM given the same number of
layers and hidden size.

However, PLSTM in this experiment performs worse than either LSTM or
ULSTM on both validation and test data. Note that similar to Semantic Relat-
edness task, all models only receive error signals at the end of a sequence from
the classifier. It is possible that the lack of error signals makes it difficult for
PLSTM to adjust its gate computation to work with noise constantly present,
leading to worse results.

Table 5. Results of LSTM, PLSTM and ULSTM on Stanford Sentiment Treebank.
The best result is marked as bold

Model Hidden size Layers Valid Acc Test Acc

LSTM 50 2 48.56 48.28

LSTM 200 2 48.56 47.72

PLSTM 200 1 48.28 46.82

ULSTM 50 2 49.71 48.66

5 Conclusion and Future Work

In this paper, we address the problem of implicit functional binding of output
gates in LSTM, which may lead to false exposure/isolation of information for
the cell input computation. We propose a model called Untied Long Short Term
Memory (ULSTM) that introduces a new set of gates as a solution. We evaluate
our model on three tasks: (1) semantic relatedness prediction; (2) language mod-
eling; (3) sentiment classification. The experimental results indicate: (a) ULSTM
consistently outperforms LSTM on all the three tasks, given the same number
of layers and hidden size; (b) ULSTM usually outperforms LSTM with the same
number of parameters when the hidden size is small, but it is not necessarily true
if we increase the hidden size; (c) On the other hand, LSTM may benefit or suffer
from large hidden size, depending on the task; (d) Although LSTM with peep-
hole connections in cell input computation (PLSTM) can sometime work better
than LSTM, or even ULSTM, it is highly task-dependent and inconsistent.
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We seek to generalize our model to large data sets in the future. And it
is also possible to apply the idea to other LSTM variants, e.g., Convolutional
LSTM. Besides the idea of adding a new set of gates which introduces more
parameters, we are also interested in looking for other alternative solutions that
keep or reduce the number of parameters, which may be more computationally
efficient.
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