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Abstract. Reinforcement Learning (RL) for decentralized partially
observable Markov decision processes (Dec-POMDPs) is lagging behind
the spectacular breakthroughs of single-agent RL. That is because
assumptions that hold in single-agent settings are often obsolete in decen-
tralized multi-agent systems. To tackle this issue, we investigate the foun-
dations of policy gradient methods within the centralized training for
decentralized control (CTDC) paradigm. In this paradigm, learning can
be accomplished in a centralized manner while execution can still be
independent. Using this insight, we establish policy gradient theorem
and compatible function approximations for decentralized multi-agent
systems. Resulting actor-critic methods preserve the decentralized con-
trol at the execution phase, but can also estimate the policy gradient
from collective experiences guided by a centralized critic at the training
phase. Experiments demonstrate our policy gradient methods compare
favorably against standard RL techniques in benchmarks from the liter-
ature. Code related to this paper is available at: https://gitlab.inria.fr/
gbono/coop-ma-pg.
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1 Introduction

The past years have seen significant breakthroughs in agents that can gain abil-
ities through interactions with the environment [23,24], thus promising spectac-
ular advances in the society and the industry. These advances are partly due to
single-agent (deep) RL algorithms. That is a learning scheme in which the agent
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describes its world as a Markov decision process (MDP), other agents being part
of that world, and assumptions at both learning and execution phases being
identical [31]. In this setting, policy gradient and (natural) actor-critic variants
demonstrated impressive results with strong convergence guarantees [1,8,17,32].
These methods directly search in the space of parameterized policies of interest,
adjusting the parameters in the direction of the policy gradient. Unfortunately,
extensions to cooperative multi-agent systems have restricted attention to either
independent learners [28,35] or multi-agent systems with common knowledge
about the world [38], which are essentially single-agent systems.

In this paper, we instead consider cooperative multi-agent settings where
we accomplished learning in a centralized manner, but execution must be inde-
pendent. This paradigm allows us to break the independence assumption in
decentralized multi-agent systems but only during the training phase, while still
preserving the ability to meet it during the execution phase. In many real-world
cooperative multi-agent systems, conditions at the training phase do not need
to be as strict as those at the execution phase. During rehearsal, for example,
actors can read the script, take breaks, or receive feedback from the director,
but none of these will be possible during the show [19]. To win matches, a soccer
coach develops (before the game) tactics players will apply during the game. So,
it is natural to wonder whether the policy gradient approach in such a paradigm
could be as successful as for the single-agent learning paradigm.

The CTDC paradigm has been successfully applied in planning methods for
Dec-POMDPs, i.e., a framework of choice for sequential decision making by a
team of cooperative agents [5,9,16,26,33]. In the literature of game theory, Dec-
POMDPs are partially observable stochastic games with identical payoffs. They
subsume many other collaborative multi-agent models, including multi-agent
MDPs [7]; stochastic games with identical payoffs [30]; to cite a few. The critical
assumption that makes Dec-POMDPs significantly different from MDPs holds
only at the execution phase: agents can neither see the real state of the world nor
explicitly communicate with one another their noisy observations. Nonetheless,
agents can share their local information at the training phase, as long as they
act at the execution phase based solely on their individual experience. Perhaps
surprisingly, this insight has been neglected so far, explaining the formal treat-
ment of CTDC received little attention from the RL community [19]. When this
centralized training takes place in a simulator or a laboratory, one can exploit
information that may not be available at the execution time, e.g., hidden states,
local information of the other agents, etc. Recent work in the (deep) multi-agent
RL community builds upon this paradigm to design domain-specific methods
[14,15,22], but the theoretical foundations of decentralized multi-agent RL are
still in their infancy.

This paper investigates the theoretical foundations of policy gradient meth-
ods within the CTDC paradigm. In this paradigm, among policy gradient algo-
rithms, actor-critic methods can train multiple independent actors (or policies)
guided by a centralized critic (Q-value function) [14]. Methods of this family
differ only through how they represent and maintain the centralized critic. The
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primary result of this article generalizes the policy gradient theorem and compat-
ible function approximations from (PO)MDPs to Dec-POMDPs. In particular,
these results show the compatible centralized critic is the sum of individual crit-
ics, each of which is linear in the “features” of its corresponding individual policy.
Even more interestingly, we derive update rules adjusting individual critics in
the direction of the gradient of the centralized critic. Experiments demonstrate
our policy gradient methods compare favorably against techniques from stan-
dard RL paradigms in benchmarks from the literature. Proofs of our results are
provided in the companion research report [6].

We organized the rest of this paper as follows. Section 2 gives formal defi-
nitions of POMDPs and Dec-POMDPs along with useful properties. In Sect. 3,
we review the policy gradient methods for POMDPs, then pursue the review
for cooperative multi-agent settings in Sect. 4. Section 5 develops the theoreti-
cal foundations of policy gradient methods for Dec-POMDPs and derives the
algorithms. Finally, we present empirical results in Sect. 6.

2 Backgrounds

2.1 Partially Observable Markov Decision Processes

Consider a (centralized coordinator) agent facing the problem of influencing the
behavior of a POMDP as it evolves through time. This setting often serves to
formalize cooperative multi-agent systems, where all agents can explicitly and
instantaneously communicate with one another their noisy observations.

Definition 1. Let M1
.= (X ,U ,Z, p, r, T, s0, γ) be a POMDP, where Xt, Ut, Zt

and Rt are random variables taking values in X , U , Z and IR, and represent-
ing states of the environment, controls the agent took, observations and reward
signals it received at time step t = 0, 1, . . . , T , respectively. State transition and
observation probabilities p(x′, z′|x, u) .= P(Xt+1 = x′, Zt+1 = z′|Xt = x,Ut = u)
characterize the world dynamics. r(x, u) .= E[Rt+1|Xt = x,Ut = u] is the
expected immediate reward. Quantities s0 and γ ∈ [0, 1] define the initial state
distribution and the discount factor.

We call tth history, ot
.= (ot−1, ut−1, zt) where o0

.= ∅, a sequence of controls
and observations the agent experienced up to time step t = 0, 1, . . . , T . We
denote Ot the set of histories of the agent might experience up to time step t.

Definition 2. The agent selects control ut through time using a parametrized
policy π

.= (a0, a1, . . . , aT ), where at(ut|ot)
.= Pθt

(ut|ot) denotes the decision rule
at time step t = 0, 1, . . . , T , with parameter vector θt ∈ IR�t where �t � |Ot|.
In practice, we represent policies using a deep neural network; a finite-state con-
troller; or a linear approximation architecture, e.g., Gibbs. Such policy represen-
tations rely on different (possibly lossy) descriptions of histories, called internal
states. It is worth noticing that when available, one can use p to calculate a
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unique form of internal-states, called beliefs, which are sufficient statistics of his-
tories [3]. If we let bo .= P(Xt|Ot = o) be the current belief induced by history o,
with initial belief b∅ .= s0; then, the next belief after taking control u ∈ U and
receiving observation z′ ∈ Z is:

bo,u,z′
(x′) .= P

(
Xt+1 = x′|Ot+1 = (o, u, z′)

) ∝
∑

x∈X
p(x′, z′|x, u)bo(x), ∀x′ ∈ X .

Hence, using beliefs instead of histories in the description of policies preserves the
ability to act optimally, while significantly reducing the memory requirement.
Doing so makes it possible to restrict attention to stationary policies, which are
particularly useful for infinite-horizon settings, i.e., T = ∞. Policy π is said to
be stationary if a0 = a1 = . . . = a and θ0 = θ1 = . . . = θ; otherwise, it is
non-stationary.

Through interactions with the environment under policy π, the agent
generates a trajectory of rewards, observations, controls and states ωt:T

.=
(xt:T , zt:T , ut:T ). Each trajectory produces return R(ωt:T ) .= γ0r(st, ut) + · · · +
γT−tr(sT , uT ). Policies of interest are those that achieve the highest expected
return starting at s0

J(s0; θ0:T ) .= Eπ,M1 [R(Ω0:T )] =
∫

Pπ,M1(ω0:T )R(ω0:T )dω0:T (1)

where Pπ,M1(ω0:T ) denotes the probability of generating trajectory ω0:T under π.
Finding the best way for the agent to influence M1 consists in finding parameter
vector θ∗

0:T that satisfies: θ∗
0:T ∈ arg maxθ0:T J(s0; θ0:T ).

It will prove useful to break the performance under policy π into pieces to
exploit the underlying structure—i.e., the performance of π from time step t
onward depend on earlier controls only through the current states and histories.
To this end, the following defines value, Q-value and advantage functions under
π. The Q-value functions under π is given by:

Qπ
t : (x, o, u) �→ Eπ,M1 [R(Ωt:T )|Xt = x,Ot = o, Ut = u], ∀t = 0, 1, . . . (2)

where Qπ
t (x, o, u) denotes the expected return of executing u starting in x and

o at time step t and then following policy π from time step t + 1 onward. The
value functions under π is given by:

V π
t : (x, o) �→ Eat

[Qπ
t (x, o, Ut)], ∀t = 0, 1, . . . (3)

where V π
t (x, o) denotes the expected return of following policy π from time step

t onward, starting in x and o. Finally, the advantage functions under π is given
by:

Aπ
t : (x, o, u) �→ Qπ

t (x, o, u) − V π
t (x, o), ∀t = 0, 1, . . . (4)

where Aπ
t (x, o, u) denotes the relative advantage of executing u starting in x and

o at time step t and then the following policy π from time step t + 1 onward.
The nice property of these functions is that they satisfy certain recursions.
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Lemma 3 (Bellman equations [4]). Q-value functions under π satisfy the
following recursion: ∀t = 0, 1, . . . , T , ∀x ∈ X , o ∈ Ot, u ∈ U ,

Qπ
t (x, o, u) = R(x, u) + γEat+1,p[Qπ

t+1(Xt+1, Ot+1, Ut+1)|Xt = x,Ot = o, Ut = u]

Lemma 3 binds altogether V π
0:T , Qπ

0:T and Aπ
0:T , including overall performance

J(s0; θ0:T ) = Es0 [V
π
0 (X0, ∅)].

So far we restricted our attention to systems under the control of a single
agent. Next, we shall generalize to settings where multiple agents cooperate to
control the same system in a decentralized manner.

2.2 Decentralized Partially Observable Markov Decision Processes

Consider a slightly different framework in which n agents cooperate when fac-
ing the problem of influencing the behavior of a POMDP, but can neither
see the state of the world and nor communicate with one another their noisy
observations.

Definition 4. A Dec-POMDP Mn
.= (In,X ,U ,Z, p, R, T, γ, s0) is such that

i ∈ In indexes the ith agent involved in the process; X ,U ,Z, p, R, T, γ and s0 are
as in M1; U i is an individual control set of agent i, such that U = U1 × · · · × Un

specifies the set of controls u = (u1, . . . , un); Zi is an individual observation
set of agent i, where Z = Z1 × · · · × Zn defines the set of observations z =
(z1, . . . , zn).

We call the individual history of agent i ∈ In, oi
t = (oi

t−1, u
i
t−1, z

i
t) where

oi
0 = ∅, the sequence of controls and observations up to time step t = 0, 1, . . . , T .

We denote Oi
t, the set of individual histories of agent i at time step t.

Definition 5. Agent i ∈ In selects control ui
t at the tth time step using a

parametrized policy πi .= (ai
0, a

i
1, . . . , a

i
T ), where ai

t(u
i
t|oi

t)
.= Pθi

t
(ui

t|oi
t) is a

parametrized decision rule, with parameter vector θi
t ∈ R

�it , assuming �i
t � |Oi

t|.
Similarly to M1, individual histories grow every time step, which quickly

becomes untractable. The only sufficient statistic for individual histories known
so far [9,11] relies on the occupancy state given by: st(x, o) .= Pθ1:n

0:T ,Mn
(x, o), for

all x ∈ X and o ∈ Ot. The individual occupancy state induced by individual his-
tory oi ∈ Oi

t is a conditional distribution probability: si
t(x, o−i) .= P(x, o−i|oi, st),

where o−i is the history of all agents except i. Learning to map individual histo-
ries to internal states close to individual occupancy states is hard, which limits
the ability to find optimal policies in Mn. One can instead restrict attention
to stationary individual policies, by mapping the history space into a finite set
of possibly lossy representations of individual occupancy states, called internal
states ς

.= (ς1, . . . , ςn), e.g., nodes in finite-state controllers or hidden state
of a Recurrent Neural Network (RNN). We define transition rules prescrib-
ing the next internal state given the current internal state, control and next
observation as follows: ψ : (ς, u, z′) �→ (ψ1(ς1, u1, z′1), . . . , ψn(ςn, un, z′n)) where
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ψi : (ςi, ui, z′i) �→ ς ′i is an individual transition rule. In general, ψ and ψ1:n are
stochastic transition rules. In the following, we will consider these rules fixed
a-priori.

The goal of solving Mn is to find a joint policy π
.= (π1, . . . , πn), i.e.,

a tuple of individual policies, one for each agent—that achieves the highest
expected return, θ∗,1:n

0:T ∈ arg maxθ1:n
0:T

J(s0; θ1:n0:T ), starting at initial belief s0:
J(s0; θ1:n0:T ) .= Eπ,Mn

[R(Ω0:T )]. Mn inherits all definitions introduced for M1,
including functions V π

0:T , Qπ
0:T and Aπ

0:T for a given joint policy π.

3 Policy Gradient for POMDPs

In this section, we will review the literature of policy gradient methods for cen-
tralized single-agent systems. In this setting, the policy gradient approach con-
sists of a centralized algorithm which searches the best θ0:T in the parameter
space. Though, we restrict attention to non-stationary policies, methods dis-
cussed here easily extend to stationary policies when at = a, i.e. θt = θ, for all
t = 0, 1, . . . , T . Assuming π is differentiable w.r.t. its parameter vector, θ0:T , the
centralized algorithm updates θ0:T in the direction of the gradient:

Δθ0:T = α
∂J(s0; θ0:T )

∂θ0:T
, (5)

where α is the step-size. Applying iteratively such a centralized update rule,
assuming a correct estimation of the gradient, θ0:T can usually converge
towards a local optimum. Unfortunately, correct estimation of the gradient
may not be possible. To overcome this limitation, one can rely on an unbi-
ased estimation of the gradient, actually restricting (5) to stochastic gradient:
Δθ0:T = αR(ω0:T ) ∂

∂θ0:T
logPπ,Mn

(ω0:T ). We compute ∂
∂θ0:T

logPπ,Mn
(ω0:T ) with

no knowledge of the trajectory distribution Pπ,Mn
(ω0:T ). Indeed Pπ,Mn

(ω0:T ) .=
s0(x0)

∏T
t=0 p(xt+1, zt+1|xt, ut)at(ut|ot) implies:

∂ logPπ,Mn
(ω0:T )

∂θ0:T
=

∂ log a0(u0|o0)
∂θ0

+ . . . +
∂ log aT (uT |oT )

∂θT
.

3.1 Likelihood Ratio Methods

Likelihood ratio methods, e.g., Reinforce [36], exploit the separability of param-
eter vectors θ0:T , which leads to the following update rule:

Δθt = αED

[
R(ω0:T )

∂ log at(ut|ot)
∂θt

]
, ∀t = 0, 1, . . . , T (6)

where ED[·] is the average over trajectory samples D generated under policy
π. The primary issue with this centralized update-rule is the high-variance
of R(Ω0:T ), which can significantly slow down the convergence. To some-
what mitigate this high-variance, one can exploit two observations. First,
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it is easy to see that future actions do not depend on past rewards, i.e.,
ED[R(ω0:t−1) ∂

∂θt
log at(ut|ot)] = 0. This insight allows us to use R(ωt:T ) instead

of R(ω0:T ) in (6), thereby resulting in a significant reduction in the variance
of the policy gradient estimate. Second, it turns out that the absolute value of
R(ωt:T ) is not necessary to obtain an unbiased policy gradient estimate. Instead,
we only need a relative value R(ωt:T )−βt(xt, ot), where β0:T can be any arbitrary
value function, often referred to as a baseline.

3.2 Actor-Critic Methods

To moderate even more the variance for the gradient estimate in (6), the pol-
icy gradient theorem [32] suggests replacing R(ωt:T ) by Qw

t (xt, ot, ut), i.e., an
approximate value of taking control ut starting in state xt and history ot and then
following policy π from time step t + 1 onward: Qw

t (xt, ot, ut) ≈ Qπ
t (xt, ot, ut),

where wt ∈ R
lt is a parameter vector with lt � |X ||Ot||U|. Doing so leads us to

the actor-critic algorithmic scheme, in which a centralized algorithm maintains
both parameter vectors θ0:T and parameter vectors w0:T : ∀t = 0, 1, . . . , T ,

Δwt = αED

[
δt

∂ log at(ut|ot)
∂θt

]
(7)

Δθt = αED

[
Qw

t (xt, ot, ut)
∂ log at(ut|ot)

∂θt

]
(8)

where δt
.= Q̂π

t (xt, ot, ut) − Qw
t (xt, ot, ut;wt) and Q̂π

t (xt, ot, ut) is an unbiased
estimate of true Q-value Qπ

t (xt, ot, ut).
The choice of parameter vector w0:T is critical to ensure the gradient esti-

mation remains unbiased [32]. There is no bias whenever Q-value functions Qw
0:T

are compatible with parametrized policy π. Informally, a compatible function
approximation Qw

0:T of Qπ
0:T should be linear in “features” of policy π, and its

parameters w0:T are the solution of a linear regression problem that estimates
Qπ

0:T from these features. In practice, we often relax the second condition and
update parameter vector w0:T using Monte-Carlo or temporal-difference learning
methods.

3.3 Natural Actor-Critic Methods

Following the direction of the gradient might not always be the right option to
take. In contrast, the natural gradient suggests updating the parameter vector
θ0:T in the steepest ascent direction w.r.t. the Fisher information metric

Φ(θt)
.= ED

[
∂ log at(ut|ot)

∂θt

(
∂ log at(ut|ot)

∂θt

)�]

. (9)

This metric is invariant to re-parameterizations of the policy. Combining
the policy gradient theorem with the compatible function approximations and
then taking the steepest ascent direction, ED[Φ(θt)−1Φ(θt)wt], results in natural
actor-critic algorithmic scheme, which replaces the update rule (8) by: Δθt =
αED[wt].
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4 Policy Gradient for Multi-Agent Systems

In this section, we review extensions of single-agent policy gradient methods to
cooperative multi-agent settings. We shall distinguish between three paradigms:
centralized training for centralized control (CTCC) vs distributed training for
decentralized control (DTDC) vs centralized training for decentralized control
(CTDC), illustrated in Fig. 1.

Fig. 1. Best viewed in color. For each paradigms—(left) CTCC; (center) CTDC; and
(right) DTDC—we describe actor-critic algorithmic schemes. We represent in blue,
green and red arrows: forward control flow; the aggregation of information for the
next time step; and the feedback signals back-propagated to update all parameters,
respectively.

4.1 Centralized Training for Centralized Control (CTCC)

Some cooperative multi-agent applications have cost-free instantaneous commu-
nications. Such applications can be modeled as POMDPs, making it possible to
use single-agent policy gradient methods (Sect. 3). In such a CTCC paradigm, see
Fig. 1 (left), centralized single-agent policy gradient methods use a single critic
and a single actor. The major limitation of this paradigm is also its strength:
the requirement for instantaneous, free and noiseless communications among all
agents till the end of the process both at the training and execution phases.

4.2 Distributed Training for Decentralized Control (DTDC)

Perhaps surprisingly, the earliest multi-agent policy gradient method aims at
learning in a distributed manner policies that are to be executed in a decentral-
ized way, e.g., distributed Reinforce [28]. In this DTDC paradigm, see Fig. 1
(right), agents simultaneously but independently learn via Reinforce their indi-
vidual policies using multiple critics and multiple actors. The independence of
parameter vectors θ10:T , . . . , θn

0:T , leads us to the following distributed update-
rule:

Δθi
t = αED

[
R(ω0:T )

∂ log ai
t(u

i
t|oi

t)
∂θi

t

]
, ∀t = 0, 1, . . . , T,∀i ∈ In (10)
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Interestingly, the sum of individual policy gradient estimates is an unbiased
estimate of the joint policy gradient. However, how to exploit insights from
actor-critic methods (Sect. 3) to combat high-variance in the joint policy gradient
estimate remains an open question. Distributed Reinforce restricts to on-policy
setting, off-policy methods instead can significantly improve the exploration,
i.e., learns target joint policy π while following and obtaining trajectories from
behavioral joint policy π̄ [8].

4.3 Centralized Training for Decentralized Control (CTDC)

The CTDC paradigm has been successfully applied in planning [2,5,9–11,13,
16,26,27,33,34] and learning [12,19–21] for Mn. In such a paradigm, a central-
ized coordinator agent learns on behalf of all agents at the training phase and
then assigns policies to corresponding agents before the execution phase takes
place. Actor-critic algorithms in this paradigm, see Fig. 1 (center), maintain a
centralized critic but learn multiple actors, one for each agent.

Recent work in the (deep) multi-agent RL builds upon this paradigm [14,
15,22], but lacks theoretical foundations, resulting in different specific forms of
centralized critics, including: individual critics with shared parameters [15]; or
counterfactual-regret based centralized critics [14]. Theoretical results similar to
ours were previously developed for collective multi-agent planning domains [25],
i.e., a setting where all agents have the same policy, but their applicability to
general Dec-POMDPs remain questionable.

5 Policy Gradient for Dec-POMDPs

In this section, we address the limitation of both CTCC and DTDC paradigms
and extend both ‘vanilla’ and natural actor-critic algorithmic schemes from M1

to Mn.

5.1 The Policy Gradient Theorem

Our primary result is an extension of the policy gradient theorem [32] from M1

to Mn. First, we state the partial derivatives of value functions V π
0:T w.r.t. the

parameter vectors θ1:n0:T for finite-horizon settings.

Lemma 6. For any arbitrary Mn, target joint policy π
.= (a0, . . . , aT ) and

behavior joint policy π̄
.= (ā0, . . . , āT ), the following holds, for any arbitrary

t = 0, 1, . . . , T , and agent i ∈ In, hidden state xt ∈ X , and joint history ot ∈ Ot:

∂V π
t (xt, ot)
∂θi

t

= Eāt

[
at(Ut|ot)
āt(Ut|ot)

Qπ
t (xt, ot, Ut)

∂ log ai
t(U

i
t |oi

t)
∂θi

t

]
. (11)

We are now ready to state the main result of this section.

Theorem 7. For any arbitrary Mn, target joint policy π
.= (a0, . . . , aT ) and

behavior joint policy π̄
.= (ā0, . . . , āT ), the following holds:
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1. for finite-horizon settings T < ∞, any arbitrary t = 0, 1, . . . , T and i ∈ In,

∂J(s0; θ1:n0:T )
∂θi

t

= γt
Eāt,Mn

[
at(Ut|Ot)
āt(Ut|Ot)

Qπ
t (Xt, Ot, Ut)

∂ log ai
t(U

i
t |Oi

t)
∂θi

t

]
.

2. for finite-horizon settings T = ∞, and any arbitrary agent i ∈ In,

∂J(s0; θ1:n)
∂θi

= Es̄,ā

[
a(U |Σ)
ā(U |Σ)

Qπ(X,Σ, U)
∂ log ai(U i|Σi)

∂θi

]
,

where s̄(x, ς) .=
∑∞

t=0 γt
Pā,ψ,Mn

(Xt = x,Σt = ς).

While the policy gradient theorem for M1 [32] assumes a single agent learning
to act in a (PO)MDP, Theorem 7 applies to multiple agents learning to control a
POMDP in a decentralized manner. Agents act independently, but their policy
gradient estimates are guided by a centralized Q-value function Qπ

0:T . To use this
property in practice, one needs to replace Qπ

0:T with a function approximation
of Qπ

0:T . To ensure this function approximation is compatible—i.e., the corre-
sponding gradient still points roughly in the direction of the real gradient, we
carefully select its features. The following addresses this issue for Mn.

5.2 Compatible Function Approximations

The main result of this section characterizes compatible function approximations
V σ
0:T and Aν

0:T for both the value function V π
0:T and the advantage function Aπ

0:T of
any arbitrary Mn, respectively. These functions together shall provide a function
approximation for Qπ

0:T assuming Qπ
t (xt, ot, ut)

.= V π
t (xt, ot) + Aπ

t (xt, ot, ut), for
any time step t = 0, 1, . . . , T , state xt, joint history ot and joint control ut.

Theorem 8. For any arbitrary Mn, function approximations V σ
0:T and Aν

0:T ,
with parameter vectors σ1:n

0:T and ν1:n
0:T respectively, are compatible with parametric

joint policy π
.= (a0, . . . , aT ), with parameter vector θ1:n0:T , if one of the following

holds: ∀t = 0, 1, . . . , T

1. for any state xt ∈ X , joint history ot ∈ Ot, and agent i ∈ In,

∂V σ
t (xt, ot)
∂σi

t

= Eai
t

[
∂ log ai

t(U
i
t |oi

t)
∂θi

t

]
. (12)

and σ minimizes the MSE Eπ,Mn
[εt(Xt, Ot, Ut)2]

2. for any state xt ∈ X , joint history ot ∈ Ot, joint control ut ∈ U , and agent
i ∈ In,

∂Aν
t (xt, ot, ut)

∂νi
t

=
∂ log ai

t(u
i
t|oi

t)
∂θi

t

(13)

and ν minimizes the MSE Eπ,Mn
[εt(Xt, Ot, Ut)2]
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where εt(x, o, u) .= Qπ
t (x, o, u) − V σ

t (x, o) − Aν
t (x, o, u). Then, ∂

∂θi
t
V π

t (xt, ot)
follows

Eāt

[
at(Ut|ot)
āt(Ut|ot)

(V σ
t (xt, ot) + Aν

t (xt, ot, Ut))
∂ log ai

t(U
i
t |oi

t)
∂θi

t

]
, (14)

for any behavior joint policy π̄
.= (ā0, . . . , āT ).

We state Theorem 8 for non-stationary policies and T < ∞, but the result
naturally extends to infinite-horizon and stationary policies. The theorem essen-
tially demonstrates how compatibility conditions generalize from M1 to Mn.
Notable properties of a compatible centralized critic include the separability
w.r.t. individual approximators:

V σ
t : (xt, ot) �→

∑

i∈In

Eai
t

[
∂ log ai

t(U
i
t |oi

t)
∂θi

t

]�
σi

t + βt(xt, ot), (15)

Aν
t : (xt, ot, ut) �→

∑

i∈In

(
∂ log ai

t(u
i
t|oi

t)
∂θi

t

)�
νi

t + β̃t(xt, ot, ut), (16)

where β0:T and β̃0:T are baselines independent of θ1:n0:T , ν1:n
0:T and σ1:n

0:T . Only
one of (12) or (13) needs to be verified to preserve the direction of the policy
gradient. Similarly to the compatibility theorem for M1, the freedom granted by
the potentially unconstrained approximation and the baselines can be exploited
to reduce the variance of the gradient estimation, but also take advantage of extra
joint or hidden information unavailable to the agents at the execution phase. We
can also benefit from the separability of both approximators at once to decrease
the number of learned parameters and speed up the training phase for large-scale
applications. Finally, the separability of function approximators does not allow
us to independently maintain individual critics, the gradient estimation is still
guided by a centralized critic.

5.3 Actor-Critic for Decentralized Control Algorithms

In this section, we derive actor-critic algorithms for Mn that exploit insights
from Theorem 8, as illustrated in Algorithm1, namely Actor-Critic for Decen-
tralized Control (ACDC). This algorithm is model-free, centralized1, off-policy and
iterative. Each iteration consists of policy evaluation and policy improvement.
The policy evaluation composes a mini-batch based on trajectories sampled from
Pπ̄,Mn

(Ω0:T ) and the corresponding temporal-difference errors, see lines (6–11).
The policy improvement updates θ, ν, and σ by taking the average over mini-
batch samples and exploiting compatible function approximations, see lines (12–
16), where φi

t(ot, ut)
.= ∂

∂θi
t,h

log ai
t(u

i
t|oi

t).

1 One can easily extend this algorithm to allow agents to collaborate during the train-
ing phase by exchanging their local information, and hence makes it a distributed
algorithm.
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Algorithm 1: Actor-Critic for Decentralized Control (ACDC).
1 ACDC()

2 Initialize θ0, ν0, σ0 arbitrarily and h ← 0.
3 while θh has not converged do
4 evaluation() and improvement()

5 h ← h + 1

6 evaluation()

7 Initialize Dh
0:T ← ∅

8 for j = 1 . . . m and t = 0 . . . T do
9 Sample trajectory step (xt:t+1, ot:t+1, ut) ∼ āt, p

10 Evaluate δt ← rt + γV σ
t+1(xt+1, ot+1) − V σ

t (xt, ot)
11 Compute weighting factor ρt(ot, ut) ← at(ut|ot)/āt(ut|ot)
12 Compose batch Dt,h ← {(ot, ut, δt, ρt(ut, ot))} ∪ Dt,h

13 improvement()

14 for i = 1 . . . n and t = 0 . . . T do
15 Baseline σi

t,h+1 ← σi
t,h + ασ

hEDt,h{δtρt(ot, ut)φ
i
t,h(oi

t, u
i
t)}

16 Critic νi
t,h+1 ← νi

t,h + αν
hEDt,h{δtρt(ot, ut)φ

i
t,h(oi

t, u
i
t)}

17 Actor θi
t,h+1 ← θi

t,h+ αθ
hEDt,h{ρt(ot, ut)φ

i
t,h(oi

t, u
i
t)(A

ν
t (ot, ut)+V σ

t (ot))}

The step-sizes αθ
h, αν

h and ασ
h should satisfy the standard Robbins and

Monro’s conditions for stochastic approximation algorithms [29], i.e.,
∑∞

h=0 αh =
∞,

∑∞
h=0 α2

h < ∞. Moreover, according to [18], they should be scheduled such
that we update θ at a slower time-scale than ν and σ to ensure convergence.
To ease the maximum improvement of a joint policy for a constant fixed change
of its parameters, the method of choice is the natural policy gradient [1,17].
The natural ACDC (NACDC) differs from ACDC only in the update of the actors:
θi

t,h+1 ← θi
t,h + αθ

hEDt,h
[at(ut|ot)
āt(ut|ot)

νi
t ]. We elaborate on this analysis of natural

Policy Gradient in our companion research report [6].
We conclude this section with remarks on theoretical properties of ACDC

algorithms. First, they are guaranteed to converge with probability one under
mild conditions to local optima as they are true gradient descent algorithms [8].
The basic argument is that they minimize the mean square projected error by
stochastic gradient descent, see [8] for further details. They further terminate
with a local optimum that is also a Nash equilibrium, i.e., the partial derivatives
of the centralized critic w.r.t. any parameter is zero only at an equilibrium point.

6 Experiments

In this section, we empirically demonstrate and validate the advantage of CTDC
over CTCC and DTDC paradigms. We show that ACDC methods compare favor-
ably w.r.t. existing algorithms on many decentralized multi-agent domains from
the literature. We also highlight limitations that preclude the current implemen-
tation of our methods to achieve better performances.
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6.1 Experimental Setup

As discussed throughout the paper, there are many key components in actor-
critic methods that can affect their performances. These key components include:
training paradigms (CTCC vs DTDC vs CTDC); policy representations (station-
ary vs non-stationary policies); approximation architectures (linear approxima-
tions vs deep recurrent neural networks); history representations (truncated his-
tories vs hidden states of deep neural networks). We implemented three variants
of actor-critic methods that combine these components. Unless otherwise men-
tioned, we will refer to actor-critic methods from: the acronym of the paradigm
in which they have been implemented, e.g., CTDC for ACDC; plus the key
components, “CTDC TRUNC(K)” for ACDC where we use K last observations
instead of histories (non-stationary policy); or “DTDC RNN ” for distributed
Reinforce where we use RNNs (stationary policy), see Fig. 2.

Fig. 2. Best viewed in color. Recurrent neural network architecture used to represent
actors of agent i ∈ In. The blue boxes are standard neural network layers, red text
denotes intermediate tensors computed during forward pass, and green text indicates
the number of parameters in each layer. An LSTM cell maintains an internal state
updated using an embedding of the action-observation pair. A fully connected layer
followed by an ReLU generates a feature vector φi, which are combined by a second
FC layer then normalized by Softmax to get conditional decision rule ai(·|ςi).

We conducted experiments on a Dell Precision Tower 7910 equipped with a
16-core, 3 GHz Intel Xeon CPU, 16 GB of RAM and a 2 GB nVIDIA Quadro
K620 GPU. We run simulations on standard benchmarks from Dec-POMDP
literature, including Dec. Tiger, Broadcast Channel, Mars, Box Pushing, Meet-
ing in a Grid, and Recycling Robots, see http://masplan.org. For the sake of
conciseness, we report details on hyper-parameters in the companion research
report [6].

6.2 History Representation Matters

In this section, we conducted experiments with the goal of gaining insights on
how the representation of histories affects the performance of ACDC meth-
ods. Figure 3 depicts the comparison of truncated histories vs hidden states
of deep neural networks. Results obtained using an ε-optimal planning algo-
rithm called FB-HSVI [9] are included as reference. For short planning horizons,
e.g., T = 10, CTDC RNN quickly converges to good solutions in comparison

http://masplan.org
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to CTDC TRUNC(1) and CTDC TRUNC(3). This suggests CTDC rnn learns
more useful and concise representations of histories than the truncated repre-
sentation. However, for some of the more complex tasks such as Dec. Tiger, Box
Pushing or Mars, no internal representation was able to perform optimally.

Fig. 3. Comparison of different structures used to represent histories.

Overall, our experiments on history representations show promising results
for RNNs, which have the advantage over truncated histories to automatically
learn equivalence classes and compact internal representations based on the gra-
dient back-propagated from the reward signal. Care should be taken though, as
some domain planning horizons and other specific properties might cause early
convergence to poor local optima. We are not entirely sure which specific fea-
tures of the problems deteriorate performances, and we leave for future works
to explore better methods to train these architectures.

6.3 Comparing Paradigms Altogether

In this section, we compare paradigms, CTCC, DTDC, and CTDC. We com-
plement our experiments with results from other Dec-POMDP algorithms: an
ε-optimal planning algorithm called FB-HSVI [9]; and a sampling-based planning
algorithm called Monte-Carlo Expectation-Maximization (MCEM) algorithm [37],
which shares many similarities with actor-critic methods. It is worth noticing
that we are not competing against FB-HSVI as it is model-based. As for MCEM,
we reported performances2 recorded in [37].

In almost all tested benchmarks, CTDC seems to take the better out of the
two other paradigms, for either T = 10 (Fig. 4) or T = ∞ (Fig. 5). CTCC might
2 Two results in MCEM [37] were above optimal values, so we reported optimal values

instead.
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Fig. 4. Comparison of the three paradigms for T = 10.

Fig. 5. Comparison of the three paradigms for T = ∞.

suffer from the high dimensionality of the joint history space, and fail to explore
it efficiently before the learning step-sizes become negligible, or we reached the
predefined number of training episodes. Our on-policy sampling evaluation cer-
tainly amplified this effect. Having a much smaller history space to explore,
CTDC outperforms CTCC in these experiments. Compared to DTDC which
also explores smaller history space, there is a net gain to consider a compatible
centralized critic in the CTDC paradigm, resulting in better performances. Even
if CTDC achieves performances better or equal to the state of the art MCEM
algorithm, there is still some margins of improvements to reach the global optima
given by FB-HSVI in every benchmark. As previously mentioned, this is partly
due to inefficient representations of histories.
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7 Conclusion

This paper establishes the theoretical foundations of centralized actor-critic
methods for Dec-POMDPs within the CTDC paradigm. In this paradigm, a
centralized actor-critic algorithm learns independent policies, one for each agent,
using a centralized critic. In particular, we show that the compatible centralized
critic is the sum of individual critics, each of which is linear in the “features”
of its corresponding individual policy. Experiments demonstrate our actor-critic
methods, namely ACDC, compares favorably against methods from standard RL
paradigms in benchmarks from the literature. Current implementations of ACDC
reveal a challenging and open issue, namely the representation learning problem
of individual histories, e.g., learning to map individual histories to individual
occupancy states. We plan to address this limitation in the future. Whenever
the representation of individual histories is not an issue, ACDC can exploit the
separability of the centralized critic to scale up the number of agents. We are
currently investigating a large-scale decentralized multi-agent application, where
we plan to exploit this scalability property.
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