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Abstract. We propose an efficient protocol for decentralized training
of deep neural networks from distributed data sources. The proposed
protocol allows to handle different phases of model training equally
well and to quickly adapt to concept drifts. This leads to a reduction
of communication by an order of magnitude compared to periodically
communicating state-of-the-art approaches. Moreover, we derive a com-
munication bound that scales well with the hardness of the serialized
learning problem. The reduction in communication comes at almost
no cost, as the predictive performance remains virtually unchanged.
Indeed, the proposed protocol retains loss bounds of periodically averag-
ing schemes. An extensive empirical evaluation validates major improve-
ment of the trade-off between model performance and communication
which could be beneficial for numerous decentralized learning applica-
tions, such as autonomous driving, or voice recognition and image clas-
sification on mobile phones. Code related to this paper is available at:
https://bitbucket.org/Michael Kamp/decentralized-machine-learning.

1 Introduction

Traditionally, deep learning models are trained on a single system or cluster by
centralizing data from distributed sources. In many applications, this requires
a prohibitive amount of communication. For gradient-based training methods,
communication can be reduced by calculating gradients locally and communi-
cating the sum of gradients periodically [7], instead of raw data. This mini-batch
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Fig. 1. (a) Illustration of the problem of averaging models in non-convex problems:
each of the models f1, . . . , f4 has reached a local minimum, but their average f has
a larger error than each of them. (b) Cumulative error over time for a serial learning
algorithm and two decentralized learning algorithms with 10 learners, one that does
not communicate (nosync) and one that communicates every 50 time steps (periodic).
The vertical line indicates a concept drift, i.e., a rapid change in the target distribution.

approach performs well on tightly connected distributed systems [5,6,33] (e.g.,
data centers and clusters). For many applications, however, centralization or
even periodic sharing of gradients between local devices becomes infeasible due
to the large amount of necessary communication.

For decentralized systems with limited communication infrastructure it was
suggested to compute local updates [35] and average models periodically, instead
of sharing gradients. Averaging models has three major advantages: (i) sending
only the model parameters instead of a set of data samples reduces communi-
cation1; (ii) it allows to train a joint model without exchanging or centralizing
privacy-sensitive data; and (iii) it can be applied to a wide range of learning
algorithms, since it treats the underlying algorithm as a black-box.

This approach is used in convex optimization [21,27,34]. For non-convex
objectives, a particular problem is that the average of a set of models can have a
worse performance than any model in the set—see Fig. 1(a). For the particular
case of deep learning, McMahan et al. [22] empirically evaluated model averaging
in decentralized systems and termed it Federated Learning.

However, averaging periodically still invests communication independent of
its utility, e.g., when all models already converged to an optimum. This dis-
advantage is even more apparent in case of concept drifts: periodic approaches
cannot react adequately to drifts, since they either communicate so rarely that
the models adapt too slowly to the change, or so frequently that they generate
an immense amount of unnecessary communication in-between drifts.

1 Note that averaging models requires the same amount of communication as sharing
gradients, since the vector of model parameters is of the same dimension as the
gradient vector of the loss function.
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In Kamp et al. [12] the authors proposed to average models dynamically,
depending on the utility of the communication. The main idea is to reduce com-
munication without losing predictive performance by investing the communica-
tion efficiently: When local learners do not suffer loss, communication is unnec-
essary and should be avoided (see Fig. 1(b)); similarly, when they suffer large
losses, an increased amount of communication should be invested to improve
their performances. The problem setting and a criterion for efficient approaches
is defined in Sect. 2. This approach, denoted dynamic averaging, was proposed
for online learning convex objectives [12,15]. We adapt dynamic averaging to the
non-convex objectives of deep learning in Sect. 3.

Our contribution is the description and evaluation of a general method for
decentralized training of deep neural networks that (i) substantially reduces
communication while retaining high predictive performance and (ii) is in addi-
tion well-suited to concept drifts in the data. To that end, Sect. 4 shows that,
for common learning algorithms, dynamic averaging is an efficient approach for
non-convex problems, i.e., it retains the predictive performance of a centralized
learner but is also adaptive to the current hardness of the learning problem.

A natural application for dynamic decentralized machine learning is in-fleet
learning of autonomous driving functionalities: concept drifts occur naturally,
since properties central for the modeling task may change—changing traffic
behavior both over time and different countries or regions introduce constant and
unforeseeable concept drifts. Moreover, large high-frequency data streams gen-
erated by multiple sensors per vehicle renders data centralization prohibitive in
large fleets. Section 5 provides an extensive empirical evaluation of the dynamic
averaging approach on classical deep learning tasks, as well as synthetic and
real-world tasks with concept drift, including in-fleet learning of autonomous
driving functionalities. The approach is compared to periodically communicat-
ing schemes, including Federated Averaging [22], a state-of-the-art approach
for decentralized deep learning—more recent approaches are interesting from a
theoretical perspective but show no practical improvement [11], or tackle other
aspects of federated learning, such as non-iid data [31] or privacy aspects [23].

Section 6 discusses properties and limitations of dynamic averaging and puts
it into context of related work, followed by a conclusion in Sect. 7.

2 Preliminaries

We consider a decentralized learning setting with m ∈ N local learners, where
each learner i ∈ [m] runs the same learning algorithm ϕ : F × 2X × 2Y → F
that trains a local model f i from a model space F using local samples from
an input space X and output space Y . We assume a streaming setting, where
in each round t ∈ N each learner i ∈ [m] observes a sample Ei

t ⊂ X × Y of size
|Ei

t | = B, drawn iid from the same time variant distribution Pt : X × Y → R+.
The local learner uses its local model to make a prediction whose quality is
measured by a loss function � : F × X × Y → R+. We abbreviate the loss of
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the local model of learner i in round t by �i
t
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f i
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)
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goal of decentralized learning is to minimize the cumulative loss up to a time
horizon T ∈ N, i.e.,

L(T,m) =
T∑

t=1

m∑

i=1

�i
t

(
f i

t

)
. (1)

Guarantees on the predictive performance, measured by the cumulative loss, are
typically given by a loss bound L(T,m). That is, for all possible sequences of
losses it holds that L(T,m) ≤ L(T,m).

In each round t ∈ N, local learners use a synchronization operator
σ : Fm → Fm that transfers the current set of local models, called the current
model configuration ft = {f1

t , . . . , fm
t }, into a single stronger global model

σ(ft) which replaces the local models. We measure the performance of the oper-
ator in terms of communication by the cumulative communication, i.e.,

C(T,m) =
T∑

t=1

c(ft),

where c : Fm → N measures the number of bytes required by the protocol
to synchronize the models ft at time t. We investigate synchronization oper-
ators that aggregate models by computing their average [21,22,27,34,35], i.e.,
f = 1/m

∑m
i=1 f i. In the case of neural networks, we assume that all local models

have the same architecture, thus their average is the average of their respective
weights. We discuss the potential use of other aggregation operations in Sect. 6.
We denote the choice of learning algorithm together with the synchronization
operator as a decentralized learning protocol Π = (ϕ, σ). The protocol is
evaluated in terms of the predictive performance and cumulative communica-
tion. In order to assess the efficiency of decentralized learning protocols in terms
of the trade-off between loss and communication, Kamp et al. [14] introduced
two criteria: consistency and adaptiveness.

Definition 1 (Kamp et al. [14]). A distributed online learning protocol Π =
(ϕ, σ) processing mT inputs is consistent if it retains the loss of the serial
online learning algorithm ϕ, i.e.,

LΠ(T,m) ∈ O (Lϕ(mT )) .

The protocol is adaptive if its communication bound is linear in the num-
ber of local learners m and the loss Lϕ(mT ) of the serial online learning algo-
rithm, i.e.,

CΠ(T,m) ∈ O (mLϕ(mT )) .

2 This setup includes online learning (B = 1) and mini-batch training B > 1. The
gradient of �it is the sum of individual gradients. Our approach and analysis also
apply to heterogeneous sampling rates Bi for each learner i.
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A decentralized learning protocol is efficient if it is both consistent and adaptive.
Each one of the criteria can be trivially achieved: A non-synchronizing protocol
is adaptive but not consistent, a protocol that centralizes all data is consistent
but not adaptive. Protocols that communicate periodically are consistent [7,35],
i.e., they achieve a predictive performance comparable to a model that is learned
centrally on all the data. However, they require an amount of communication
linear in the number of learners m and the number of rounds T , independent of
the loss. Thus they are not adaptive.

In the following section, we recapitulate dynamic averaging and apply it to
the non-convex problem of training deep neural networks. In Sect. 4 we discuss
in which settings it is efficient as in Definition 1.

3 Dynamic Averaging

In this section, we recapitulate the dynamic averaging protocol [15] for synchro-
nizations based on quantifying their effect (Algorithm 1). Intuitively, communi-
cation is not well-invested in situations where all models are already approx-
imately equal—either because they were updated to similar models or have
merely changed at all since the last averaging step—and it is more effective if
models are diverse. A simple measure to quantify the effect of synchronizations
is given by the divergence of the current model configuration, i.e.,

δ(f) =
1
m

m∑

i=1

∥
∥f i − f

∥
∥2

. (2)

Using this, we define the dynamic averaging operator that allows to omit syn-
chronization in cases where the divergence of a model configuration is low.

Definition 2 (Kamp et al. [12]). A dynamic averaging operator with
positive divergence threshold Δ ∈ R+ and batch size b ∈ N is a synchronization
operator σΔ,b such that σΔ,b(ft) = ft if t mod b �= 0 and otherwise: (i) f t =
σΔ,b(ft), i.e., it leaves the mean model invariant, and (ii) δ (σΔ,b(ft)) ≤ Δ, i.e.,
after its application the model divergence is bounded by Δ.

An operator adhering to this definition does not generally put all nodes into sync
(albeit we still refer to it as synchronization operator). In particular it allows to
leave all models untouched as long as the divergence remains below Δ or to only
average a subset of models in order to satisfy the divergence constraint.

The dynamic averaging protocol D = (ϕ, σΔ,b) synchronizes the local
learners using the dynamic averaging operator σΔ,b. This operator only com-
municates when the model divergence exceeds a divergence threshold Δ. In
order to decide when to communicate locally, at round t ∈ N, each local learner
i ∈ [m] monitors the local condition ‖f i

t − r‖2 ≤ Δ for a reference model
r ∈ F [30] that is common among all learners (see [10,16,17,19,29] for a more
general description of this method). The local conditions guarantee that if none
of them is violated, i.e., for all i ∈ [m] it holds that ‖f i

t − r‖2 ≤ Δ, then the
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Algorithm 1. Dynamic Averaging Protocol

Input: divergence threshold Δ, batch size b

Initialization:
local models f1

1 , . . . , fm
1 ← one random f

reference vector r ← f
violation counter v ← 0

Round t at node i:

observe Ei
t ⊂ X × Y

update f i
t−1 using the learning algorithm ϕ

if t mod b = 0 and ‖f i
t − r‖2 > Δ then

send f i
t to coordinator (violation)

At coordinator on violation:

let B be the set of nodes with violation
v ← v + |B|
if v = m then B ← [m], v ← 0

while B �= [m] and
∥
∥ 1

B
∑

i∈B f i
t − r

∥
∥
2

> Δ do
augment B by augmentation strategy
receive models from nodes added to B

send model f = 1
B

∑

i∈B f i
t to nodes in B

if B = [m] also set new reference vector r ← f

divergence does not exceed the threshold, i.e., δ(ft) ≤ Δ [12, Theorem 6]. The
closer the reference model is to the true average of local models, the tighter are
the local conditions. Thus, the first choice for the reference model is the average
model from the last synchronization step. The local condition is checked every
b ∈ N rounds. This allows using the common mini-batch approach [3] for training
deep neural networks.

If one or more local conditions are violated, all local models can be averaged—
an operation referred to as full synchronization. However, on a local violation
the divergence threshold is not necessarily crossed. In that case, the violations
may be locally balanced: the coordinator incrementally queries other local learn-
ers for their models; if the average of all received models lies within the safe zone,
it is transferred back as new model to all participating nodes. If all nodes have
been queried, the result is equivalent to a full synchronization and the reference
vector is updated. In both cases, the divergence of the model configuration is
bounded by Δ at the end of the balancing process, because all local conditions
hold. Also, it is easy to check that this protocol leaves the global mean model
unchanged. Hence, it is complying to Definition 2. In the following Section, we
theoretically analyze the loss and communication of dynamic averaging.

4 Efficiency of Dynamic Averaging

In order to assess the predictive performance and communication cost of the
dynamic averaging protocol for deep learning, we compare it to a periodically
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averaging approach: Given a learning algorithm ϕ, the periodic averaging
protocol P = (ϕ, σb) synchronizes the current model configuration f every b ∈ N

time steps by replacing all local models by their joint average f = 1/m
∑m

i=1 f i.
That is, the synchronization operator is given by

σb(ft) =

{(
f t, . . . , f t

)
, if b ≡ O(t)

ft = (f1
t , . . . , fm

t ), otherwise
.

A special case of this is the continuous averaging protocol C = (ϕ, σ1),
synchronizing every round, i.e., for all t ∈ N, the synchronization operator is
given by σ1 (ft) =

(
f t, . . . , f t

)
. As base learning algorithm we use mini-batch

SGD algorithm ϕmSGD
B,η [7] with mini-batch size B ∈ N and learning rate η ∈ R+

commonly used in deep learning [3]. One step of this learning algorithm given
the model f ∈ F can be expressed as

ϕmSGD
B,η (f) = f − η

B∑

j=1

∇�j(f).

Let CmSGD = (ϕmSGD
B,η , σ1) denote the continuous averaging protocol using mini-

batch SGD. For m ∈ N learners with the same model f ∈ F , mB training sam-
ples (x1, y1), . . . , (xmB , ymB), and corresponding loss functions �i(·) = �(·, xi, yi),
one step of CmSGD is

σ1

((
ϕmSGD

B,η (f), . . . , ϕmSGD
B,η (f)

))
=

1
m

m∑

i=1

(
f − η

∑B
j=1 ∇�(i−1)B+j(f)

)
.

We compare CmSGD to the serial application of mini-batch SGD. It can be
observed that continuous averaging with mini-batch SGD on m ∈ N learners
with mini-batch size B is equivalent to serial mini-batch SGD with a mini-batch
size of mB and a learning rate that is m times smaller.

Proposition 3. For m ∈ N learners, a mini-batch size B ∈ N, mB training
samples (x1, y1), . . . , (xmB , ymB), corresponding loss functions �i(·) = �(·, xi, yi),
a learning rate η ∈ R+, and a model f ∈ F , it holds that

σ1

((
ϕmSGD

B,η (f), . . . , ϕmSGD
B,η (f)

))
= ϕmSGD

mB,η/m
(f).

Proof.

σ1

((
ϕmSGD

B,η (f), . . . , ϕmSGD
B,η (f)

))
=

1
m

m∑

i=1

⎛

⎝f − η

B∑

j=1

∇�(i−1)B+j(f)

⎞

⎠

=
1
m

mf − 1
m

η

m∑

i=1

B∑

j=1

∇�(i−1)B+j(f) = f − 1
m

η

mB∑

j=1

∇�j(f) = ϕmSGD
mB,η/m

(f)


�
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In particular, Proposition 3 holds for continuous averaging with a mini-batch size
of B = 1, i.e., classic stochastic gradient descent. From Proposition 3 it follows
that continuous averaging is consistent as in Definition 1, since it retains the loss
bound of serial mini-batch SGD and classic SGD. If the loss function is locally
convex in an O (Δ)-radius around the current average—a non-trivial but realis-
tic assumption [18,25]—Theorem 2 in Boley et al. [2] guarantees that for SGD,
dynamic averaging has a predictive performance similar to any periodically com-
municating protocol, in particular to σ1 (see Appendix B in the supplementary
material for details). For this case it follows that dynamic averaging using SGD
for training deep neural networks is consistent. Theorem 2 in Kamp et al. [14]
shows that the cumulative communication of the dynamic averaging protocol
using SGD and a divergence threshold Δ is bounded by

C(T,m) ∈ O
(

c(f)√
Δ

L(T,m)
)

,

where c(f) is the number of bytes required to be communicated to average a
set of deep neural networks. Since each neural network has a fixed number of
weights, c(f) is in O (m). It follows that dynamic averaging is adaptive. Thus,
using dynamic averaging with stochastic gradient descent for the decentralized
training of deep neural networks is efficient as in Definition 1.

Note that the synchronization operator can be implemented using different
assumptions on the system’s topology and communication protocol, i.e., in a
peer-to-peer fashion, or in a hierarchical communication scheme. For simplicity,
in our analysis of the communication of different synchronization operators we
assume that the synchronization operation is performed by a dedicated coordi-
nator node. This coordinator is able to poll local models, aggregate them and
send the global model to the local learners.

5 Empirical Evaluation

This section empirically evaluates dynamic averaging for training deep neural
networks. To emphasize the theoretical result from Sect. 4, we show that dynamic
averaging indeed retains the performance of periodic averaging with substantially
less communication. This is followed by a comparison of our approach with a
state-of-the-art communication approach. The performance is then evaluated in
the presence of concept drifts. Combining the aforementioned aspects, we apply
our protocol to a non-convex objective with possible concept drifts from the field
of autonomous driving.

Throughout this section, if not specified separately, we consider mini-batch
SGD ϕmSGD

B,η as learning algorithm, since recent studies indicate that it is par-
ticularly suited for training deep neural networks [32]. That is, we consider com-
munication protocols Π = (ϕmSGD

B,η , σ) with various synchronization operators σ.
The hyper-parameters of the protocols and the mini-batch SGD have been opti-
mized on an independent dataset. Details on the experiments, including network
architectures, can be found in the Appendix A in the supplementary material.
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Dynamic Averaging for Training Deep Neural Networks: To evaluate
the performance of dynamic averaging in deep learning, we first compare it to
periodic averaging for training a convolutional neural network (CNN) on the
MNIST classification dataset [20]. We furthermore compare both protocols to
a non-synchronizing protocol, denoted nosync, and a serial application of the
learning algorithm on all data, denoted serial.

Fig. 2. Cumulative loss and communica-
tion of distributed learning protocols with
m = 100 (similar to McMahan et al. [22])
learners with mini-batch size B = 10, each
observing T = 14000 samples (correspond-
ing to 20 epochs for the serial baseline).

Figure 2 shows the cumulative
error of several setups of dynamic
and periodic averaging, as well as the
nosync and serial baselines. The exper-
iment confirms that for each setup of
the periodic averaging protocol a setup
of dynamic averaging can be found
that reaches a similar predictive per-
formance with substantially less com-
munication (e.g., a dynamic protocol
with σΔ=0.7 reaches a performance
comparable to a periodic protocol with
σb=1 using only half of the communi-
cation). The more learners communi-
cate, the lower their cumulative loss,
with the serial baseline performing the
best.

The advantage of the dynamic protocols over the periodic ones in terms of
communication is in accordance with the convex case. For large synchronization
periods, however, synchronizing protocols (σb=4) have even larger cumulative
loss than the nosync baseline. This behavior cannot happen in the convex case,
where averaging is always superior to not synchronizing [12]. In contrast, in the
non-convex case local models can converge to different local minima. Then their
average might have a higher loss value than each one of the local models (as
illustrated in Fig. 1(a)).

Comparison of the Dynamic Averaging Protocol with FedAvg: Hav-
ing shown that dynamic averaging outperforms standard periodic averaging, we
proceed by comparing it to a highly communication-efficient variant of periodic
averaging, denoted FedAvg [22], which poses a state-of-the-art for decentralized
deep learning under communication-cost constraints.

Using our terminology, FedAvg is a periodic averaging protocol that uses
only a randomly sampled subset of nodes in each communication round. This
subsampling leads to a reduction of total communication by a constant factor
compared to standard periodic averaging. In order to compare dynamic aver-
aging to FedAvg, we repeat the MNIST classification using CNNs and multiple
configurations of dynamic averaging and FedAvg.

Figure 3 shows the evolution of cumulative communication during model
training comparing dynamic averaging to the optimal configuration of FedAvg
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Fig. 3. Evolution of cumulative com-
munication for different dynamic aver-
aging and FedAvg protocols on m = 30
learners using a mini-batch size B = 10.

Fig. 4. Comparison of the best per-
forming settings of the dynamic aver-
aging protocol with their FedAvg coun-
terparts.

with b = 5 and C = 0.3 for MNIST (see Sect. 3 in McMahan et al. [22]) and
variants of this configuration. We find noteworthy spreads between the com-
munication curves, while all approaches have comparable losses. The commu-
nication amounts of all FedAvg variants increase linearly during training. The
smaller the fraction of learners, C ∈ (0, 1], involved in synchronization, the
smaller the amount of communication. In contrast, we observe step-wise increas-
ing curves for all dynamic averaging protocols which reflect their inherent irreg-
ularity of communication. Dynamic averaging with Δ = 0.6 and Δ = 0.8 beat
the strongest FedAvg configuration in terms of cumulative communication, the
one with Δ = 0.8 even with a remarkable margin. We find these improvements of
communication efficiency to come at almost no cost: Fig. 4 compares the three
strongest configurations of dynamic averaging to the best performing FedAvg
ones, showing a reduction of over 50% in communication with an increase in
cumulative loss by only 8.3%. The difference in terms of classification accu-
racy is even smaller, dynamic averaging is only worse by 1.9%. Allowing for
more communication improves the loss of dynamic averaging to the point where
dynamic averaging has virtually the same accuracy as FedAvg with 16.9% less
communication.

Adaptivity to Concept Drift: The advantage of dynamic averaging over
any periodically communicating protocol lies in the adaptivity to the current
hardness of the learning problem, measured by the in-place loss. For fixed target
distributions, this loss decreases over time so that the dynamic protocol reduces
the amount of communication continuously until it reaches quiescence, if no loss
is suffered anymore. In the presence of concept drifts, such quiescence can never
be reached; after each drift, the learners have to adapt to the new target. In order
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to investigate the behavior of dynamic and periodic averaging in this setting, we
perform an experiment on a synthetic dataset generated by a random graphical
model [4]. Concept drifts are simulated by generating a new random graphical
model. Drifts are triggered at random with a probability of 0.001 per round.

Fig. 5. Experiment with periodic and dynamic averaging protocols on m = 100 learner
after training on 5000 samples per learner from a synthetic dataset with concept drifts
(indicated by vertical lines in (b)).

Figure 5(a) shows that in terms of predictive performance, dynamic and peri-
odic averaging perform similarly. At the same time, dynamic averaging requires
up to an order of magnitude less communication to achieve it. Examining the
cumulative communication over time in Fig. 5(b), one can see that dynamic aver-
aging communicates more after each concept drift and decreases communication
until the next drift. This indicates that dynamic averaging invests communica-
tion when it is most impactful and can thereby save a substantial amount of
communication in between drifts.

Case Study on Deep Driving: After having studied dynamic averaging in
contrast to periodic approaches and FedAvg on MNIST and a synthetic dataset
with concept drifts, we analyze how the suggested protocol performs in the real-
istic application scenario of in-fleet training for autonomous driving introduced
in Sect. 1. One of the approaches in autonomous driving is direct steering control
of a constantly moving car via a neural network that predicts a steering angle
given an input from the front view camera. Since one network fully controls
the car this approach is termed deep driving. Deep driving neural networks
can be trained on a dataset generated by recording human driver control and
corresponding frontal view [1,9,26].

For our experiments we use a neural network architecture suggested for deep
driving by Bojarski et al. [1]. The learners are evaluated by their driving ability
following the qualitative evaluation made by Bojarski et al. [1] or Pomerleau [26]
as well as techniques used in the automotive industry. For that, we developed a
custom loss together with experts for autonomous driving that takes into account
the time the vehicle drives on track and the frequency of crossing road sidelines.
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Figure 6 shows the measurements of the custom loss against the cumulative
communication. The principal difference from the previous experiments is the
evaluation of the resulting models without taking into account cumulative train-
ing loss. All the resulting models as well as baseline models were loaded to the
simulator and driven with a constant speed. The plot shows that each periodic
communication protocol can be outperformed by a dynamic protocol.

Fig. 6. Performance in the terms of the
custom loss for the models trained accord-
ing to a set of communication protocols
and baseline models.

Similar to our previous experi-
ments, too little communication leads
to bad performance, but for deep driv-
ing, very high communication (σb=1

and σΔ=0.01) results in a bad perfor-
mance as well. On the other hand,
proper setups achieve performance
similar to the performance of the serial
model (e.g. dynamic averaging with
Δ = 0.1 or Δ = 0.3). This raises
the question, how much diversity is
beneficial in-between averaging steps
and how diverse models should be ini-
tialized. We discuss this question and
other properties of dynamic averaging
in the following section.

6 Discussion

A popular class of parallel learning algorithms is based on stochastic gradient
descent, both in convex and non-convex learning tasks. As for all gradient-based
algorithms, the gradient computation can be parallelized ‘embarrassingly’ [24]
easily. For convex problems, the best so far known algorithm, in terms of pre-
dictive performance, in this class [28] is the distributed mini-batch algorithm
[7]. For the non-convex problem of training (deep) neural networks, McMahan
et al. [22] have shown that periodic averaging performs similar to the mini-batch
algorithm. Section 4 substantiates these results from a theoretical perspective.
Sub-sampling learners in each synchronization allows to further reduce commu-
nication at the cost of a moderate loss in predictive performance.

Note that averaging models, similar to distributed mini-batch training,
requires a common architecture for all local models since the goal is to jointly
train a single global model distributedly using observations from local data
streams—which also sets it apart from ensemble methods.

For the convex case, Kamp et al. [15] have shown that dynamic averaging
retains the performance of periodic averaging and certain serial learning algo-
rithms (including SGD) with substantially less communication. Section 4 proves
that these results are applicable to the non-convex case as well. Section 5 indi-
cates that these results also hold in practice and that dynamic averaging indeed
outperforms periodic averaging, both with and without sub-sampling of learners.
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This advantage is even amplified in the presence of concept drifts. Additionally,
dynamic averaging is a black-box approach, i.e., it can be applied with arbi-
trary learning algorithms (see Appendix A.5 in the supplementary material for
a comparison of using dynamic averaging with SGD, ADAM, and RMSprop).

However, averaging models instead of gradients has the disadvantage of being
susceptible to outliers. That is, without a bound on the quality of local models,
their average can be arbitrarily bad [13,28]. More robust approaches are com-
putationally expensive, though, e.g., the geometric median [8]. Others are not
directly applicable to non-convex problems, e.g., the Radon point [13]. Thus, it
remains an open question whether robust methods can be applied to decentral-
ized deep learning.

Fig. 7. Cumulative loss and cumulative
communication of learning protocols for a
different amount of learners. Training is
performed on MNIST for 2, 20 and 40
epochs for m = 10, m = 100, m = 200
setups correspondingly.

Another open question is the choice
of the divergence threshold Δ for
dynamic averaging. The model diver-
gence depends on the expected update
steps (e.g., in the case of SGD on
the expected norm of gradients and
the learning rate), but the threshold
is not intuitive to set. A good prac-
tice is to optimize the parameter for
the desired trade-off between predic-
tive performance and communication
on a small subset of the data. It is
an interesting question whether the
parameter can also be adapted during
the learning process in a theoretically
sound way.

In dynamic averaging, the amount
of communication not only depends on the actual divergence of models, but also
on the probability of local violations. Since the local conditions can be violated
without the actual divergence crossing the threshold, these false alarms lead to
unnecessary communication. The more learners in the system, the higher the
probability of such false alarms. In the worst case, though, dynamic averaging
communicates as much as periodic averaging. Thus, it scales at least as well as
current decentralized learning approaches [11,22]. Moreover, using a resolution
strategy that tries to balance violations by communicating with just a small
number of learners partially compensates for this problem. Indeed, experiments
on the scalability of the approach show that dynamic averaging scales well with
the number of learners (see Fig. 7 and Appendix A.6 in the supplementary mate-
rial for details).

A general question when using averaging is how local models should be initial-
ized. McMahan et al. [22] suggest using the same initialization for all local mod-
els and report that different initializations deteriorate the learning process when
models are averaged only once at the end. Studying the transition from homo-
geneously initialized and converging model configurations to heterogeneously
initialized and failing ones reveals that, surprisingly, for multiple rounds of aver-
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Fig. 8. Relative performances of averaged models on MNIST obtained from various
heterogeneous model initializations parameterized by ε and various b ∈ N. All aver-
aged model performances are compared to an experiment with homogeneous model
initializations (ε = 0) and b = 1.

aging different initializations can indeed be beneficial. Figure 8 shows the per-
formances of dynamic and periodic averaging for different numbers of rounds of
averaging and different levels of inhomogeneity in the initializations. The results
confirm that for one round of averaging, strongly inhomogeneous initializations
deteriorate the learning process, but for more frequent rounds of averaging mild
inhomogeneity actually improves training. For large heterogeneities, however,
model averaging fails as expected. This raises an interesting question about the
regularizing effects of averaging and its potential advantages over serial learning
in case of non-convex objectives.

7 Conclusion

In decentralized deep learning there is a natural trade-off between learning per-
formance and communication. Averaging models periodically allows to achieve a
high predictive performance with less communication compared to sharing data.
The proposed dynamic averaging protocol achieves similarly high predictive per-
formance yet requires substantially less communication. At the same time, it is
adaptive to concept drifts. The method is theoretically sound, i.e., it retains the
loss bounds of the underlying learning algorithm using an amount of communi-
cation that is bound by the hardness of the learning problem.
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