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Abstract. This paper proposes one-class quantification, a new Machine
Learning task. Quantification estimates the class distribution of an unla-
beled sample of instances. Similarly to one-class classification, we assume
that only a sample of examples of a single class is available for learning,
and we are interested in counting the cases of such class in a test set. We
formulate, for the first time, one-class quantification methods and assess
them in a comprehensible open-set evaluation. In an open-set problem,
several “subclasses” represent the negative class, and we cannot assume
to have enough observations for all of them at training time. Therefore,
new classes may appear after deployment, making this a challenging
setup for existing quantification methods. We show that our proposals
are simple and more accurate than the state-of-the-art in quantifica-
tion. Finally, the approaches are very efficient, fitting batch and stream
applications. Code related to this paper is available at: https://github.
com/denismr/One-class- Quantification.
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1 Introduction

Quantification is the Machine Learning task that estimates the class distribution
of an unlabeled sample of instances. It has numerous applications. In social sci-
ences, quantification predicts election results by analyzing different data sources
supporting a candidate [13]. In natural language processing, quantification esti-
mates the prior probability of different senses for a given word [2]. In entomology,
it infers the local density of mosquitoes in a specific area covered by an insect
sensor [4], among many other applications.

In several quantification applications, we are mostly interested in counting a
single or a small set of class labels. In literature, a typical approach is to model
these applications as binary quantification problems and use the positive class
to designate the group of interest. For example, the positive class can indicate
the Aedes or Anopheles mosquito genus, vectors of terrible diseases such as Zika
fever and malaria, respectively, or a specific defect regarding battery duration
in mobile phones.

In many of these applications, the negative class is the universe, i.e., a broad
set of all categories, except the positive one. For example, the negative label
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would be all possible defects reported by customers, tweets posted by users, word
senses in a large corpus and insect species in an area. However, fully character-
izing the universe is not a trivial task. Apart from being typically represented
by a large number of categories, we can expect that examples from previously
unseen classes may appear in deployment, a problem denominated as open-set
recognition. Taking the insect sensor as an example, the number of insect species
is estimated to be between six and ten million [3], making it an impossible task
to characterize the negative class completely. Therefore, during deployment, the
quantification model will have to face examples from categories (species) that
were disregarded. Even if we are not interested in quantifying these classes, their
instances can significantly degrade the quantifier performance.

Quantification literature has mostly ignored the open-set scenario, indicating
that although a significant body of research is available, there is a considerable
long path to make this task a mature technology. Several techniques have shown
accurate results in typical open-set applications domains. However, we show
that such good results are mostly due to the contrived closed-set evaluation
setups, instead of the actual merits of the proposals. In our opinion, considering
its importance and diversity of applications, quantification is the most under-
researched task in Machine Learning.

In this paper, for the first time in quantification literature, we define the
task of one-class quantification and propose methods for quantifying a class
of interest among a possibly open-set of negative classes. Although one-class
quantification crosses the limits of open-set applications, we restrict ourselves to
open-set scenarios to concretely demonstrate the applicability of our findings.
We show that our methods can learn exclusively from positive class examples,
and are more accurate when facing unseen classes than the state-of-the-art.

This paper is organized as follows. In Sect. 2, we formally define the tackled
problem; in Sect. 3, we review the related work in quantification and open-set
recognition; in Sect.4 we introduce our proposals of algorithms for one-class
quantification; in Sect.5 we present and discuss our experimental evaluation;
and in Sect. 6, we make our conclusions and prospects for future work.

2 Background and Definitions

In supervised tasks, we are interested in learning from a dataset D = {(x1,y1),
ooy (Xn,Yn)}, in which x; € X is a vector of m attributes in the feature space
X,and y; € Y ={c1,...,q} is the respective class label.

In classification, the objective is to predict the class labels of examples based
on the observation of their features as stated in Definition 1.

Definition 1. A classifier is a model h induced from D, such that
h: X —{c1,...,c}

which aims at predicting the classes of unlabeled examples correctly.
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In classification, we assume the examples are independent and identically
distributed (i.i.d). This assumption states that the examples are independent
of each other and the unlabeled (test or deployment) set comes from the same
distribution of the labeled (training) set.

Although quantification and classification share similarities, their objectives
differ. A quantifier is not interested in individual predictions, rather in the overall
quantity of examples of a specific class or a set of classes. Formally, we can define
a quantifier according to Definition 2.

Definition 2. A quantifier is a model that predicts the prevalence of each class
in a sample, more formally,

q:S% —[0,1)

S* denotes a sample from X. The quantifier output is a vector, p, that
estimates the probability for each class, such that Zé.:lf)(j) = 1. The objec-
tive is [p(1),...,p(l)] to be as close as possible to the true class probabilities

[p(1), .., p(1)]-

In quantification, we still assume the examples from S% are independent.
However, training and deployment sets are not identically distributed, since we
expect the class distributions to differ significantly.

This paper proposes, for the first time, one-class quantifiers, which are quan-
tification models that learn from single-class datasets, according to Definition 3.

Definition 3. A one-class quantifier is a quantification model induced from
a single-class dataset, in which all available labeled examples belong to the same
class, say the positive one, D® = {(x1,®), ..., (%,,®)}, and

q® :S* —[0,1]

The one-class quantifier outputs a single probability estimate p(P) € [0,1] of
the positive class prevalence. Notice, however, that ¢© operates over S*, i.e., a
sample with all occurring classes.

Since we evaluate our proposals in open-set scenarios, we also define the
open-set quantification task in Definition 4.

Definition 4. Open-set quantification is the task of quantifying one or a
small set of classes for problems with a large number of classes. Therefore, we
can assume that, at training time, we know only a subset of k classes, k < .
After deployment, other classes (not used for training) may appear.

Although we are not interested in quantifying those unseen classes, they can
significantly hinder the performance of the quantifier.

We can address open-set quantification tasks with one-class quantifiers. In
this case, we are interested in quantifying a single positive class and collapse all
other categories as a negative class. We highlight that only positive instances
are used to induce the model. The negative class depicts the universe composed
of several subclasses. We can trivially extend this approach for more than one
category of interest with a set of one-class quantifiers, one for each positive class.
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3 Related Work

In this section, we review some concepts and methods related to quantification
and open-set recognition. In particular, we briefly discuss some of the techniques
employed in our empirical comparison. Since we are proposing a new task, there
are no existing methods that can directly compare to ours. However, there is a
considerable body of research that we can adapt to the open-set quantification
scenario and can, therefore, use in our experimental setup.

3.1 Closed-Set Quantification

Although quantification and classification seek different objectives, they are
related tasks and can benefit from each other. One example is the most straight-
forward method of achieving quantification: the Classify and Count (CC) algo-
rithm [7]. As its name suggests, CC classifies all observations and counts how
many belong to each class.

Figure 1 illustrates the score distribution of a classification process using a
scorer and a decision threshold. A scorer is a model that, once induced, pro-
duces a numeric value (score) for each unlabeled observation. A higher score
means more confidence that the example belongs to the positive class. A scorer
can produce multiple classifiers by setting a threshold and assigning the obser-
vations according to which side of the threshold they are: examples are labeled
as negative if scored lower than the threshold, and as positive otherwise.

— -+ Negative distribution ==+ Threshold N False negative
- Positive distribution @A False positive
ST H

\.

0.0 0.2 0.4 0.6 0.8 1.0 1.2
Score

Fig. 1. Threshold and score distribution for a binary classification process.

When the number of false positives and the number false negatives are the
same, the classification errors cancel out each other and CC quantifies flawlessly,
independently of the classification accuracy. In other words, it is not necessary to
have a perfect scorer to reach a flawless quantification, being that an ideal scorer
ranks all negative observations lower than the lowest scored positive example.
Furthermore, the quantification error committed by CC is the absolute difference
between the number of false positives and the number of false negatives.

Quantifying a class always produces a relative scalar: the proportion of a
class in comparison with the whole unlabeled data. Therefore, quantification,
in its nature, is only useful if we expect this proportion to vary from sample
to sample. Hence, we expect the negative and positive distributions to shrink
and expand concerning each other. Thus, the ratio between false positive and
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false negative areas of the distributions may vary as well and, consequently, the
quantification error of CC is expected to change.

The most considered quantifier, Adjusted Classify and Count (ACC) [7],
avoids this change in CC errors by accounting for the expected numbers of true
and false positives. To this end, ACC requires precise estimation of true positive
and false positive rates (TPR and FPR, respectively), which can be measured
independently of a particular configuration for the class proportions. Considering
p(@) the proportion of the positive class estimated by CC, ACC’s adjustment is
as follows:

ACC(p(®), TPR, FPR) = min {1 p(®) — FPR }

"TPR — FPR

ACC is proven to provide a perfect quantification when the true TPR and
FPR are known. However, computing the true TPR and FPR would require
a labeled test set. In practice, researchers estimate such quantities using the
training set and some error estimation sampling, such as cross-validation. Nev-
ertheless, if the scores for one of the classes follow a nonstationary distribution,
it is very likely that TPR or FPR or both will also change. In this paper, we
assume the negative distribution to be composed of a mixture of partially known
subclasses that have different degrees of similarity with the positive class. As the
proportions of these subclasses vary, FPR also changes, limiting our chances of
accurately estimating it using the training set.

Another family of quantification algorithms called Mixture Models (MM) [7]
does not rely on a base classifier, but usually requires a scorer. In general, MM’s
consider the scores obtained on an unlabeled set to follow a parametric mixture
between two known distributions (one for each class). The computation of the
parameters of this mixture leads to the quantification estimative.

One example of MM is the HDy algorithm [11]. HDy represents each distri-
bution as a histogram. A weighted vectorial sum of their histograms gives the
mixture between the known positive and negative distributions (H* and H—,
respectively), where the weights sum up to 1. The weights that minimize the
Hellinger Distance (HD) between the mixture and the unlabeled distribution
(HT) are considered to be the proportion of the corresponding classes in the
unlabeled sample. Figure 2 illustrates the application of HD inside HDy.

— Positive distribution =+ Negative distribution ==+ Unlabeled distribution
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Fig. 2. HDy uses the Hellinger Distance (HD) to measure the similarity between a mix-
ture of positive and negative score distributions and an unlabelled score distribution,
where « is the proportion of the positive class. HDy searches for an « that minimizes
the Hellinger Distance.
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Although there are many more approaches in literature [10], we reviewed
some of the principal paradigms in quantification in this section. However, all
approaches studied so far expect the acquisition of enough negative examples
to obtain a full estimation of its distribution. This expectation is unrealistic for
open-set scenarios.

3.2 Open-Set Quantification

To the best of our knowledge, no method the literature has explicitly addressed
the task of open-set quantification. Nevertheless, we can adapt existing methods
in quantification and open-set recognition literature to this task. This section
summarizes some possibilities that we explore in the experimental evaluation.

A first approach is to reduce the open-set to a binary quantification prob-
lem and to tackle it with a binary quantifier. Any of the methods explained in
Sect. 3.1 fit this role, where the training data for the negative class is a mixture
of all known negative subclasses. However, we argue that:

1. We cannot reliably measure FPR in open-set scenarios. The appearance or
disappearance of new or existing negative sub-classes, with different levels of
similarity with the positive class, may make the classification problem more
difficult or easier. Therefore, the number of negative cases misclassified as
positive will change, altering FPR and harming all methods that rely on that
information, such as ACC;

2. The binary quantifiers assume the knowledge of the negative distribution. We
show in the experimental section that their performance depends on which
and how many subclasses are in the negative class, and how many of those
are present in the training set. Such performance loss is expected to happen
to all quantifiers that assume they know all negative subclasses (k =1).

A second approach is to adapt existing methods in the open-set classification
literature to quantification. The research in open-set recognition is extensive, and
we reserve a more comprehensive study about this class of approaches to future
publications. In this paper, we compare our proposals to a family of methods
that choose an ideal threshold value for a one-class scorer based on the available
subclasses [14]. We can trivially adapt those methods to quantification by apply-
ing a Classify and Count (CC) with the chosen threshold. In our experimental
evaluation, we compare our proposals against an upper-bound for all possible
inductive methods that take a fixed threshold for classification: the best-fixed
threshold chosen by looking at test data. Although this method is not practi-
cal, it will help us to illustrate the difficulties found by this class of methods in
open-set quantification problems.

Finally, we observe that all previously explained methods require negative
observations for the induction of the quantification model. Therefore, they can-
not be categorized as one-class quantifiers. This research paper is the first to
address one-class quantification and open-set quantification explicitly. We pro-
pose two efficient methods that use only positive observations.
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4 Proposals

In this section, we introduce two simple one-class quantification algorithms. Both
algorithms require a base one-class scorer, such as one-class SVM, and a training
set of positive examples to be induced upon. Although they share the same
objective and requirements, their rationale diverge.

4.1 Passive Aggressive Threshold ACC

Our first and more straightforward proposal, Passive Aggressive Threshold ACC
(PAT-ACC or PAT, for short), draws inspiration from Adjusted Classify and
Count and Conservative Average Quantifier [8]. ACC depends on accurate esti-
mates for TPR and FPR. In many applications, however, we cannot reliably
measure TPR and FPR because the score distribution for negative observations
varies from sample to sample. The influence of the negative distribution on ACC
stems from the fact that the most suitable thresholds for classification usually
cut through the negative distribution.

In PAT, we deliberately select a very conservative classification threshold
that tries to minimize FPR. We set this threshold according to a quantile ¢
for the scores of positive observations in a training set. Finally, we estimate
TPR=1— q and assume FPR ~ 0. Figure 3 illustrates this process.

—++ Unknown negative distribution ==+ Threshold [N False negative
—— Positive distribution
/-/ ° \.\ .
= —
f T I
0.0 0.2 0.4 0.6 0.8 1.0 1.2
Score

Fig. 3. Expected behavior for a conservative threshold.

After the threshold is set, we perform ACC as usual: we classify all observa-
tions in the test sample of size n according to this conservative threshold, count
the number of positive instances n, estimate the positive proportion p(®) = %,

and readjust it as follows:

(@) = PAT(3(0).0) = ACC(H(@),1 - 4,0) =min {1, 2 |

In PAT, ¢ is an important parameter. Ideally, it should be set as high as pos-
sible so that we can be more confident about the assumption of FPR = 0, even
for non-stationary negative distributions. How high it can be set depends on the
sample size, since higher values imply greater extrapolation with fewer observa-
tions. We also predict the performance to be similar to CC when ¢ approaches
0, as the extrapolation is reduced. We validate the latter statement experimen-
tally and also shows that, although important, ¢ is not a sensitive parameter:
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a broad range of possible values lead to similar quantification errors. Therefore,
we used this fact and reported all quantification errors in the experimental eval-
uation with a fixed ¢ = 0.25. Alternatively, we note that a strategy similar to
Median Sweep [8] can be applied. In this case, one could perform PAT with many
different thresholds and consider the median of the estimates.

4.2 One Distribution Inside

Our second proposal, One Distribution Inside (ODIn), is a Mixture Model
(MM). Usually, MMs search for parametrization to mix two known distributions,
whereas our proposal only knows one distribution that represents the positive
class. ODIn looks for the maximum possible scale factor s, 0 < s < 1, for the
known score distribution of positive training instances, so that it fits inside
the distribution of scores of test instances with an overflow no greater than a
specified limit. The overflow is the area of the scaled positive distribution that
transposes the test distribution, as Fig. 4 illustrates.

Fig. 4. Rationale behind ODIn. The dotted curves represent candidate scale factors for
the positive distribution, and the red-shaded area is the overflow area for the greater
scale factor (top dotted curve). (Color figure online)

We represent the distributions as normalized histograms with unit area and
b buckets, split by b — 1 ordered divisions. The first and last buckets are open-
ended. This means that all scores lower than the first division fall into the first
bucket, and all scores higher than the last division fall into the last bucket. In our
experiments, we set the bucket divisions, i.e., the values of the scores that split
the buckets, as score percentiles obtained from the positive training obser-
vations. The first and last divisions are set as the estimates for, respectively,
the 0*" and 100*" percentiles of the scores. The remaining divisions are set at
every ih percentile, 0 < ih < 100, ¢ € N, where h is a parameter. For instance,
if h = 10, the divisions are at the percentiles 0,10, 20, ...,90,100. Although
score wise the buckets do not share the same width, they are expected to be
equally filled by observations from the positive distribution, thus sharing the
same weight. Exceptions are the first and last buckets, which are expected to
have weights close to zero. Figure 5 illustrates this process.

The overflow committed by a histogram H', at a scale factor «, inside a
histogram H©, where both histogram are normalized so that Y., ..., Hf =

Zlgigb HP =1, is formally defined as follows:

b
OF (o, H', H?) = " max {0,aH/ — H?}

i=1
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Fig. 5. The thresholds for the histogram bins are not uniformly distributed over the
scores (5a), and yet each bin is filled with the same proportion of examples (5b).

Given an overflow limit £, the histogram H™ with scores for positive training
observations, and a histogram H” with scores for the unlabeled test sample T,
ODIn estimates the proportion of positive observations (@) in T as:

p(®) =s— OF (5,H+,HT) where s = sup {a|OF (a,H+,HT) Saﬁ}
0<a<1

The parameter s can be estimated through Binary Search, within a time
complexity of O (% log, 6_1), where € is the expected precision. Also, although
L is a parameter, it can be automatically defined using only positive observations.
To this end, we estimate the mean fi and standard deviation & of OF for pairs
of histograms derived from samples with only positive observations, at scale
factor 1, and set £ = ji + d&, where d is a parameter. Although we are actively
replacing one parameter with another one, d has a clearer semantic and its value
is domain independent: it is the number of standard deviations of the expected
average overflow. In all experiments we used d = 3.

Finally, choosing h, although a non-trivial task, is not devoid of useful
insights. Histograms with too many bins are negatively affected by two aspects.
First, if the sample size is not large enough, large histograms can become too
sparse, each bin can have too low weight, and ultimately, the OF can face the
curse of dimensionality. Second, a large number of bins has the implicit assump-
tion of high precision for the scores. On the other hand, if there are too few bins,
we may be unable to differentiate distributions. In all of our experiments, we
used h = 10, which means that the thresholds cut the positive distribution at
the O, 10*", ..., 90", and 100" percentiles.

5 Experimental Evaluation

In this section, we make a comprehensible experimental evaluation of our pro-
posals. We divided the evaluation into three parts.

First, we compare our proposals with binary quantification methods as we
increase the number of known negative subclasses at training and the number of



282 D. dos Reis et al.

unknown negative subclasses at the test. Performance invariability for an increas-
ing number of unknown classes at test is a requirement for open-set problems.
Lower dependence on the number of known classes at training is also a desirable
trait. Thus, the objective of this comparison is to demonstrate our proposal’s
high invariability and highlight how unfit binary quantifiers are to the open-set
task. Additionally, we show how evaluation can be flawed and overly optimistic
in open-set problems.

Second, as we entirely disregard binary quantifiers due to the obtained results
in the previous part, we compare PAT and ODIn against an upper bound for the
open-set recognition methods that choose a fixed threshold with training data.
Although such methods depend on negative subclasses, this upper bound can
serve as a non-trivial baseline for our approaches.

Finally, we compare the quantification performances for different positive
class ratios in the test data. We start this section describing the datasets and
general experimental setup decisions.

5.1 Experimental Setup

In our experimental evaluation, we used nine real datasets'. For most of them,
we fixed the size of the test samples as 500 observations for all experiments.
Exceptions were made for datasets with a smaller number of entries since we
need enough observations to not only assemble the test samples with varying
positive proportion, but also to allow for variability among samples with a same
positive proportion. The number of observations for training depended on which
experiment was in place, and is explained later. Each dataset is described next.

Insects contains information about the flight of 14 species of insects. As some
are discriminated further by sex, the dataset has 18 classes. The positive
class is female Aedes aegypti. The data has 166,880 records represented by
27 features;

Arabic Digit contains 8,800 entries described by 26 features for the human
speech of Arabic digits. There are 10 classes, and the target class is the digit
0. Test sample size is 400. This versions sets a fixed number of features for
every record [12,15];

BNG (Japanese Vowels) benchmark dataset with speech data regarding
Japanese Vowels. There are 1,000,000 entries, represented by 12 features,
for 9 speakers. The speaker #1 is the class of interest [19];

Anuran Calls (MFCCs) contains 22 features to represent the sound pro-
duced by different species of Anurans (frogs). As the data size is restricted,
we only considered the two biggest families of frogs as the classes of the data,
ending up with 6,585 entries. The positive class is the Hylidae family, and
the negative class is the Leptodactylidae family [6,15];

! Data and code for the proposed algorithms are available at this paper’s supplemen-
tary material website at https://github.com/denismr/One-class-Quantification.
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Handwritten contains 63 features that represent the handwritten lowercase
letters ¢, p and g. The data has 6,014 entries and the chosen positive class is
the letter ¢. Test sample size is 400 [18];

Letter describes the appearance of the 26 uppercase letters of the alphabet on
a black and withe display with 16 features. It contains 20, 000 entries and the
class of interest is the letter W. Test sample size is 200 [9,19];

Pen-Based Recognition of Handwritten Digits handwritten digits repre-
sented by 16 features. The digit 5 is the target class. There are 10,992
entries [1,15];

H RU2 Pulsar candidates collected during the HTRU survey, where pulsars
are a type of star. It contains two classes, Pulsar (positive) and not-Pulsar
(negative), across 17,898 entries described by 63 features [15,16];

Wine Quality contains 11 features that describe two types of wine (white and
red). The quality information was disregarded, and the target class is red
wine. The dataset contains 6,497 entries [5,15].

While the positive class was predefined, all remaining classes in each dataset
were considered to be negative subclasses. Each dataset was uniformly and ran-
domly split into two halves. The first half contains observations used for training
the models according to the procedures described in each experimental phase,
and the second contains the observations from which we sampled the test sets
with the number of observations detailed above.

As our objective using a quantifier is to estimate the proportion of positive
observations in a sample, we fabricate samples with varying positive class pro-
portion using the examples from the test half. Due to our limited data, different
samples can share examples. However, one example is not observed more than
once in the same sample. The positive class proportion of each test sample is cho-
sen uniformly at random from 0% to 100%. The remaining of the set is allocated
for the negative subclasses, each of those also having a random proportion.

We measure the performance according to the Mean Absolute Error (MAE)
for the estimated positive proportion. In other words, we average the absolute
difference between the actual positive proportion and the estimated one, across
all test samples.

5.2 Proposals Versus Binary Quantifiers

In the first part of our experimental evaluation, we evaluate the performance
of binary quantifiers when submitted to an open-set scenario by varying the
number of negative subclasses that are known at training and the number of
unknown subclasses at test. This evaluation highlights the problems carried by
such classifiers in open-set applications: high dependence on negative subclasses
at training and unstable and unreliable evaluation at test.

Due to lack of space, we present results? only for Insects dataset (which is the
motivating application for this work). Except for the Letter dataset, experiments

2 All results are available in our supplemental material repository.
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on all other datasets carry similar findings. The assessed algorithms were CC
and ACC, both with SVM scores, and HDy with scores obtained with one-
class SVM, using the same algorithm to define the thresholds for bins as in
ODIn. We performed the latter experiment with this type of histogram because
HDy requires the scores to be bounded both sides, and the SVM scores are
not strictly bounded. This makes it difficult to set an uniformly distributed
histogram. Furthermore, scores from sets with more than one class usually form
a multimodal distribution with varying space between modes, which would harm
histograms based on percentiles of class scores that are not one-class.

We used 10-fold cross-validation with the training data to estimate TPR
and FPR (required by ACC), and to generate one-class SVM training scores.
The training set has in total 500 observations for the positive class and 500 for
each known negative subclass. Preliminarily experiments showed that results for
larger training sets did not differ statistically, as well as results when replacing
SVM with Random Forest or ADA Boost. In the experiments where we varied
the number of known negative subclasses, test samples always had all 17 negative
subclasses included. When varying the number of unknown negative subclasses,
the training set always included one negative random subclass. Which negative
subclass was available for training varied from test sample to test sample. For
each number of known/unknown subclasses at training/test, we repeated the
experiment 5,000 times and report the average MAE over these samples.

Figure 6-left presents the performance of the binary quantifiers for varying
number of known negative subclasses present in the training set. We observe the
performance to increase as more classes are included, except for CC. Particularly,
CC peaked its performance with seven known subclasses and started to degrade
steadily. We suspect that the increase in the number of negative observations
made the model lose generality and raise the false negatives.

HDy —-: ODIn PAT

2 25
s

MAE

0 I I I -

# known negative subclasses at training ~ # unknown negative subclasses at test

Fig. 6. Quantification mean absolute error (MAE) of binary quantifiers, ODIn and
PAT for varying number of negative subclasses in the training set (left), and number of
unknown negative subclasses at test (right). Insects dataset. Notice on the right that
binary quantifiers curves stop at 16 negative subclasses since one is used for training.

The findings presented by Fig.6-left must be interpreted cautiously. The
increase in performance is not only due to the greater number of known sub-
classes in the training set but also due to the respective smaller number of
unknown subclasses in the test. We cannot tell, only from this figure, which
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factor is more relevant for the performance: more informed training set or easier
test set.

In Fig. 6-right we isolate the latter factor, as it sets a fixed number of sub-
classes in training and increases the number of unknown subclasses in the test.
We notice a steep decrease in performance as the test set includes more sub-
classes. However, the most problematic aspect in using the binary quantifiers is
that their performances did not stabilize before we ran out of negative subclasses
in our data, making it challenging to create expectations regarding performance
after the model is deployed in the real application. In contrast, the two proposed
methods have a remarkable stable performance across a wide range of unknown
subclasses, which shows their suitability for open-set quantification.

Our results show that comparing those methods against one-class methods
is a parametric evaluation, in which the relevant parameters are the number of
known classes at training and unknown classes at test. Of the utmost importance,
though, is the fact that we are unable to reliably predict the performance of the
tested binary quantifiers after deployment in open-set quantification, as we do
not know how many unknown classes will appear. However, if Fig.6 approaches
deployment behavior, it suggests that our methods outperform all tested binary
quantifiers. For these reasons, in the following sections of our evaluation, we
disregard further comparisons against binary quantifiers, as we showed they are
not suitable for open-set quantification problems.

5.3 Proposals Versus One-Class and Open-Set Approaches

In the second part of our experimental evaluation, we compare our proposals
against one-class classification and open-set approaches adapted to quantifica-
tion. To this end, we compare them against:

OCSVM. CC using the classifications issued by one-class SVM [17], to illus-
trate a straightforward approach using a state-of-the-art technique;

BFT. Best Fixed Threshold, CC using, as base classifier, an upper bound for all
algorithms that inductively set a fixed classification threshold on the scores.
To achieve this upper bound for each dataset, we report the best experimental
results obtained by a threshold T that results in the lowest quantification error
(MAE). We search T uniformly from the 0*" percentile to the 100*" percentile
of the positive distribution, where T' = min {401, 1+ L%J 100} and N is the
number of available training observations.

We evaluate the scores used by BFT, PAT, and ODIn from two different
sources. The first one is one-class SVM trained with positive examples. The sec-
ond is the Mahalanobis distance from the positive class examples. We include
the Mahalanobis distance as an example of a simple and non-inductive scorer. As
higher scores mean more confidence in the positive class, we negated the Maha-
lanobis distance in our experiments. As the tested methods depend on scores for
training, we obtained these scores by performing 10-fold cross-validation with
the training data. The generated test samples included all subclasses in the
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assessed dataset (with random proportions). Each reported MAE is an average
of 5,000|Y”| samples, where |Y'| is the number of negative subclasses.

Table 1 presents the quantification performance obtained in the second part
of our experimental evaluation. Most of the lowest errors were obtained by our
proposals. A relevant choice to be made by a practitioner is which base scorer
should be used: the best performance rotated between one-class SVM and Maha-
lanobis, including considerable differences, depending on the dataset.

Table 1. MAE as percentages, for each dataset. Standard deviations are in parentheses.

OCSVM CC | PAT ODIn BFT
OCSVM Mahalanobis | OCSVM Mahalanobis | OCSVM Mahalanobis
I |23.57(15.06) | 4.56(3.04) 10.97(6.86) | 3.84(2.58) | 8.83(5.09) 6.27(3.80) 9.82(5.87)
A | 23.72(16.04) | 12.13(8.50) | 2.22(1.52) | 12.46(6.47) |2.97(2.19) 11.65(6.94) | 5.02(3.13)
B |22.53(15.48) | 11.79(8.10) 10.33(6.50) 8.96(5.60) 7.36(4.16) 11.46(6.77) 9.96(5.91)
C | 24.02(14.05) | 6.15(3.52) | 3.69(1.80) 2.98(2.65) | 3.53(2.44) 9.58(5.96) | 7.99(4.94)
H |23.51(13.97) | 2.28(1.49) |3.15(1.97) 2.76(2.35) | 2.42(1.86) 5.36(3.41) | 4.13(2.91)
L | 27.46(16.01) | 1.82(1.50) | 2.92(2.22) 3.46(2.73) | 3.78(3.37) 2.07(1.37) | 2.34(1.53)
P | 49.75(28.92) | 40.38(23.49) | 2.46(1.59) 49.46(28.60) | 2.37(1.48) 37.25(21.91) | 1.77(1.16)
R | 50.35(29.22) | 15.91(10.21) | 7.60(5.16) 41.24(26.89) | 3.38(2.33) 20.34(14.29) | 10.24(6.10)
W | 28.74(16.93) | 2.13(1.44) | 1.06(0.88) | 2.82(2.43) 1.61(1.38) 6.13(3.62) | 4.15(2.48)

From now on, we consider the best scorer between using one-class SVM
and Mahalanobis, for each approach. OCSVM CC was consistently worse than
all other approaches and is disregarded from now on. Individually, both PAT
and ODIn statistically diverged from BFT, according to the paired t-test, with
p-values of 0.015 and 0.023, respectively. PAT and ODIn did not statistically
diverge (p-value = 0.344). However, we notice that which one is the best depends
on which dataset was evaluated, presenting significant individual differences.
BFT presented inferior performance than the best between PAT and ODIn for
all but one dataset.

Although BFT presented the best quantification performance for the dataset
Pen Digits, we note that BFT is an upper bound for a category of algorithms that
chooses a fixed threshold and subsequently perform CC. Figure 7 illustrates that
it only takes a slightly badly chosen threshold to heavily impact the performance
of the quantifier. Meanwhile, PAT keeps similar performance for a wide range of
thresholds. This behavior is recurrent across all datasets®, including Pen Digits.
At last, ODIn does not have an equivalent parameter.

5.4 Evaluation for a Range of Positive Class Distributions

In this part, we analyze the variation of the positive class proportion from 0% to
100% with 1% increments. For each positive ratio, we measured the respective
MAE with 5,000 test samples, including all negative subclasses (with random

3 All results are available in our supplemental material repository.
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Fig. 7. Impact of different parametrization for BFT and PAT on quantification mean
absolute error, dataset Anuran Calls, OCSVM as scorer. The shaded area corresponds
to a window of four standard deviations (two towards each side of the curve).

proportions). Figure8 illustrates our proposals stability for different positive
class proportions. The figure also suggests that a better stability in the extreme
distributions could be achieved by ensembling both approaches since they behave
symmetrically in these regions. Additionally, we can observe the instability of
OCSVM and even BFT. This instability was expected since their underlying
approach is CC and the error is expected to vary for different class proportions.

----- OCSVM ——- PAT —— ODIn —-+ BFT

0 20 40 60 80 100
True class positive ratio

Fig. 8. Quantification mean absolute error (MAE) for different true positive ratios,
Insects dataset, one-class SVM scorer.

Although this result is for the Insects dataset, other datasets showed similar
results. Due to lack of space, we included additional results in the paper website.

6 Conclusion

This article is the first to explicitly approach the one-class quantification and
make a comprehensible evaluation in open-set scenarios. We illustrate the issues
of using traditional quantification methods in such situations and propose two
novel techniques that can learn solely with positive observations. The available
negative examples are still useful for two main reasons: estimating the expected
performance after deployment and searching for the best parameterization.

In our experiments, the proposed methods outperformed binary quantifiers
as we increased the number of unknown classes in the test set. Our proposals
also performed better than the Best Fixed Threshold (BFT) and One-class SVM
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classifiers adapted to quantification with Classify and Count. Furthermore, the
proposed methods are simple and computationally efficient. Therefore, they are
suitable for batch and data streams.

Our future efforts will deal with a nonstationary positive class. Although
our proposals actively tackle nonstationarity for the negative class, they expect
the positive class distribution to be immutable over time. One possibility is to
require the positive class to be among a limited set of known distributions [18].

Acknowledgement. The authors thank CAPES (PROEX-6909543/D), CNPq (306
631/2016-4) and FAPESP (2016/04986-6). This material is based upon work supported
by the United States Agency for International Development under Grant No AID-OAA-
F-16-00072.

References

1. Alimoglu, F., Alpaydin, E., Denizhan, Y.: Combining multiple classifiers for pen-
based handwritten digit recognition (1996)

2. Chan, Y.S., Ng, H.T.: Estimating class priors in domain adaptation for word sense
disambiguation. In: COLING ACL, pp. 89-96 (2006)

3. Chapman, R., Simpson, S., Douglas, A.: The Insects: Structure and Function.
Cambridge University Press, Cambridge (2013)

4. Chen, Y., Why, A., Batista, G.E., Mafra-Neto, A., Keogh, E.: Flying insect classi-
fication with inexpensive sensors. J. Insect Behav. 27(5), 657677 (2014)

5. Cortez, P., Cerdeira, A., Almeida, F., Matos, T., Reis, J.: Modeling wine prefer-
ences by data mining from physicochemical properties. Decis. Support Syst. 47(4),
547-553 (2009)

6. Diaz, J.J., Colonna, J.G., Soares, R.B., Figueiredo, C.M., Nakamura, E.F.: Com-
pressive sensing for efficiently collecting wildlife sounds with wireless sensor net-
works. In: CCCN, Munich, pp. 1-7 (2012)

7. Forman, G.: Counting positives accurately despite inaccurate classification. In:
Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005.
LNCS (LNAI), vol. 3720, pp. 564-575. Springer, Heidelberg (2005). https://doi.
org/10.1007/11564096_55

8. Forman, G.: Quantifying trends accurately despite classifier error and class imbal-
ance. In: SIGKDD, Philadelphia, pp. 157-166 (2006)

9. Frey, P.W., Slate, D.J.: Letter recognition using holland-style adaptive classifiers.
Mach. Learn. 6(2), 161-182 (1991)

10. Gonzélez, P., Castano, A., Chawla, N.V., Coz, J.J.D.: A review on quantification
learning. ACM Comput. Surv. 50(5), 74 (2017)

11. Gonzélez-Castro, V., Alaiz-Rodriguez, R., Alegre, E.: Class distribution estimation
based on the hellinger distance. Inf. Sci. 218, 146-164 (2013)

12. Hammami, N., Bedda, M.: Improved tree model for arabic speech recognition.
ICCSIT 5, 521-526 (2010)

13. Hopkins, D.J., King, G.: A method of automated nonparametric content analysis
for social science. Am. J. Polit. Sci. 54(1), 229-247 (2010)

14. Jain, L.P., Scheirer, W.J., Boult, T.E.: Multi-class open set recognition using prob-
ability of inclusion. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.)
ECCV 2014. LNCS, vol. 8691, pp. 393-409. Springer, Cham (2014). https://doi.
org/10.1007/978-3-319-10578-9_26


https://doi.org/10.1007/11564096_55
https://doi.org/10.1007/11564096_55
https://doi.org/10.1007/978-3-319-10578-9_26
https://doi.org/10.1007/978-3-319-10578-9_26

15.

16.

17.

18.

19.

One-Class Quantification 289

Lichman, M.: UCI m.l. repository (2013). http://archive.ics.uci.edu/ml

Lyon, R., Stappers, B., Cooper, S., Brooke, J., Knowles, J.: Fifty years of pulsar
candidate selection: from simple filters to a new principled real-time classification
approach. MNRAS 459(1), 1104-1123 (2016)

Pedregosa, F., et al.: Scikit-learn: machine learning in Python. JMLR 12, 2825-
2830 (2011)

dos Reis, D., Maletzke, A., Batista, G.: Unsupervised context switch for classifica-
tion tasks on data streams with recurrent concepts. In: SAC (2018)

Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science
in machine learning. SIGKDD Explor. 15(2), 49-60 (2013)


http://archive.ics.uci.edu/ml

	One-Class Quantification
	1 Introduction
	2 Background and Definitions
	3 Related Work
	3.1 Closed-Set Quantification
	3.2 Open-Set Quantification

	4 Proposals
	4.1 Passive Aggressive Threshold ACC
	4.2 One Distribution Inside

	5 Experimental Evaluation
	5.1 Experimental Setup
	5.2 Proposals Versus Binary Quantifiers
	5.3 Proposals Versus One-Class and Open-Set Approaches
	5.4 Evaluation for a Range of Positive Class Distributions

	6 Conclusion
	References




