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Abstract. Knowledge discovery in databases with a flexible struc-
ture poses a great challenge to machine learning community. Multiple
Instance Learning (MIL) aims at learning from samples (called bags)
represented by multiple feature vectors (called instances) as opposed to
single feature vectors characteristic for the traditional data representa-
tion. This relaxation turns out to be useful in formulating many machine
learning problems including classification of molecules, cancer detection
from tissue images or identification of malicious network communica-
tions. However, despite the recent progress in this area, the current
set of MIL tools still seems to be very application specific and/or bur-
dened with many tuning parameters or processing steps. In this paper,
we propose a simple, yet effective tree-based algorithm for solving MIL
classification problems. Empirical evaluation against 28 classifiers on 29
publicly available benchmark datasets shows a high level performance
of the proposed solution even with its default parameter settings. Data
related to this paper are available at: https://github.com/komartom/
MIDatasets.jl. Code related to this paper is available at: https://github.
com/komartom/BLRT.jl.

Keywords: Multiple Instance Learning · Randomized trees
Classification

1 Introduction

Multiple Instance Learning (MIL) relaxes conditions for data representation. In
MIL formalism, objects of interest are described by sets B1,B2, . . . (called bags)
consisting of multiple feature vectors of an identical size B = {x1,x2, . . .}, x ∈ X
(called instances). Each bag is attributed output variable y (e.g. label y ∈ {0, 1}
in a binary classification problem). The goal is to infer function F from training
dataset D = {(B, y)1, (B, y)2, . . .} that can predict output variables for previously
unseen bags F(B) = y.
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This relaxed formalism has received a lot of attention since its first formu-
lation [11]. One of the recent application domains, where MIL formalism seems
to fit better than traditional Single Instance Learning (SIL), is network secu-
rity [20]. For example, in the work [16] dealing with a binary classification of
network users as either infected or clean based on monitoring their web requests,
the MIL approach enabled to (i) describe the problem more naturally – each user
is represented by a bag with instances corresponding to individual requests; rep-
resenting users with single feature vectors would be too restrictive, since the
number of requests can vary from user to user, (ii) save ground truth acquisition
costs – security analysts preparing a training dataset did not have to label indi-
vidual requests as infection-related or benign; it was enough to provide labels
on the (higher) user/bag level, resulting in a significantly lower number of items
that needed to be annotated, (iii) improve classification performance – a MIL
classifier modeling the global contextual information across multiple requests was
able to achieve a higher classification precision than a SIL classifier analyzing
individual requests one by one.

Although many MIL classifiers have been developed over the years, most
of them work well only within their specific application domains and are less
effective over a wider range of problems [8] (demonstrated in Sect. 4). A recent
survey of MIL classifiers [1] has pointed out that approaches extracting global
bag-level information achieve a higher performance in general than their counter-
parts operating on instance-level trying to infer instance labels from the bag ones
(discussed in Sect. 2). Following this observation, we propose a novel bag-level
MIL algorithm (Sect. 3) as an extension of traditional single-instance randomized
trees [15] to the multiple-instance setting. Ensembles of tree-based learners (e.g.
Extremely randomized trees [15] or Breiman’s Random Forests [5]) are known to
perform very well across many domains even without a careful hyperparameter
tuning [12], which makes a good case for research of a general MIL tree-based
model formalism.

2 Related Work

A taxonomy proposed in the review [1] categorizes MIL classifiers into two groups
according to the level at which they extract the discriminative information. The
first instance-level category considers the discriminative information to lie at
the level of individual instances. It is assumed that each instance x can be
attributed binary label yx ∈ {0, 1} and that positive bags contain at least one
positive instance yx = 1. Negative bags are supposed to not contain any posi-
tive instance. The instance labels are unknown (even in the training dataset),
but are inferred during the learning process. Most algorithms based on this
assumption build instance-level classifier f(x) = yx and produce bag labels by a
simple aggregation of instance level scores F(B) = maxx∈B f(x). This category
is mostly represented by earlier works, starting with the APR algorithm [11] pro-
posed in 1997. APR (Axis-Parallel Rectangle) algorithm considers all instances
in positive bags to be positive and expands/shrinks an hyper-rectangle in the
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feature space to maximize the number of positive instances falling inside, while
minimizing the number of negative ones. MI-SVM [2] initially also assumes that
all instances in positive bags are positive, but then maximizes a margin between
the positive and negative bags by selecting a single instance to represent each
bag. EM-DD [25] uses Expectation-Maximization (EM) algorithm to search for
the maximum of diverse density (DD) measure. A location in the feature space
has a high DD measure if the number of nearest instances from different posi-
tives bags is high and from negative bags low. Other approaches are based e.g.
on boosting (MILBoost [23]) or deterministic annealing [14,17].

The second bag-level category (mostly represented by later works) considers
the discriminative information to lie at the level of bags. Representatives of this
category do not use the notion of instance labels, which does not reflect the
reality in many applications [1], but rather treat bags as whole entities. That
is, a bag-level classifier F(B) extracts the information from the whole bag to
make a decision about the class of B, instead of aggregating individual instance-
level decisions. Bag-level methods are further categorized as either bag-space
or embedded-space. Since bags are non-vectorial objects, the bag-space methods
define a distance function (or kernel) that can compare any two bags, e.g. Bi

and Bj , and plug this function into a distance-based classifier such as k-NN or
SVM. Examples of such functions are the minimal Hausdorff distance d(Bi,Bj) =
argminxi∈Bi,xj∈Bj

‖xi −xj‖ measuring distance between the closest instances or

the Earth Movers Distance (EMD) d(Bi,Bj) =
∑

i

∑
j wij‖xi−xj‖

∑
i

∑
j wij

, where weights
wij are obtained through an optimization process that globally minimizes the
distance subject to some constrains, see [24] for details. On the other hand, the
embedded-space methods define a transformation mapping bags into single fixed-
size vectors, which effectively converts the MIL problem into the standard SIL
one. In the work of MI-Kernel [13], each bag is transformed by calculating simple
statistics like the maximum, minimum or mean across all feature dimensions
and concatenating the results into a single vector. MILES [7] maps each bag
into a feature space defined by similarities to instances in the training bags. A
sparse 1-norm SVM is then applied to select only the discriminative features (i.e.
instances) and construct the classifier. Bag dissimilarity [9], on the other hand,
measures similarities to the training bags rather than instances.

Most prior tree-based works fall into the instance-level category. MIFor-
est [17] uses the deterministic annealing approach to uncover the instance labels
during the tree growing. MITI [4] introduces a weighted Gini impurity measure
and modifies the tree induction procedure to prioritize expansion of nodes with
positive instances. MIOForest [21] extends MITI by implementing non-linear
splitting rules instead of the traditional axis-orthogonal ones and by optimal
combining of individual tree outputs within the forest. To our knowledge, the
only tree-based MIL classifier that operates on the level of bags is RELIC [19].
Since we consider RELIC as the closest prior work, we discuss the differences
with respect to the proposed solution in detail in Sect. 3.
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3 Bag-Level Randomized Trees

The bag-level randomized trees (BLRT) are trained according to the classical
top-down greedy procedure for building ensembles of unpruned decision trees.
Individual tree learners recursively partition a training dataset by choosing
binary splitting rules until pure sample sets are obtained.

The key difference, however, lies in the conditions that are evaluated inside
the splitting nodes. While nodes of standard single-instance decision trees (Eq. 1)
test only whether feature f of a given sample is greater than certain value v,
nodes of the proposed MIL trees also count the number of instances within the
sample (i.e. bag) that accomplish the condition. This absolute count is then
normalized by bag size |B| and compared to value r ∈ [0, 1) (Eq. 2).

NSIL(x; f, v) =

{
left, if xf > v,

right, otherwise.
(1)

NMIL(B; f, v, r︸ ︷︷ ︸
Φ

) =

⎧⎪⎪⎨
⎪⎪⎩

left, if

[
1

|B|
∑
x∈B

1 [xf > v]

]
> r,

right, otherwise.

(2)

Parameter r denotes a relative count of instances x inside bag B that must satisfy
the inner condition xf > v to be the whole bag passed to the left branch. It is
the only additional parameter that needs to be learned from the training data
together with f and v. Symbol 1 stands for an indicator function that equals
one if its argument is true and zero otherwise.

Note that if bags are of size one, nodes NMIL behave like the traditional
NSIL regardless the value of r parameters. The next special case is when the
relative count takes extreme values, i.e. r ∈ {0, 0.9̄}1. The proposed algorithm
then becomes equivalent to the prior art solution known as RELIC [19]. Under
this condition, the splitting rules act as either the universal or the existential
quantifier. In particular, bags are tested in two possible ways: if there exists at
least one instance that fulfills the inner condition or if the condition is satisfied by
all instances. An experiment in Sect. 4 (Fig. 2), however, shows that the ability of
the proposed algorithm to test situations also between these two extreme cases
is highly beneficial on many datasets.

Search of optimal splitting parameters Φ∗ = (f, v, r) during the tree growth
is implemented in a randomized manner. At each node construction, a set of can-
didate splitting rules R = {Φ1, . . .} is generated (based on local training subset
S ⊆ D) among which the best one Φ∗ is selected according to a score obtained by
an impurity measure such as Information gain [18] or Gini impurity [6]. Specifi-
cally, for each feature f out of K randomly selected ones, T values of parameter
v are drawn uniformly from interval [xmin

f , xmax
f ), where xmin

f and xmax
f denote

1 Technically, the value of 0.9̄ should be 1 minus the smallest representable value.
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the minimum and the maximum value of feature f across all bags within the
local sample set. For each such pair (f, v), other T values of parameter r are
generated uniformly from interval [0, 1). In total, there are K ×T ×T candidate
splitting rules at maximum2. A detail description of the tree induction procedure
is given in Algorithm 1 in the form of pseudo code.

The above randomized approach is adopted from Extremely3 randomized
trees [15] and generalized to MIL setting by adding the third parameter r (i.e.
the relative count). Unlike CART algorithm, used e.g. in Breiman’s Random
Forests [5], the randomized search does not require to go over all possible split-
ting points on selected features, which could be prohibitively expensive in this
MIL variant of trees. Furthermore, the explicit randomization in combination
with ensemble averaging makes the decision boundary more smooth, resulting
in models with better or equal accuracy than that of Random Forests [15].

Algorithm 1 builds M fully grown decision trees. Each tree is trained on the
whole sample set rather than a bootstrap replica as realized e.g. in Random
Forests. Training on the full original sample set minimizes bias. Variance is
reduced by the strong randomization in the splitting parameters combined with
the output aggregation across multiple trees. From the computational point of
view, the time complexity of the learning procedure is, assuming balanced trees,
Θ(MKT 2NI log NB), where NB and NI denote the number of bags and the
number of instances within the bags, respectively4.

In the testing mode, assuming a binary classification problem (i.e. y ∈ {0, 1}),
predictions of individual trees are aggregated by a simple arithmetic average to
produce final prediction score ŷ ∈ [0, 1].

4 Experiments

The proposed algorithm is evaluated on 29 real-life datasets that are publicly
available e.g. on https://doi.org/10.6084/m9.figshare.6633983.v1. The datasets
with meta descriptions are listed in Table 1. These classification problems are
well known and cover a wide range of conditions in terms of application domains
(molecule, scene, image, text, audio spectrogram, etc.), ratios of positive and
negative samples (e.g. imbalanced Corel datasets), feature dimensions (from 9
to 6519) and average numbers of bag instances (from 4 to 185). For more details
about the datasets we refer the reader to a recent study of MIL datasets [8].

The same collection of datasets was also used in the evaluation of 28 MIL
classifiers (including their variants) implemented in the MIL matlab toolbox [22].
The last two columns of Table 1 summarize the results from the evaluation
available also through http://homepage.tudelft.nl/n9d04/milweb/. We report
only those classifiers that achieved the highest performance by means of AUC

2 If xmin
f equals to xmax

f , no splitting rules are generated on feature f .
3 Term extremely corresponds to setting T = 1.
4 When bags are of size one (i.e. NI = NB = N) and T = 1, the complexity is

equivalent to the complexity of Extremely randomized trees Θ(MKN log N).

https://doi.org/10.6084/m9.figshare.6633983.v1
http://homepage.tudelft.nl/n9d04/milweb/
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Algorithm 1. Induction algorithm for bag-level randomized trees (binary
classification problem y ∈ {0, 1} and numerical features are assumed).

Function Train(D; M, K, T )

Input : A training set D = {(B, y)1, . . .},
a number of trees to grow M ,
a number of randomly selected features K,
a number of generated thresholds T .

Output: An ensemble of bag-level randomized trees E .

E = ∅
foreach tree in 1 . . . M do

E = E ∪ {BuildTree(D; K, T )}
return E

Function BuildTree(S; K, T )

Input : A local training subset S ⊆ D.
Output: A node with left and right followers or a leaf.

if all y in S are equal then
return leaf(y)

R = GenerateCandidateSplittingRules(S; K, T )
Φ∗ = argmaxΦ∈RScore(S, Φ)
Sleft = {B ∈ S|NMIL(B; Φ∗) = left}
Sright = S \ Sleft

if Sleft = ∅ or Sright = ∅ then
return leaf( 1

|S|
∑

y∈S y)

return node(NMIL( · ; Φ∗), BuildTree(Sleft), BuildTree(Sright))

Function GenerateCandidateSplittingRules(S; K, T )

Output: A set of candidate splitting rules R = {Φ1, . . .}.

R = ∅
foreach feature f in K randomly selected ones (without replacement) do

Find extremes xmin
f and xmax

f on given feature f across all bags B ∈ S
if xmin

f �= xmax
f then

foreach value v in T uniformly drawn values from [xmin
f , xmax

f ) do
foreach value r in T uniformly drawn values from [0, 1) do

R = R ∪ {Φ}, Φ = (f, v, r)

return R

metric5 at least on one problem. This selection yields to 13 classifiers that are
listed in Table 2 together with references to their original papers.

5 Area Under a ROC Curve showing the true positive rate as a function of the false
positive rate. AUC is agnostic to class imbalance and classifier’s threshold setting.
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Table 1. Metadata about 29 used datasets together with classification scores and
standard deviations presented in percent (AUC × 100). Best results are in bold face.
Stars denote statistically significant (α = 0.05) differences according to Welch’s t-test.

Dataset BLRT Best prior art

Name Bags +/− Feat. Avg.inst. AUC AUC Algorithm

Musk1 47/45 166 5 96.8 (1.6) * 92.9 (1.3) MI-SVM g

Musk2 39/63 166 65 91.2 (1.8) * 95.3 (1.5) MILES g

C. African 100/1900 9 4 96.2 (0.2) 95.7 (0.4) minmin

C. Beach 100/1900 9 4 98.9 (0.2) * 90.7 (0.9) RELIC

C. Historical 100/1900 9 4 99.2 (0.1) * 92.9 (0.5) EM-DD

C. Buses 100/1900 9 4 97.4 (0.2) * 99.5 (0.1) minmin

C. Dinosaurs 100/1900 9 4 96.4 (0.1) * 99.9 (0.0) MILES p

C. Elephants 100/1900 9 4 97.1 (0.1) 96.9 (0.2) minmin

C. Food 100/1900 9 4 99.4 (0.1) * 97.2 (0.2) minmin

Fox 100/100 230 7 73.3 (1.4) * 69.8 (1.7) MILES g

Tiger 100/100 230 6 92.6 (1.0) * 87.2 (1.7) MILES g

Elephant 100/100 230 7 95.8 (0.9) * 91.1 (1.2) MI-SVM g

Protein 25/168 9 138 74.9 (2.3) * 89.5 (1.4) minmin

Harddrive1 191/178 61 185 99.6 (0.2) * 98.6 (0.1) MILES g

Harddrive2 178/191 61 185 99.5 (0.1) * 98.6 (0.2) RELIC

Mutagenesis1 125/63 7 56 92.1 (1.3) 91.0 (0.5) cov-coef

Mutagenesis2 13/29 7 51 86.0 (3.5) 84.0 (3.4) EMD

B. BrownCreeper 197/351 38 19 99.5 (0.0) * 96.5 (0.5) RELIC

B. WinterWren 109/439 38 19 99.8 (0.1) * 99.3 (0.1) summin

B. Pacifics. 165/383 38 19 96.1 (0.2) * 95.7 (0.3) MILES g

B. Red-breasted. 82/466 38 19 99.2 (0.2) 98.7 (0.4) MILBoost

UCSBBreast. 26/32 708 35 84.5 (2.5) * 92.2 (3.1) cov-coef

Newsgroups1 50/50 200 54 78.8 (2.6) * 89.8 (1.6) meanmin

Newsgroups2 50/50 200 31 63.0 (4.0) * 78.1 (1.4) meanmean

Newsgroups3 50/50 200 52 76.3 (4.1) 77.4 (1.5) meanmean

Web1 21/54 5863 29 86.5 (2.6) * 91.9 (0.0) MI-SVM g

Web2 18/57 6519 30 50.7 (7.8) * 90.1 (0.5) MI-SVM g

Web3 14/61 6306 34 73.4 (6.7) * 91.8 (0.4) MI-SVM g

Web4 55/20 6059 31 80.0 (4.2) * 99.4 (0.0) mean-inst

Since an exact experimental protocol is provided as a part of the referenced
evaluation, we followed that protocol precisely. For each dataset, the protocol
provides indexes of all splits in 5-times repeated 10-fold cross-validation. The
material, however, does not specify any approach for hyperparameter optimiza-
tion. Therefore, we evaluated the proposed model using default parameter set-
tings. We set the number of trees to grow to M = 500 that should ensure
convergence of the ensemble, the number of randomly selected features at each
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split to square root of the feature dimension K =
√

D, which is the default value
for tree-based models, and the number of uniformly drawn values of v and r to
T = 8.

Table 1 summarizes results from the evaluation in terms of average scores and
standard deviations. Although among the prior art (28 MIL classifiers) there is
no single winning solution and almost each problem is associated with a different
classifier, which demonstrates the difficulty and diversity of MIL problems, the
proposed model was able to outperform the best prior art algorithm for a given
dataset in 17 out of 29 cases. The most significant improvement with respect to
the prior art is on the group of image classification problems (Fox, Tiger and
Elephant) and on some scene classification problems (Corel Beach and Corel
Historical). On the other hand, the proposal is less accurate on text classification
problems (Newsgroups6 and Web), Protein and Breast datasets.

From Table 2 showing ranking of algorithms in the evaluation, it can be
observed that the second best classifier with the lowest average rank (MI-SVM [2]
with Gaussian kernel) ranked first only three times. Overall, the proposed algo-
rithm works very reliably even without any hyperparamter tuning. Indeed, the
proposal never ended on any of the last three positions, which is unique among
all classifiers. It should be stressed though that not all prior art classifiers were
evaluated on all 29 datasets. Column N/A of Table 2 indicates the number of
missing evaluations.

Table 2. Number of times that each algorithm obtained each rank in the evaluation.

Rank position Avg. rank N/A Algorithm

1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11. 12. 13. 14.

17 1 0 3 2 2 1 1 0 0 2 0 0 0 3.1 0 BLRT ours

0 2 1 4 2 1 0 5 3 0 3 0 1 2 7.5 5 EM-DD [25]

0 1 1 6 4 1 1 1 3 2 2 3 1 1 7.5 2 MILBoost [23]

3 3 3 5 1 1 0 2 2 1 0 3 1 1 6.0 3 MI-SVM g [2]

1 0 2 2 5 2 6 6 1 2 0 1 0 0 6.5 1 MILES p [7]

2 5 6 1 0 2 1 1 2 0 1 3 0 4 6.5 1 MILES g [7]

1 5 3 1 2 2 2 1 4 2 2 1 1 2 6.9 0 mean-inst [13]

1 2 1 2 0 0 8 4 1 5 0 3 2 0 7.8 0 cov-coef [13]

0 3 2 0 0 3 0 1 3 6 3 4 4 0 8.9 0 RELIC [19]

2 3 2 1 3 4 4 0 0 2 5 0 1 1 6.7 1 minmin [9]

0 2 2 2 0 2 3 1 2 2 5 4 2 1 8.6 1 summin [9]

0 2 3 4 5 3 0 1 1 2 2 2 1 1 6.7 2 meanmin [9]

3 0 0 1 2 1 0 3 3 4 1 3 5 1 8.9 2 meanmean [9]

0 1 2 1 2 1 2 0 2 0 2 1 2 0 7.5 13 EMD [24]

6 Except for Newsgroup3 where the proposal is competitive with the best prior art.
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The non-parametric Wilcoxon signed ranks test [10] (testing whether two
classifiers have equal performance) confirmed at significance level α = 0.05
that the proposed bag-level randomized trees are superior to any other involved
method. The test compared pair-wisely the proposal with every prior art method,
each time using an intersection of their available datasets. The two most sim-
ilarly performing methods are mean-inst [13] (p-value 0.037) and MI-SVM [2]
with Gaussian kernel (p-value 0.022).

Besides the above evaluation, we also provide comparison to other tree-based
MIL algorithms in Table 3, namely RELIC [19], MIOForest [21], MIForest [17],
MITI [4] and RF [5]. Except for RELIC, all of them operate on instance-level ;
labels are assigned to instances and a bag is positive if it contains at least
one positive instance. RF represents a naive approach where standard single-
instance Random Forests are trained directly on instances that inherited bag
labels. Reported classification accuracies in Table 3 are taken from the work
of MIOForest [21]. Unfortunately, the classifiers were evaluated only on five
pioneering datasets (i.e. Musk1-2 and the image classification problems) and
their implementations are not publicly available. As can be seen from Table 3,
the proposal clearly outperforms all the prior tree-based MIL solutions on these
datasets.

Table 3. Comparison with other tree-based MIL classifiers. Scores refer to accuracy in
percent (ACC × 100). The prior art results are taken from the work of MIOForest [21].

BLRTours RELIC MIOForest MIForest MITI RF

Musk1 96 83 89 85 84 85

Musk2 91 81 87 82 88 78

Fox 75 66 68 64 N/A 60

Tiger 90 78 83 82 N/A 77

Elephant 93 80 86 84 N/A 74

In Fig. 1, we assess various variants of the proposed algorithm. Dots in each
subplot represent the 29 datasets. Their (x, y) coordinates are given by AUC
scores obtained by the tested variants. If a dot lies on the diagonal (i.e. x = y
line), there is no difference between the two tested variants from that particular
dataset perspective. The first two subplots (a-b) illustrate the influence of the
ensemble size. It can be observed that it is significantly better to use 100 trees
than 10 trees, but building 500 trees usually does not bring any additional per-
formance. Also, according to subplot (c), there is almost no difference between
Information gain [18] and Gini impurity measure [6] scoring functions for select-
ing splitting rules. The next subplot (d) indicates that using higher values
(e.g. 16 instead of the default 8) for parameter T (i.e. the number of randomly
generated values for parameters v and r at each split) might lead to over-fitting
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on some datasets. In subplot (e) we tested a variant with an absolute count7

instead of the relative one used in Eq. 2. The variant with the absolute count,
however, performed significantly worse on the majority of datasets. The last
subplot (f) compares the proposed algorithm with its simplified alternative,
where traditional Random Forests are trained on a non-optimized bag repre-
sentation. To do so, all bags {B1,B2, . . .} are transformed into single feature
vectors {b1,b2, . . .} of values b

(f,v)
B = 1

|B|
∑

x∈B 1 [xf > v], where for each fea-
ture f eight equally-spaced values v are generated from interval [xmin

f , xmax
f )

that is estimated beforehand on the whole training sample set. As a result, the
non-optimized bag representation is eight times longer than the dimensionality
of instances. As can be seen from subplot (f), the Random Forests trained on the
non-optimized bag representation are far inferior to the proposed algorithm on
all datasets except one. This result highlights the importance to simultaneously
optimize the representation parameters with the classification ones as proposed
in Sect. 3.

Fig. 1. Pair-wise comparisons of various configurations of the proposed algorithm on
the 29 datasets. Subplots (a-b) illustrate the influence of the ensemble size, subplot (c)
the impact of selected impurity measure, subplot (d) the effect of parameter T, sub-
plot (c) the performance of the variant with the absolute count and subplot (d) com-
pares the proposed algorithm with RF trained on the non-optimized bag representation.

7 The sum in Eq. 2 is not normalized by bag size |B| and parameter r can take values
from interval [1, argmaxB∈S |B|).
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Fig. 2. Histograms of learned values of r parameters (Eq. 2). Datasets from the same
source (e.g. Musk1-2, Harddrive1-2 and so forth) usually have very similar distributions
that differ from the others.

Finally, Fig. 2 shows histograms of learned values of r parameters for some
datasets. The first observation is that datasets from the same source (e.g. Fox,
Tiger and Elephant) have very similar distributions. This demonstrates that the
learned knowledge of randomized trees is not totally random as it might appear
to be from the algorithm description. The next observation is that in almost
all histograms (except for Mutagenesis problems) one or both extreme values
of the parameter (i.e. r ∈ {0, 0.9̄}) are the most frequent ones. As discussed in
Sect. 3, the behavior of splitting rules (Eq. 2) with extreme values is approaching
to the behavior of the universal or existential quantifier. On Web and Newsgroup
datasets, this behavior is even dominant, meaning that the algorithm reduces
to the prior art solution RELIC [19]. In the rest cases, however, the added



270 T. Komárek and P. Somol

parameter enabled to learn important dataset properties, which is supported by
the high level performance reported in this section.

5 Conclusion

In this paper, we have proposed a tree-based algorithm for solving MIL problems
called bag-level randomized trees (BLRT)8. The algorithm naturally extends
traditional single-instance trees, since bags with single instances are processed
in the standard single-instance tree way. Multiple instance bags are judged by
counting the percent of their instances that accomplish the condition testing
whether a feature value is greater than a certain threshold. Judging this percent
value is done through an additional parameter that is learned during the tree
building process.

Extreme values of the parameter reduce the proposal to the prior art solution
RELIC [19]. Unlike other prior art tree-based algorithms, the proposal operates
on the bag-level. Ability to analyze global bag-level information is most likely
responsible for the superior performance. On the other hand, the algorithm does
not identify positive instances within positively classified bags, which can be
useful in some applications (e.g. object tracking [3]).

The algorithm falls into the category of embedded-space methods, since the
learning procedure can be decoupled into two steps: embedding bags into single
feature vectors and training traditional trees on top of the new representation.
Features of the new representation then correspond to the counted percent val-
ues. The presented single-step approach, however, jointly optimizes the repre-
sentation and the tree classifier.

As a side effect, the algorithm inherits all desirable properties of tree-based
learners. It is assumption-free, scale invariant and robust to noisy and missing
features. It can handle both numerical and categorical features. And, it can be
easily extended to multi-class and regression problems.
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