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Abstract. Unlike conventional anomaly detection research that focuses
on point anomalies, our goal is to detect anomalous collections of indi-
vidual data points. In particular, we perform group anomaly detection
(GAD) with an emphasis on irregular group distributions (e.g. irregu-
lar mixtures of image pixels). GAD is an important task in detecting
unusual and anomalous phenomena in real-world applications such as
high energy particle physics, social media and medical imaging. In this
paper, we take a generative approach by proposing deep generative mod-
els: Adversarial autoencoder (AAE) and variational autoencoder (VAE)
for group anomaly detection. Both AAE and VAE detect group anomalies
using point-wise input data where group memberships are known a priori.
We conduct extensive experiments to evaluate our models on real world
datasets. The empirical results demonstrate that our approach is effec-
tive and robust in detecting group anomalies. Code related to this paper
is available at: https://github.com/raghavchalapathy/gad, https://
www.cs.cmu.edu/∼lxiong/gad/gad.html, https://github.com/jorjasso/
SMDD-group-anomaly-detection, https://github.com/cjlin1/libsvm.

Keywords: Group anomaly detection · Adversarial · Variational
Auto-encoders

1 Anomaly Detection: Motivation and Challenges

Group anomaly detection (GAD) is an important part of data analysis for many
interesting group applications. Pointwise anomaly detection focuses on the study
of individual data instances that do not conform with the expected pattern in
a dataset. With the increasing availability of multifaceted information, GAD
research has recently explored datasets involving groups or collections of obser-
vations. Many pointwise anomaly detection methods cannot detect a variety of
different deviations that are evident in group datasets. For example, Muandet
et al. [20] possibly discover Higgs bosons as a group of collision events in high
energy particle physics whereas pointwise methods are unable to distinguish this
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anomalous behavior. Detecting group anomalies require more specialized tech-
niques for robustly differentiating group behaviors.

GAD aims to identify groups that deviate from the regular group pattern.
Generally, a group consists of a collection of two or more points and group
behaviors are more adequately described by a greater number of observations.
A point-based anomalous group is a collection of individual pointwise anomalies
that deviate from the expected pattern. It is more difficult to detect distribution-
based group anomalies where points are seemingly regular however their collec-
tive behavior is anomalous. It is also possible to characterize group anomalies by
certain properties and subsequently apply pointwise anomaly detection methods.
In image applications, a distribution-based anomalous group has an irregular
mixture of visual features compared to the expected group pattern.

GAD is a difficult problem for many real-world applications especially involv-
ing more complicated group behaviors such as in image datasets. Xiong et al. [29]
propose a novel method for detecting group anomalies however an improvement
in their detection results is possible for image applications. Images are modeled
as group of pixels or visual features and it may be difficult to accurately charac-
terize anomalous images by deviating properties. For example, it is difficult to
distinguish regular groups (cat images) from anomalous groups (tiger images)
that possess cat whiskers but also irregular features of tiger stripes. The problem
of GAD in image datasets is useful and applicable to similar challenging real-
world applications where group distributions are more complex and difficult to
characterize.

Figure 1 illustrates examples of point-based and distribution-based group
anomalies where the innermost circle contains images exhibiting regular behav-
iors whereas the outer circle conveys group anomalies. Plot (A) displays
tiger images as point-based group anomalies as well as rotated cat images as
distribution-based group anomalies (180◦ rotation). In plot (B), distribution-
based group anomalies are irregular mixtures of cats and dogs in a single image
while plot (C) depicts anomalous images stitched from different scene categories
of cities, mountains or coastlines. Our image data experiments will mainly focus
on detecting group anomalies in these scenarios.

Even though the GAD problem may seem like a straightforward comparison
of group observations, many complications and challenges arise. As there is a
dependency between the location of pixels in a high-dimensional space, appro-
priate features in an image may be difficult to extract. For effective detection
of anomalous images, an adequate description of images is required for model
training. Complications in images potentially arise such as low resolution, poor
illumination intensity, different viewing angles, scaling and rotations of images.
Like other anomaly detection applications, ground truth labels are also usually
unavailable for training or evaluation purposes. A number of pre-processing and
extraction techniques can be applied as solutions to different aspects of these
challenges.



Group Anomaly Detection Using Deep Generative Models 175

Fig. 1. Examples of point-based and distribution-based group anomalies in various
image applications. The expected group behavior represents images in the inner con-
centric circle while the outer circle contains images that are group anomalies.

In order to detect distribution-based group anomalies in various image appli-
cations, we propose using deep generative models (DGMs). The main contribu-
tions of this paper are:

– We formulate DGMs for the problem of detecting group anomalies using a
group reference function.

– Although deep generative models have been applied in various image appli-
cations, they have not been applied to the GAD problem.

– A variety of experiments are performed on both synthetic and real-world
datasets to demonstrate the effectiveness of deep generative models for detect-
ing group anomalies as compared to other GAD techniques.

The rest of the paper is organized as follows. An overview of related work is
provided (Sect. 2) and preliminaries for understanding approaches for detecting
group anomalies are also described (Sect. 3). We formulate our problem and
then proceed to elaborate on our proposed solution that involves deep generative
models (Sect. 4). Our experimental setup and key results are presented in Sect. 5
and Sect. 6 respectively. Finally, Sect. 7 provides a summary of our findings as
well as recommends future directions for GAD research.

2 Background and Related Work on Group Anomaly
Detection

GAD applications are emerging areas of research where most state-of-the-art
techniques have been more recently developed. While group anomalies are
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briefly discussed in anomaly detection surveys such as Chandola et al. [4] and
Austin [10], Xiong [28] elaborates on more recent state-of-the-art GAD meth-
ods. Yu et al. [33] further reviews GAD techniques where group structures are
not previously known and clusters are inferred based on pairwise relationships
between data instances. Recently Toth and Chawla [27] provided a comprehen-
sive overview of GAD methods as well as a detailed description of detecting
temporal changes in groups over time. This paper explores group anomalies
where group memberships are known a priori such as in image applications.

Previous studies on image anomaly detection can be understood in terms of
group anomalies. Quellec et al. [22] examine mammographic images where point-
based group anomalies represent potentially cancerous regions. Perera and Patel
[21] learn features from a collection of images containing regular chair objects
and detect point-based group anomalies where chairs have abnormal shapes,
colors and other irregular characteristics. On the other hand, regular categories
in Xiong et al. [29] represent scene images such as inside city, mountain or coast
and distribution-based group anomalies are stitched images with a mixture of
different scene categories. At a pixel level, Xiong et al. [30] apply GAD methods
to detect anomalous galaxy clusters with irregular proportions of RGB pixels.
We emphasize detecting distribution-based group anomalies rather than point-
based anomalies in our subsequent image applications.

The discovery of group anomalies is of interest to a number of diverse
domains. Muandet et al. [20] investigate GAD for physical phenomena in high
energy particle physics where Higgs bosons are observed as slight excesses in
a collection of collision events rather than individual events. Xiong et al. [29]
analyze a fluid dynamics application where a group anomaly represents unusual
vorticity and turbulence in fluid motion. In topic modeling, Soleimani and Miller
[25] characterize documents by topics and anomalous clusters of documents are
discovered by their irregular topic mixtures. By incorporating additional infor-
mation from pairwise connection data, Yu et al. [34] find potentially irregular
communities of co-authors in various research communities. Thus there are many
GAD application other than image anomaly detection.

A related discipline to image anomaly detection is video anomaly detection
where many deep learning architectures have been applied. Sultani et al. [26]
detect real-world anomalies such as burglary, fighting, vandalism and so on from
CCTV footage using deep learning methods. In a review, Kiran et al. [15] com-
pare DGMs with different convolution architectures for video anomaly detection
applications. Recent work [3,23,32] illustrate the effectiveness of generative mod-
els for high-dimensional anomaly detection. Although, there are existing works
that have applied deep generative models in image related applications, they
have not been formulated as a GAD problem. We leverage autoencoders for
DGMs to detect group anomalies in a variety of data experiments.



Group Anomaly Detection Using Deep Generative Models 177

3 Preliminaries

In this section, a summary of state-of-the-art techniques for detecting group
anomalies is provided. We also assess strengths and weaknesses of existing mod-
els, compared with the proposed deep generative models.

3.1 Mixture of Gaussian Mixture (MGM) Models

A hierarchical generative approach MGM is proposed by Xiong et al. [30] for
detecting group anomalies. The data generating process in MGM assumes that
each group follow a Gaussian mixture where more than one regular mixture
proportion is possible. For example, an image is a distribution over visual features
such as paws and whiskers from a cat image and each image is categorized into
possible regular behaviors or genres (e.g. dogs or cats). An anomalous group is
then characterized by an irregular mixture of visual features such as a cat and
dog in a single image. MGM is useful for distinguishing multiple types of group
behaviors however poor results are obtained when group observations do not
appropriately follow the assumed generative process.

3.2 One-Class Support Measure Machines (OCSMM)

Muandet et al. [20] propose OCSMM to maximize the margin that separates
regular class of group behaviors from anomalous groups. Each group is firstly
characterized by a mean embedding function then group representations are
separated by a parameterized hyperplane. OCSMM is able to classify groups as
regular or anomalous behaviors however careful parameter selection is required
in order to effectively detect group anomalies.

3.3 One-Class Support Vector Machines (OCSVM)

If group distributions are reduced and characterized by a single value then
OCSVM from Schölkopf et al. [24] can be applied to the GAD problem. OCSVM
separates data points using a parametrized hyperplane similar to OCSMM.
OCSVM requires additional pre-processing to convert groups of visual features
into pointwise observations. We follow a bag of features approach in Azhar et al.
[1], where k-means is applied to visual image features and centroids are clus-
tered into histogram intervals before implementing OCSVM. OCSVM is a pop-
ular pointwise anomaly detection method however it may not accurately capture
group anomalies if the initial group characterizations are inadequate.

3.4 Deep Generative Models for Anomaly Detection

This section describes the mathematical background of deep generative mod-
els that will be applied for detecting group anomalies. The following notation
considers data involving M groups where the mth group is denoted by Gm.
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Autoencoders: An autoencoder is trained to learn reconstructions that are
close to its original input. The autoencoder consists of encoder fφ to embed the
input to latent or hidden representation and decoder gψ which reconstructs the
input from hidden representation. The reconstruction loss of an autoencoder is
defined as the squared error between the input Gm and output Ĝm given by

Lr(Gm, Ĝm) = ||Gm − Ĝm||2 (1)

Autoencoders leverage reconstruction error as an anomaly score where data
points with significantly high errors are considered to be anomalies.

Variational Autoencoders (VAE): Variational autoencoder (VAE) [14] are
generative analogues to the standard deterministic autoencoder. VAE impose
constraint while inferring latent variable z. The hidden latent codes produced
by encoder fφ is constrained to follow prior data distribution P (Gm). The core
idea of VAE is to infer P (z) from P (z|Gm) using Variational Inference (VI)
technique given by

L(Gm, Ĝm) = Lr(Gm, Ĝm) + KL(fφ(z|x) || gψ(z)) (2)

In order to optimize the Kullback–Leibler (KL) divergence, a simple repa-
rameterization trick is applied; instead of the encoder embedding a real-valued
vector, it creates a vector of means μ and a vector of standard deviations σ. Now
a new sample that replicates the data distribution P (Gm) can be generated from
learned parameters (μ, σ) and input this latent representation z through the
decoder gψ to reconstruct the original group observations. VAE utilizes recon-
struction probabilities [3] or reconstruction error to compute anomaly scores.

Adversarial Autoencoders (AAE): One of the main limitations of VAE is
lack of closed form analytical solution for integral of the KL divergence term
except for few distributions. Adversarial autoencoders (AAE) [19] avoid using
the KL divergence by adopting adversarial learning, to learn broader set of dis-
tributions as priors for the latent code. The training procedure for this archi-
tecture is performed using an adversarial autoencoder consisting of encoder fφ

and decoder gψ. Firstly a latent representation z is created according to gen-
erator network fφ(z|Gm) and the decoder reconstructs the input Ĝm from z.
The weights of encoder fφ and decoder gψ are updated by backpropogating the
reconstruction loss between Ĝm and Gm. Secondly the discriminator receives z
distributed as fφ(z|Gm) and z′ sampled from the true prior P (z) to compute
the score assigned to each (D(z) and D(z′)). The loss incurred is minimized
by backpropagating through the discriminator to update its weights. The loss
function for autoencoder (or generator) LG is composed of the reconstruction
error along with the loss for discriminator LD where
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LG =
1

M ′

M ′∑

m=1

log D(zm) and LD = − 1
M ′

M ′∑

m=1

[
log D(z′

m) + log(1 − D(zm))
]

(3)
where M ′ is the minibatch size while z represents the latent code generated by
encoder and z′ is a sample from the true prior P (z).

4 Problem and Model Formulation

Problem Definition: The following formulation follows the problem definition
introduced in Toth and Chawla [27]. Suppose groups G =

{
Gm

}M

m=1
are observed

where M is the number of groups and the mth group has group size Nm with
V -dimensional observations, that is Gm ∈ R

Nm×V . In GAD, the behavior or
properties of the mth group is captured by a characterization function denoted
by f : RNm×V → R

D where D is the dimensionality on a transformed feature
space. After a characterization function is applied to a training dataset, group
information is combined using an aggregation function g : R

M×D → R
D. A

group reference is composed of characterization and aggregation functions on
input groups with

G(ref) = g
[{

f(Gm)
}M

m=1

]
(4)

Then a distance metric d(·, ·) ≥ 0 is applied to measure the deviation of a partic-
ular group from the group reference function. The distance score d

(
G(ref),Gm

)

quantifies the deviance of the mth group from the expected group pattern where
larger values are associated with more anomalous groups. Group anomalies are
effectively detected when characterization function f and aggregation function g
respectively capture properties of group distributions and appropriately combine
information into a group reference. For example in an variational autoencoder
setting, an encoder function f characterizes mean and standard deviation of
group distributions whereas decoder function g reconstructs the original sam-
ple. Further descriptions of functions f and g for VAE and AAE are provided in
Algorithm 1.
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4.1 Training the Model

The variational and adversarial autoencoder are trained according to the objec-
tive function given in Eqs. (2) and (3) respectively. The objective functions
of DGMs are optimized using the standard backpropogation algorithm. Given
known group memberships, AAE is fully trained on input groups to obtain a rep-
resentative group reference G(ref) described in Eq. 4. While in case of VAE, G(ref)

is obtained by drawing samples using mean and standard deviation parameters
that are inferred using VAE as illustrated in Algorithm 1.

4.2 Predicting with the Model

In order to identify group anomalies, the distance of a group from the group ref-
erence G(ref) is computed. The output scores are sorted according to descending
order where groups that are furthest from G(ref) are considered most anoma-
lous. One convenient property of DGMs is that the anomaly detector will be
inductive, i.e. it can generalize to unseen data points. One can interpret the
model as learning a robust representation of group distributions. An appropriate
characterization of groups results in more accurate detection where any unseen
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observations either lie within the reference group manifold or deviate from the
expected group pattern.

5 Experimental Setup

In this section we show the empirical effectiveness of deep generative models
over the state-of-the-art methods on real-world data. Our primary focus is on
non-trivial image datasets, although our method is applicable in any context
where autoencoders are useful e.g. speech, text.

5.1 Methods Compared

We compare our proposed technique using deep generative models (DGMs) with
the following state-of-the art methods for detecting group anomalies:

• Mixture of Gaussian Mixture (MGM) Model, as per [30].
• One-Class Support Measure Machines (OCSMM), as per [20].
• One-Class Support Vector Machines (OCSVM), as per [24].
• Variational Autoencoder (VAE) [9], as per Eq. (2).
• Adversarial Autoencoder (AAE) [19], as per Eq. (3).

We used Keras [5], TensorFlow [2] for the implementation of AAE and VAE1.
MGM2, OCSMM3 and OCSVM4 are applied using publicly available code.

5.2 Datasets

We compare all methods on the following datasets:

• synthetic data follows Muandet et al. [20] where regular groups are gener-
ated by bivariate Gaussian distributions while anomalous groups have rotated
covariance matrices.

• cifar-10 [16] consists of 32×32 color images over 10 classes with 6000 images
per class.

• scene image data following Xiong et al. [31] where anomalous images are
stitched from different scene categories.

• Pixabay [11] is used to obtain tiger images as well as images of cats and dogs
together. These images are rescaled to match dimensions of cat images in
cifar-10 dataset.

The real-world data experiments are previously illustrated in Fig. 1.

1 https://github.com/raghavchalapathy/gad.
2 https://www.cs.cmu.edu/∼lxiong/gad/gad.html.
3 https://github.com/jorjasso/SMDD-group-anomaly-detection.
4 https://github.com/cjlin1/libsvm.

https://github.com/raghavchalapathy/gad
https://www.cs.cmu.edu/~lxiong/gad/gad.html
https://github.com/jorjasso/SMDD-group-anomaly-detection
https://github.com/cjlin1/libsvm
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5.3 Parameter Selection

We now briefly discuss the model and parameter selection for applying techniques
in GAD applications. A pre-processing stage is required for state-of-the-art GAD
methods when dealing with images where feature extraction methods such as
SIFT [18] or HOG [7] represent images as a collection of visual features. In MGM,
the number of regular group behaviors T and number of Gaussian mixtures L are
selected using information criteria. The kernel bandwidth smoothing parameter
in OCSMM [20] is chosen as median

{||Gm,i−Gl,j ||2
}

for all i, j ∈ {1, 2, . . . , Nm}
and m, l ∈ 1, 2, . . . ,M where Gm,i represents the ith random vector in the
mth group. In addition, the parameter for expected proportions of anomalies in
OCSMM and OCSVM is set to the true value in the respective datasets.

When applying VAE and AAE, there are four existing network parameters
that require careful selection; (a) number of convolutional filters, (b) filter size,
(c) strides of convolution operation and (d) activation function. We tuned via
grid search of additional hyper-parameters including the number of hidden-layer
nodes H ∈ {3, 64, 128} and regularization λ within range [0, 100]. The learning
drop-out rates and regularization parameter μ were sampled from a uniform
distribution in the range [0.05, 0.1]. The embedding and initial weight matrices
are all sampled from uniform distribution within range [−1, 1].

6 Experimental Results

In this section, we explore a variety of GAD experiments. As anomaly detection
is an unsupervised learning problem, model evaluation is highly challenging.
We employ anomaly injection where known group anomalies are injected into
real-world image datasets. The performances of DGMs are evaluated against
state-of-the-art GAD methods using area under precision-recall curve (AUPRC)
and area under receiver operating characteristic curve (AUROC). AUPRC is
more appropriate than AUROC for binary classification under class imbalanced
datasets such as in GAD applications [8]. However in our experiments, a high
AUPRC score indicates the effectiveness of accurately identifying regular groups
while AUROC accounts for the false positive rate of detection methods.

6.1 Synthetic Data: Rotated Gaussian Distribution

Firstly we generate synthetic data where regular behavior consists of bivariate
Gaussian samples while anomalous groups have rotated covariance structures.
More specifically, M = 500 regular group distributions have correlation ρ = 0.7
while 50 anomalous groups are generated with correlation ρ = −0.7. The mean
vectors are randomly sampled from uniform distributions while covariances of
group distributions are given by

Σm =

⎧
⎪⎪⎨

⎪⎪⎩

(
0.2 0.14
0.14 0.2

)
, m = 1, 2, . . . , 500

(
0.2 −0.14

−0.14 0.2

)
, m = 501, 502, . . . , 550

(5)
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with each group having Nm = 1536 observations. Since we configured the pro-
posed DGMs with an architecture suitable for 32 × 32 pixels for 3 dimensions
(red, green, blue), our dataset is constructed such that each group has bivariate
observations with a total of 3072 values.

Parameter Settings: GAD methods are applied on the raw data with various
parameter settings. MGM is trained with T = 1 regular scene types and L = 3 as
the number of Gaussian mixtures. The expected proportion of group anomalies
as true proportion in OCSMM and OCSVM is set to ν = 50/M where M =
550 or M = 5050. In addition, OCSVM is applied by treating each Gaussian
distribution as a single high-dimensional observation.

Results: Table 1 illustrates the results of detecting distribution-based group
anomalies for different number of groups. For smaller number of groups M =
550, state-of-the-art GAD methods achieve a higher performance than DGMs
however for a larger training set with M = 5050, deep generative models achieve
the highest performance. AAE and VAE attain similar results for both synthetic
datasets. This conveys that DGMs require larger number of group observations
in order to train an appropriate model.

Table 1. Task results for detecting rotated Gaussian distributions in synthetic datasets
where AAE and VAE attain poor detection results for smaller datasets while they
achieve the highest performances (as highlighted in gray) given a larger number of
groups.

6.2 Detecting Tigers Within Cat Images

Firstly we explore the detection of point-based group anomalies (or image
anomalies) by injecting 50 anomalous images of tigers among 5000 cat images.
From Fig. 1, the visual features of cats are considered as regular behavior while
characteristics of tigers are anomalous. The goal is to correctly detect images of
tigers (point-based group anomalies) in an unsupervised manner.

Parameter Settings: In this experiment, HOG extracts visual features as
inputs for GAD methods. MGM is trained with T = 1 regular cat type and
L = 3 as the number of mixtures. Parameters in OCSMM and OCSVM are
set to ν = 50/5050 and OCSVM is applied with k-means (k = 40). Following
the success of the Batch Normalization architecture [12] and Exponential Lin-
ear Units (elu) [6], we have found that convolutional+batch-normalization+elu
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layers for DGMs provide a better representation of convolutional filters. Hence,
in this experiment the autoencoder of both AAE and VAE adopts four layers of
(conv-batch-normalization-elu) in the encoder part and as well as in the decoder
portion of the network. AAE network parameters such as (number of filter, fil-
ter size, strides) are chosen to be (16, 3, 1) for first and second layers while
(32, 3, 1) for third and fourth layers of both encoder and decoder layers. The
middle hidden layer size is set to be same as rank K = 64 and the model is
trained using Adam [13]. The decoding layer uses sigmoid function in order to
capture the nonlinearity characteristics from latent representations produced by
the hidden layer. Similar parameter settings are selected for DGMs in subsequent
experiments.

Results: From Table 2, AAE attains the highest AUROC value of 0.9906 while
OCSMM achieves a AUPRC of 0.9941. MGM, OCSMM, OCSVM are associ-
ated with high AUPRC as regular groups are correctly identified but their low
AUROC scores indicate poor detection of group anomalies. Figure 2(a) further
investigates the top 10 anomalous images detected by these methods and finds
that AAE correctly detects all images of tigers while OCSMM erroneously cap-
tures regular cat images.

6.3 Detecting Cats and Dogs

We further investigate GAD detection where images of a single cat and dog
are considered as regular groups while images with both cats and dogs are
distributed-based group anomalies. The constructed dataset consists of 5050
images; 2500 single cats, 2500 single dogs and 50 images of cats and dogs
together. As previously illustrated in Fig. 1(B), our goal is to detect all images
with irregular mixtures of cats and dogs in an unsupervised manner.

Parameter Settings: In this experiment, HOG extracts visual features as
inputs for GAD methods. MGM is trained with T = 2 regular cat type and L = 3
as the number of mixtures while OCSVM is applied with k-means (k = 30).

Results: Table 2 highlights (in gray) that AEE achieves the highest AUPRC
and AUROC values. Other state-of-the-art GAD methods attain high AUPRC
however AUROC values are relatively low. From Fig. 2(a), the top 10 anomalous
images with both cats and dogs are correctly detected by AAE while OCSMM
erroneously captures regular cat images. In fact, OCSMM incorrectly but con-
sistently detects regular cats with similar results to Subsect. 6.2.

6.4 Discovering Rotated Entities

We now explore the detection of distribution-based group anomalies with 5000
regular cat images and 50 images of rotated cats. As illustrated in Fig. 1(A),
images of rotated cats are anomalous compared to regular images of cats. Our
goal is to detect all rotated cats in an unsupervised manner.
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Parameter Settings: In this experiment involving rotated entities, HOG
extracts visual features because SIFT is rotation invariant. MGM is trained
with T = 1 regular cat type and L = 3 mixtures while OCSVM is applied with
k-means (k = 40).

Results: In Table 2, AAE and VAE achieve the highest AUROC with AAE
having slightly better detection results. MGM, OCSMM and OCSVM achieve a
high AUPRC but low AUROC. Figure 3 illustrates the top 10 most anomalous
groups where AAE correctly detects images containing rotated cats while MGM
incorrectly identifies regular cats as anomalous.

Fig. 2. Top 10 anomalous groups are presented for AAE and the best GAD method
respectively where red boxes outlining images represent true group anomalies. AAE has
an accurate detection of anomalous tigers injected into the cifar-10 dataset as well as
for anomalous images of both cats and dogs. On the other hand, OCSMM consistently
but erroneously identifies similar cat images as the most anomalous images. (Color
figure online)

6.5 Detecting Stitched Scene Images

A scene image dataset is also explored where 100 images originated from each
category “inside city”, “mountain” and “coast”. 66 group anomalies are injected
where images are stitched from two scene categories. Illustrations are provided
in Fig. 1(C) where a stitched image may contain half coast and half city street
view. These anomalies are challenging to detect since they have the same local
features as regular images however as a collection, they are anomalous. Our
objective is detect stitched scene images in an unsupervised manner.

Parameter Settings: State-of-the-art GAD methods utilize SIFT feature
extraction in this experiment. MGM is trained with T = 3 regular scene types
and L = 4 Gaussian mixtures while OCSVM is applied with k-means (k = 10).
The scene image dimensions are rescaled to enable the application of an identical
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architecture for DGMs as implemented in previous experiments. The parameter
settings for both AAE and VAE follows setup as described in Sect. 6.2.

Results: In Table 2, OCSMM achieves the highest AUROC score while DGMs
are less effective in detecting distribution-based group anomalies in this exper-
iment. We suppose that this is because only M = 366 groups are available
for training in the scene dataset as compared to M = 5050 groups in previ-
ous experiments. Figure 3(b) displays the top 10 most anomalous images where
OCSMM achieves a better detection results than AAE.

Fig. 3. Top 10 anomalous groups are presented where red boxes outlining images repre-
sent true group anomalies in the given datasets. AAE performs well in (a) with number
of groups M = 5050 however does not effectively detect group anomalies in (b) where
number of groups is M = 366. MGM is unable to correctly detect any rotated cats
while OSCMM is able to group anomalies in the scene dataset. (Color figure online)

6.6 Results Summary and Discussion

Table 2 summarizes the performance of detection methods in our experiments.
AAE usually achieves better results than VAE as AAE has the advantage of the
embedding coverage in the latent space [19]. AAE enforces a better mapping
of input variables to embedding space and hence captures more robust input
features. Thus AAE achieves the highest detection performance in most experi-
ments however poor results are obtained for scene image data due to the limited
number of groups. As demonstrated in our synthetic data and scene images,
DGMs have a significantly worse performance on a dataset with a smaller num-
ber of groups. Thus given sufficient number of group observations for training,
DGMs are effective in detecting group anomalies however poor detection occurs
for a small number of groups.

Comparison of Training Times: We add a final remark about applying the
proposed DGMs on GAD problems in terms of computational time and training
efficiency. For example, including the time taken to calculate SIFT features on
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Table 2. Summary of results for various data experiments where first two rows contains
deep generative models and the later techniques are state-of-the-art GAD methods. The
highest values of performance metrics are shaded in gray.

the small-scale scene dataset, MGM takes 42.8 s for training, 3.74 min to train
OCSMM and 27.9 s for OCSVM. In comparison, the computational times for
our AAE and VAE are 6.5 min and 8.5 min respectively. All the experiments
involving DGMs were conducted on a MacBook Pro equipped with an Intel
Core i7 at 2.2 GHz, 16 GB of RAM (DDR3 1600 MHz). The ability to leverage
recent advances in deep learning as part of our optimization (e.g. training models
on a GPU) is a salient feature of our approach. We also note that while MGM
and OCSMM are faster to train on small-scale datasets, they suffer from at least
O(N2) complexity for the total number of observations N . It is plausible that
one could leverage recent advances in fast approximations of kernel methods [17]
for OCSMM and studying these would be of interest in future work.

7 Conclusion

Group anomaly detection is a challenging area of research especially when deal-
ing with complex group distributions such as image data. In order to detect
group anomalies in various image applications, we clearly formulate deep gener-
ative models (DGMs) for detecting distribution-based group anomalies. DGMs
outperform state-of-the-art GAD techniques in many experiments involving both
synthetic and real-world image datasets however DGMs require a large number
of group observations for model training. To the best of our knowledge, this
is the first paper to formulate and apply DGMs to the problem of detecting
group anomalies. A future direction for research involves using recurrent neural
networks to detect temporal changes in a group of time series.
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29. Xiong, L., Póczos, B., Schneider, J.: Group anomaly detection using flexible genre

models. In: Advances in Neural Information Processing Systems, vol. 24, pp. 1071–
1079. Curran Associates Inc. (2011)
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