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Abstract. Handling large knowledge bases of information from different
domains such as the World Wide Web is a complex problem addressed in
the Resource Description Framework (RDF) by adding semantic mean-
ing to the data itself. The amount of linked data has brought with it a
number of specialized databases that are capable of storing and process-
ing RDF data, called RDF stores. We explore the RDF store landscape
with the aim of finding an RDF store that sufficiently meets the storage
needs of an enhanced living environment, more concretely the require-
ments of a Smart Space platform aimed at running on a cluster set up
of low-power hardware that can be run locally entirely at home with
the purpose of logging data for a reactive assistive system involving, e.g.,
activity recognition or domotics. We present a literature analysis of RDF
stores and identify promising candidates for implementation of consumer
Smart Spaces. Based on the insights provided with our study, we con-
clude by suggesting different relevant aspects of RDF storage systems
that need to be considered in Ambient Assisted Living environments
and a comparison of available solutions.
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1 Introduction

With the advent of the open Web and the large amounts of information that
it has brought with it, a need for technologies that can handle large quanti-
ties of unstructured data in an automated fashion has arisen. Creating intelli-
gent assumptions from the information pools that originate from widely differ-
ent domains of knowledge is a labour intensive problem when using technolo-
gies popular today. A way of semantically representing data with the Resource
Description Framework (RDF) and related semantic technologies has emerged
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as a solution in order to mitigate some of the complexities involved when intelli-
gently handling large amounts of knowledge. Storage and retrieval of information
in the RDF format is most often performed by using specialised storage systems
called RDF stores. The need for these storage systems capable of processing
large amount of RDF data is evident by looking at the great effort that has been
invested in a whole range of production system ready, RDF stores [24,32,42].

Smart Spaces are information sharing networks that are limited to the scale of
rooms and buildings. Because of the cross-domain information sharing between
actors, a Smart Space shares some of the same problems as the open Web when
it comes to information processing. The information sharing between devices
and users in the Smart Space, as well as a seamless device interoperability, and
the need for reactive systems, are some of the motivation behind the use of RDF
tools [58].

As more knowledge producers are introduced into a Smart Space environment
efficient storage is needed in order to handle the growing amount of information
constantly added to the Smart Space. The RDF store needs to provide fast data
storage operations in order to enable the Smart Space to work smoothly. For
Smart Spaces, the task of finding an RDF store is affected by the limited low-
power hardware used in Smart Spaces environments. Therefore, a Smart Space
needs an efficient RDF data storage that scales well, preferably in a distributed
system.

Section 2.2 presents a brief overview of RDF frameworks, Sect. 2.3 presents
some fundamental data storage techniques used in RDF stores, and this is fol-
lowed by a run-trough of RDF store benchmarks suits in Sect. 2.4. Section 3
introduces the Smart-M3 platform with a definition of RDF data storage require-
ments for the system followed by a short analysis of the suitability of different
RDF stores for the platform. In Sect. 4, the integration of a 4store storage option
into the Smart-M3 platform and an evaluation of the implementation is outlined.
Section 5 concludes the review and identifies future work.

2 Related Work: RDF Stores

RDF provides possibilities in knowledge processing that are not possible in other
database models. The new way of thinking about information in these semantic
technologies also presents their own challenges and new sets of tools. Even the
most fundamental functionality of providing efficient storage and retrieval of
information in an RDF data model is an issue that has created a new breed of
information storage systems called the RDF stores. Besides providing storage and
retrieval of information in the RDF format, RDF stores often consist of software
solutions for a number of functionalities related to semantic technologies and
information processing.

The RDF data model does not define the physical layout of the data itself,
but instead it defines how the information should be presented to the user or the
application when it is accessed from the RDF store. This abstraction of infor-
mation has resulted in large differences in the underlying data structures used
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for different RDF store. The data structures used for RDF stores range from
off-the-shelf relational databases [15,41] to state-of-the-art advanced indexing
schemes, which are specifically designed for the RDF data model [51]. As the
underlying data structures greatly affect both the performance and the scala-
bility of the storage system, this Section first presents the concepts that have
shaped modern RDF stores. This presentation is then followed by a brief run-
through of some of the most influential RDF stores. The Section concludes with
a discussion of RDF store benchmarking software.

The data storage techniques in RDF stores range from mapping the RDF
data model onto existing DBMS to custom DBMS where the data structures
used are designed specifically for the RDF data model.

2.1 RDF Store Taxonomy

As the storage techniques have a deterministic effect on the performance of RDF
stores, the identification of the core data structures used in RDF stores becomes
important for evaluating individual RDF stores. One of the defining features
for the real-world performance of RDF stores is how well they can handle the
prevalent conjunctive information retrieval requests of the RDF graphs. As a
result of this, the performance of RDF stores is tightly bound to how well the
index structure can handle the joins that graph pattern matching in queries. In
order to grasp the different data structures that are used in RDF stores, this
section presents the major data structures and indexing schemes that are an
integral part of RDF stores.

A number of papers have been presented on the topic of classifying differ-
ent types of RDF Stores. The classification is usually based on analyzing the
underlying storage methods that are used to implement the RDF data model.
The most extensive study on the topic was presented by Faye et al. [34], who
surveyed the RDF store landscape and presented a taxonomy of RDF storage
techniques and grouped the RDF stores in a tree structure shown in Fig. 1. The
main separation is into two groups: non-native RDF stores, which are based on
existing data storage solutions; and native RDF stores, which use data struc-
tures designed with the RDF data model in mind. A conscious omission in Faye
et al.’s study is that distributed and peer-to-peer RDF stores were not at all
considered. A literature survey from SYSTAP [65] includes a moderately exten-
sive discussion on some distributed RDF stores. In the survey, the distributed
RDF stores are grouped into index based systems, key-value stores extended with
MapReduce and main memory systems. Peer-2-peer RDF stores are discussed
in length in [35].

Defining an exact taxonomy of RDF stores, as presented in Fig. 1, and clas-
sifying each RDF store can be considered somewhat misleading as RDF stores
can incorporate a combination of storage techniques. Some RDF store vendors
do not publicize the details for the underlying data structure, and this makes the
task even harder. Nevertheless, it is important for the database system admin-
istrator to be aware of the different techniques used in the available RDF stores
and how they affect both the performance and the scalability of the RDF stores.
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Below follows short descriptions of the main techniques used in RDF stores as
presented in Fig. 1.

Fig. 1. RDF storage technique classification tree, as presented in [34]

Triple Table. The triple table can be considered the most straight forward
way of storing RDF triples. In the triple table approach, the RDF data model is
mapped directly onto a three-column wide table, in which each tuple contains the
resources for the RDF statement subject, predicate and object. This can easily
be implemented in any off-the-shelf RDBMS and it was a popular technique
used in early RDF stores such as 3store [41], which maps the RDF graphs into
a MySQL RDBMS triple table. A table representation on how the RDF data
model could be implemented for a small example RDF graph in a triple table is
presented in Table 1.

Table 1. Example of a triple table

Subject Predicate Object

place:City#London rdf:type place:City#

place:Region#England rdf:type place:England#

place:Country#UK rdf:type place:Country#

place:City#London geo:isLocatedIn place:Place#England

place:Place#England geo:isPartOf place:Country#UK

place:City#London hasPopulation 8174000

place:Place#England hasPopulation 53010000

A triple table representation as presented above, can be considered a rather
naive solution that has some obvious disadvantages. This kind of single table rep-
resentation will contain large amounts of unnecessary replication of information,
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as the same resources will appear in several rows. The replication of information
is also observable in Table 1 in which several of the subject and predicate fields
are repeated. Additionally, this kind of naive triple table implementation will
scale poorly since the number of triples in the table grows, as the query time
will also grow linearly as the RDF graph grows. This is a limitation that makes
the naive triple table infeasible for large datasets, a fact that was also noted in
early RDF stores [41].

An improvement to the naive triple table approach is to build meaningful
indices that covers the RDF statements. To cover all possible subject, predicate,
object combinations, a total of six covering indices is needed. To provide an
additional context resource for each triple in the RDF graph, the number of
covering indices grows to 16. Most modern RDF stores that use a triple table
also use some variation of covering indices [31,51].

Property Table. First introduced in the Jena framework in 2006 [66], the
property tables is a step away from some of the scalability limits that persist in
the triple table approach. The basic idea behind the property table is to discover
clusters of triple subjects in the knowledge base that share the same properties
and to group them into common tables. For each line in the property table one
column contains the subject for the triple with one or more columns containing
the property values for that subject. A property table grouping for the same
example RDF graph as in Table 1 is illustrated in Table 2. As can be observed
from Table 2, the triple predicates are not stored in the tables row data, but
instead within the table meta data. The aim of this kind of structure is to take
advantage of the regularities found in RDF graphs in order to reduce redundant
writing of information, and in the process speed up some of the most commonly
executed queries.

Table 2. Example of a multi-value property table RDF graph representation

One of the major advantages of the property table compared to a triple table
is that the number of join operations is reduced for certain types of queries.
For example, for queries that needs two or more single-value properties for a
subject, all properties can be found on the same tuple row, eliminating the tuple
joins that would have otherwise been needed if a triple table had been used. An
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additional feature which is not possible in a triple table is the possibility to do
attribute typing, i.e. defining the datatype formats for individual properties in
the column schema.

There are numerous ways to group RDF graphs into different property tables.
It has been shown that the selected property table scheme dramatically affect
the performance of the RDF store [66]. If the property table groupings lead to
wide and sparsely populated tables, the tables will be filled by a large amount
of NULL values, which in turn can dominate the storage space [18]. The prop-
erty table approach is also less flexible than the triple table approach as the
clustered properties might need rearranging as the data changes to maintain
good performance. Furthermore, the query performance is negatively affected
when performing queries on RDF graphs for which the property triple match is
unknown on a property table since all property tables then must be evaluated.

Vertical Partitioning. The third way to map the RDF data model onto an
RDBMS solution is by using vertical partitioning. This approach was first intro-
duced in SW-store [18] with the basic principle being that all triples are placed
into n two-column tables, for which n is the total number of unique properties
in the knowledge base. The first column is used to store the subjects of the triple
that have the defined property for the table, and the second column contains
the object values for those subjects. The tables are usually sorted by subject,
allowing for self joins (combination of records in the same table) to be performed
faster. A simple example representation of a property table is shown in Table 3.

Table 3. Example of a vertical partitioning (binary table) representation

The use of a vertical partitioning data structure in datasets containing large
numbers of predicates will lead to a large number of tables being created. The
large number of tables is specifically problematic when executing queries for
which several properties for each subject are requested. These types of queries
requires self joins each subject that have several of the requested properties. Both
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relational [18,31] and non-relational column stores have been used in implemen-
tations of vertically partitioned RDF stores.

Native RDF Stores. RDF stores that do not rely on existing RDBMS systems,
but instead use a custom DBMS system, which use data structures that are
tailored to the RDF data model, or store data in main memory, are called native
RDF stores. Native RDF stores can be divided into main memory and disk RDF
stores depending on the medium where the RDF graphs are stored. Main memory
RDF stores such as Jena TDB and RYA store the entire RDF graph in the main
memory, while disk-based RDF stores, like Virtuoso or 4store, use file systems
in combination with custom DBMSs for storing the triple data in secondary or
tertiary memories. The main memory approach relies on the fast access times
of RAM memory to provide fast query response times, while modern disk-based
systems make heavy use of cache techniques to serve frequently occurring queries.

A lot of effort has also gone into the creation RDF storage systems that
use peer-to-peer technologies for the storage and retrieval of RDF data. An
extensive study of RDF storage systems that take advantage of the peer-to-
peer communication model is in [35]. In the study, Filali et al. identify the
decentralization, the scalability, and the fault-tolerance provided by peer-to-peer
systems as the leading factors that motivated the design of the RDF data stores
that were covered.

RDF storage solutions capable of performing queries on large RDF datasets
mapped onto distributed file systems and queried using a MapReduce engine
have been presented in a number of research papers. SHARD [56], which was
one of the earliest peer-to-peer RDF stores presented, uses Hadoop and the
HDFS. The RDF graph is grouped into SHARDs that are directly mapped to
the HDFS file system. Queries are evaluated by performing triple patterns match
MapReduce operations on the SHARDs in a sequential order. Another Hadoop
based RDF query system is CliqueSquare [36], which reduces the network traffic
by exploiting the built-in replication in the HDFS and a clique-based algorithm
to find connected subgraphs to speed up query processing.

RDF storage systems that store the RDF graph in a cluster of individual RDF
stores and are queried using a MapReduce system have also been presented. An
example of such a system is presented [56], which distributes the RDF graph into
overlapping sub-graphs and placing the sub-graphs into individual RDF stores.
All SPARQL queries in the system are processed into smaller MapReduce sub-
query chunks in a master node that can be processed in parallel by the individual
RDF store nodes. This approach can be considered better suited for querying
large RDF that do not change since the graph partitioning performed in the
master node limits the scalability of the system.

An inherent advantage of peer-to-peer RDF stores is that they offer a direct
way to distribute the RDF graphs over hardware nodes. This enables vertical
scalability by adding new nodes to the network, and therefore there is no need
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to redesign of the system in order to achieve scale-out features. Even though the
peer-to-peer RDF storage solutions have some advantages, problems relating the
overhead caused by the traffic between the nodes, and in that they do not solve
the underlying problems caused by splitting up the RDF graphs have been cited
as problems are yet to be solved in current peer-to-peer RDF stores [65].

2.2 RDF Frameworks

In addition to individual RDF stores such as BitMat [21], MonetDB [63],
TriAD [38], AdPart [40], H2RDF [55], there are a number of RDF-centric frame-
works that provide interfaces to third party RDF storage implementations or
implement their own internal RDF storage solutions. A listing of the major
RDF frameworks with an accompanying description is presented below.

Apache Jena [2] RDF framework originated from the Hewlett Packard Labs
and includes a whole range of RDF specific tools from parsers, RDF stores,
reasoners and query systems. The libraries support both internal RDF stores and
provide libraries to access a number of independent RDF stores. The libraries
are Java-based, but bindings for the most common languages are provided.

Developed by Aduna, the OpenRDF Sesame framework [6] is similar to the
Apache Jena framework in that it provides a de-facto standard tool set for pro-
cessing RDF data in Java APIs. Access to most modern RDF stores is provided
through the SAIL API part of the framework. The framework has been devel-
oped for over ten years and is used by companies in several different industries.
The OWLIM platform [24] is a high-performance Java-based semantic repository
that is packaged as an implementation of Sesame’s SAIL API. Besides serving
as an interface to the OWLIM RDF store, the platform also supports reasoning
for RDFS, OWL Horst, OWL 2 QL and OWL 2 RL semantics.

Developed by Dave Beckett, the Redland RDF libraries [12], written in C,
provide tools for parsing, querying and storage on RDF data. The Redland
storage library supports a limited number of RDF stores, the default being a
custom storage solution based on the Oracles Berkeley DB database. Besides
the C API, the libraries have bindings to Ruby, PHP, Python and Perl.

The PerlRDF libraries [11] are a set of Perl libraries similar to the Redland
RDF libraries with the aim of providing a Perl interface for RDF tools, in a
similar fashion to what OWL API implementaion in Java does, to provide an
OWL 2 syntax API.

2.3 Individual RDF Stores

Since the first RDF stores appeared in the early 2000s, a number of surveys
and evaluations have been presented that both evaluate the state of RDF stores
and discuss the techniques used. An incomplete list of recent studies include: an
evaluation of RDF database solutions from 2009 [64], a report over RDF stores
done for the European project 2011 [44], a discussion of interesting RDF stores
in a literature survey of RDF storage approaches [34]. The RDF stores covered
in the studies vary largely based on the aim of the studies. RDF stores briefly
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covered in this chapter were included on the basis of having either shaped the
evolution of RDF stores or being considered a major player in the current state
of RDF stores. Below follows a short introduction to these RDF stores.

YARS2. Released in 2004, Yet Another RDF Store (YARS) was one of the first
distributed RDF store released to the public. The improved version, YARS2 [43]
released in 2006, improved the scalability of the system. YARS2 represents RDF
statements as quads, in which the fourth position of the statement is defined as
the source of the triple, functioning in a similar fashion as the RDF NAMED
GRAPH [4]. The store uses six, alternatively ordered, covering indices: SPOC,
POCS, OCSP, CPSO and OSPC. In these indices, S, P and O are the triple
subject, predicate and object, and C stands for the context of the statement.
YARS2 uses an in memory sparse index data structure that refers to sorted and
blocked data files on disk. In order to save space, only the first two elements of
each quad are stored in the sparse index. By doing so, the indexing structure
sacrifices insertion speed for better query performance, as all six indices must
be calculated in a specific order when inserting new triples. Huffman encoding
is used in the data blocks in order to save storage space. The entire lexical value
of the triple is indexed in order to speed up the queries that contain FILTER
operations.

Virtuoso. Virtuoso is defined as “a general purpose relational/federated
database system and application platform” [32] developed by OpenLink Soft-
ware, and can be considered a full-featured RDF solution with interfaces for
the Jena framework, the Sesame and Redland libraries, a limited OWL infer-
ence engine, full-text search, relational data analytics and Multi Version Con-
currency Control (MVCC) for transaction handling. Virtuoso was originally a
relational database that was later extended in order to support RDF data. The
software first used a row-wise transaction scheme [33], but the latest version of
the software, Virtuoso 7, uses column-wise compressed storage with a vectored
execution [31]. The software is provided under both an open-source license for
single machines and a commercial license for software that supports federated
(distributed) storage and other additional functionality.

Virtuoso uses a quadruplet structure for modelling RDF triples and by doing
so extends the subject S, predicate P and object O with a G graph node column
representing the graph IRI ID. The earlier versions of Virtuoso used only two cov-
ering indices, <GSPO> and <OGPS>, for each statement. The index structure
was motivated by the assumption that most triples are queried using either the
subject or the object. Virtuoso 6 and 7 extended the covering indices to include
the optional covering indices <PSOG> and <POGS> as well as the additional
indices <OP>, <SP> and <GS> for distinct projections. All SPARQL queries
in Virtuoso are transformed into SQL statements that are then handled inside
Virtuoso’s SQL query engine in a similar fashion as Oracle’s RDF Match table
function (see Sect. 2.3). The latest version of the software is marketed as scaling
up to datasets over a trillion triples.
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4store. 4store [42] is an open-source RDF store that was originally developed by
Garlik in order to be used in the company’s personal data protection products.
As Garlik moved on to their new clustered RDF-store, 5store, 4store has been
maintained by the 4store user community.

Even if 4store is labelled as the logical successor of 3store [41], it shares
very little code with its predecessor. The main feature that has remained is
the mapping of RDF resources as integers. The data structure used in 4store
resembles the property table used in Jena SDB rather than the triple table used
in 3store. RDF statements are defined as quadruplets or quads consisting of a
subject, a predicate, an object and a model that is used analogously with the RDF
NAMED GRAPH. The indexing and distribution of the RDF graph to nodes in
4store is based on hashing algorithms.

For the query optimization, 4store executes bind operations in a descending
order based on a selectivity factor evaluated on the basis of statistical predicate
frequency tables. The resulting bindings are combined in the master node, and
as such produce the final query results. The evaluation of FILTER operations
is delayed towards the end of the query execution in order to limit the cost of
transforming the lexical values of RDF resources. The indexing structure gives
good performance for most queries, but queries with unknown predicates on a
knowledge base with many unique predicates will be at a disadvantage due to
the large number of tables required by the property table-like structure used in
4store.

4store does possess some clear deficiencies compared to other leading RDF
stores. The major deficiencies are an incomplete SPARQL 1.1 support, and a lack
of both transaction handling and built-in inference engines. However, a separate
version of 4store that supports backward inferencing on a minimal RDFS set [60]
has been developed, but is yet to be included in the official 4store release.

SYSTAP, BigData. BigData is a RDF platform targeting the Semantic Web
and it has been developed by Systap LLC since 2006. BigData was initially
released in a single node version that is currently named journal. BigData has
later been extended to a clustered version of the software called federation. The
journal version is in principal a main memory RDF store, while the federation
version uses a “dynamic horizontal partitioning architecture” that is inspired by
BigTable [27]. The journal version is aimed for smaller knowledge bases that can
fit into the main memory of a single node, whereas the federation is aimed at
handling large knowledge bases that do not fit onto a single node. Like Virtuoso,
the BigData software is published under both an open-source and a commercial
license [13]. At the time of writing, the open-sourced version of the software can
be used without a commercial license for knowledge bases less than 50 million
triples. Transaction support using an MVCC system is available for both the
journal and the federation versions of the software.

Jena TDB. The original Jena RDF store [66] (now called Jena SDB) was devel-
oped by the Hewlett Packard labs. The software system was initially an RDBMS
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mapped onto a property table indexing scheme. The current RDF storage pro-
vided by the Jena framework, the Jena TDB, has diverged from the original
version of Jena and can now be considered as a single node main memory RDF
store. The change is motivated by the significantly better performance offered
by keeping the RDF graph in the main memory compared to the initial disk
based system, for which further development has been discontinued. Another of
the selling points for the Jena TDB RDF storage solution is the extensive tools
provided with the Jena framework.

Allegrograph. Developed by Franz Inc, Allegrograph [1] is a commercial grade
graph database for RDF data, containing a range of RDF tools. Allegrograph
represents triples in assertions and each triple is mapped into a subject, a predi-
cate, an object, a graph and a triple-id assertion. The triple-id is mainly used for
graph extension when performing direct graph reification for RDF graphs. The
system uses a combination of dictionaries, seven different indices and a cache
handling system in order to provide the storage and retrieval of the RDF data.

Knowledge bases in Allegrograph can be queried using both the SPARQL lan-
guage and a specialized Prolog instruction set. The system supports full RDFS
and partial OWL reasoning through its RacerPro [39] software, which is built on
tableau calculus. Rather unique features found in Allegrograph are the possibili-
ties for doing geospatial inferencing as well as temporal reasoning. Federation and
ACID compliant transactions are also supported1. The system can be accessed
by the number of programming languages or through the Jena platform.

OWLIM. OWLIM [24] is a family of semantic repositories that provides stor-
age, inference and novel data-access features for RDF data. The software comes
in three different versions: a main memory RDF store for datasets up to 100
million statements called OWLIM-Lite (previously SwiftOWLIM), a file sys-
tem based RDF store for larger data volumes called OWLIM-SE (previously
BigOWLIM) and a replication cluster RDF store called OWLIM-Enterprise.

All the OWLIM versions are accessible through the package interface layer
in the Sesame SAIL platform. The query engine for OWLIM-Lite relies on the
Sesame framework, while the other versions use their own built-in query engines.
In addition to the SPARQL 1.1 language support, OWLIM-SE and OWLIM-
Enterprise also support full text search through the Lucene [3] text search engine.
OWLIM uses an embedded reasoning engine developed at Ontotext, which per-
forms reasoning based on forward-chaining of the entailment rules over the RDF
triple patterns with variables. A relatively unique feature for OWLIM-SE is the
possibility for the user to receive notifications on changes in triples by using a
publish/subscribe mechanism.

1 The ACID properties of a DBMS that allow safe sharing of data are Atomicity,
Consistency, Isolation, and Durability.
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Oracle Spatial and Graph 10g-12c, and Oracle NoSQL. RDF and
semantic inference support were initially introduced to the Oracle RD-BMS in
2005 [50]. Version 11g of the Oracle RDBMS that was released in 2007 pro-
vided native RDF storage that scales up to billions of triples. Also included in
the release of version 11g was OWL inference and the integration to prominent
RDF technologies such as Jena, Sesame and Protégé [22]. The RDF graphs in
Oracle 11g are modelled using relational tables and views that are optimized
for semantic data. RDF graphs can be accessed in the system by using mixed
SQL and SPARQL queries. Nevertheless, all SPARQL queries are translated in
runtime into table/join structures that are executed by the underlying DBMS2.

A separate software product provided by the Oracle Corporation that has
RDF support is the Oracle NoSQL database [9]. The underlying storage is based
on the key-value store, Oracle Java Berkeley DB (previously SleepyCat DB).
Oracle NoSQL supports SPARQL queries as well as inferencing, and it can be
accessed through the Jena interface.

RDF-3X. Introduced in 2010 by the Plank Institute, RDF-3X [51] is an aca-
demic effort intended to improve the RDF storage architecture. The RDF-3X
RDF store uses a RISC-style [7] architecture with a streamlined indexing struc-
ture combined with a streamlined query optimisation approach.

In RDF-3X, all triples are stored in a single triple table, and each triple
is sorted lexicographically into one compressed B+ tree. In order to compress
the storage of triples and to simplify the processing of queries, triple literals
are replaced with identifiers using a mapping dictionary. When querying the
knowledge base, the triple patterns are translated into string identifiers and the
resulting literals get translated back to strings using a direct mapping index.

All six possible permutations of the covering indices are built for each triple
and inserted into clustered B+ trees. This index structure ensures that single
index lookups are possible for every triple pattern. For each tuple in the B+
tree leaf nodes value, byte-level compression is performed based on the delta
difference of the preceding tuples. Similarities between neighbouring tuples in
the B+ tree are exploited in order to gain a high level of compression. Additional
aggregate indices (SP, PS, SO, OS, PO, OP, S, P, O) are also built in order to
speed up the SPARQL queries that include partial triple patterns.

SPARQL queries are transformed and performed using tuple calculus. This is
motivated by the fact that it eliminates a large part of the merge joins that are
prevalent in property table approaches. The query optimization within RDF-
3X is based on identifying the lowest-cost execution plan based either on the
selectivity of the calculations for executing frequent join paths or alternatively
on a through and specialized histogram of data when the join path data is not
available.

The first version of the RDF-3X software was mainly optimized for retrieving
information from RDF graphs. Later versions of the software include a compact
2 http://download.oracle.com/otndocs/tech/semantic web/pdf/oradb semantic

overview.pdf.

http://download.oracle.com/otndocs/tech/semantic_web/pdf/oradb_semantic_overview.pdf
http://download.oracle.com/otndocs/tech/semantic_web/pdf/oradb_semantic_overview.pdf
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differential indices and an integrated versioning, which enables the deferral of
changes to the RDF graph that can be merged with the main RDF graph in batch
operations. The additions enabled online updates to the knowledge base and
provided time travel queries that offer both flexibility and consistency through a
transaction concurrency control system [52]. The index structure in combination
with the query optimisations used give RDF-3X a good performance in many
types of queries, although it has been noted that the performance of RDF-3X
degrades for unbound queries and queries where the selectivity factor is low [52].

Trinity.RDF. Trinity.RDF [67] is a main-memory RDF graph database based
on the Trinity [62] distributed graph system. The system was designed to handle
large Web scale data. Trinity.RDF introduces graph database specific features
that are not available in other RDF stores like random walks and reachability
that can be used for data analytics and data mining purposes.

The defining feature for Trinity.RDF is that queries are performed using
graph exploration instead of relational joins common in many other RDF stores.
This graph exploration is claimed to provide especially good performance com-
pared to current solutions for graph walking queries, which, at the time of writ-
ing, shows superior performance compared to state-of-the-art systems in a num-
ber queries.

2.4 RDF Store Benchmarks

Since the introduction of RDF stores, a number of benchmark suites ([19,25,37],
Waterloo SPARQL Diversity Test Suite (WatDiv) [20], Bio2RDF [26], Yago2 and
3 [46]) have been presented in order to measure RDF stores. The methods used
in the benchmark differ somewhat from each other, but most of the benchmarks
include at least the measurements load time for inserting datasets to the RDF
store and the measurements on query performance using either synthetic or real
world datasets. The accuracy of how well the benchmark measures real world per-
formance has been questioned [30], and therefore, the benchmarks are included
in this chapter as they provide a general impression of both the scalability and
performance of RDF stores.

One of the earliest RDF benchmarks was the Leigh University Benchmark
(LUBM) [37] released in 2005. The benchmark aimed to evaluate the reasoning
capabilities and the query performance of RDF storage solutions by using OWL
knowledge bases. The datasets used in the benchmarks are generated using an
ontology dataset generator, which replicates university setting with triple data
relating to professors, students and courses. The test suite provides 14 evalua-
tion queries that can be used in order to evaluate the semantic inference and
the reasoning capabilities of RDF stores while at the same time providing exe-
cution times for the aforementioned queries. The LUBM group does not provide
updated experimental results for RDF stores, but the benchmarking suite has
been used by several RDF store developers to compare the performance of their
RDF stores against other RDF stores.
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Another benchmark suite using synthetic data is the Berlin SPARQL Bench-
mark (BSBM) [25] that was first presented in 2009. Like LUBM, BSBM measures
RDF store query speed using a number of SPARQL queries, but the evaluation
is focused on explore and update scenarios in a business intelligence use case.
The test suite includes multi-client benchmarks that are performed through a
HTTP SPARQL front end in the RDF store.

The SPARQL Performance Benchmark (SP2Bench) [61] introduced in 2009
uses SPARQL construct operator constellations and broader data access pat-
terns in order to evaluate RDF stores in non-application specific use cases. The
SP2Bench suit uses artificially generated datasets related to publications, with a
benchmark end goal to cover a large range of use cases. The SP2Bench suite uses
a total of 17 SPARQL queries in order to benchmark RDF store performance.

DBpedia SPARQL Benchmark [49] is a project that aims to provide a generic
SPARQL benchmark creation methodology by using real world datasets. In
2011 [49], Morandi et al. present methods for how they extracted sample data
subsets from the DBpedia dataset, and how they from the resulting dataset
derive 25 unique SPARQL queries that can be used in order to benchmark the
performance of RDF stores.

A table of the different RDF benchmark suites experiments is presented
below. From the table, one can note that there are several orders of magnitude
differences between the dataset sizes in the different benchmark experiments.
The BSBM testing suite experiments are the largest in scale and can there-
fore be considered the most extensive. In addition to the experiment done by
the benchmark creators mentioned above, both individual RDF store developers
and independent sources have performed experiments using the different bench-
marking suites. As the results of these other experiments are hard to compare
in the scope of this chapter, they are not included (Table 4).

Table 4. Comparison of different RDF benchmarks, modified from [49].

LUBM SP2Bench BSBM v3.0 BSBM v3.1 DBPSD

RDF stores
tested

DLDB-OWL,
Sesame
OWL-JessKB

ARQ, Redland,
SDB, Sesame,
Virtuoso

Virtuoso,
4store,
Jena-TDB,
Jena-SDB

BigData,
BigOWLIM,
Jena-TDB,
Virtuoso 6 & 7

Virtuoso,
Jena-TDB,
BigOWLIM,
Sesame

Test data Syntetic Syntetic Syntetic Syntetic Real

Dataset size
(millions of
triples)

0.1–6.9 0.01–1 100, 200 10–150000 14–300

Use case Universities DBLP E-commerce E-commerce DBpedia

Classes 43 8 8 8 239 + 300K

Properties 32 22 51 51 1200

In the BSBM v3.0 experiment run in 2010, Virtuoso 6 and 4store were shown
to have the best performance of the tested RDF stores with a nearly equal
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performance in most queries performed. Virtuoso 7 showed the best results in
the BSBM v3.1 benchmarks experiment, with Virtuoso 7 showing an order of
magnitude better performance compared to the other RDF stores regarding both
scalability and query execution time.

One obvious conclusion that can be drawn from the benchmark experiments
is that there is a large difference in query execution times and scalability between
RDF stores. The performance improvement shown in the Virtuoso 7 compared
to other RDF stores and previous versions of Virtuoso can be interpreted as a
sign that there is yet much optimization to be done for RDF stores in the future.

3 RDF Stores in the Context of Smart Spaces

The concept of smart spaces was introduced to enable an intelligent interaction
of information between entities in both the physical and the virtual environment
of an enclosed space. The vision was to build smart spaces that can be seen as
a small version of the broader “Internet of things” concept. Considering that a
smart space can contain a plethora of different actors producing information in
varying domains, the choice of using semantic technologies has become a logical
for the implementation of the smart space concept.

Even if the use of semantic technologies can be considered a rather novel
feature for the Smart-M3 platform we will use, it also raises a need for efficient
RDF data storage and retrieval in order to enable the information sharing inside
the smart space environment. The insufficiency of the currently available RDF
stores in the Smart-M3 is one of the motivation behind the task of the work
done in this chapter; to improve on the storage solution currently used in the
Smart-M3 software. The end goal being that the platform can become a viable
alternative for use in real world applications. To evaluate the suitability of RDF
stores for the smart spaces, we start with an introduction to the Smart-M3
platform followed by the defining of the storage requirement for smart spaces.
Lastly, an analysis of how well different RDF stores suit the defined requirements
is given.

3.1 RDF Storage in Smart-M3

Smart-M33 is an implementation of the smart space concept that originated from
a collaboration between the Nokia Corporation and the VTT technical Research
Centre of Finland starting in 2006.

The motivation behind the Smart-M3 is to create a Multi-device, Multi-
domain and Multi-vendor platform for information sharing between devices and
people in smart spaces. Even if the concepts of intelligent rooms or buildings is
not in itself a novel concept, most implementation of intelligent spaces on the
market are bound to vendor specific devices or are limited to specific types of
devices. The idea behind the Smart-M3 platform is to let any device or user

3 https://github.com/smart-m3, https://sourceforge.net/projects/smart-m3.

https://github.com/smart-m3
https://sourceforge.net/projects/smart-m3
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belonging to the smart space, regardless of the vendor of the device, to join the
smart space and to add to the common information pool. The devices and people,
or knowledge processor (KP) as they are called in Smart-M3, can share informa-
tion through a central service in the smart space called a semantic information
broker (SIB). A depiction of the logical layout of a Smart-M3 environment is
presented in Fig. 2 below.

Fig. 2. Smart-M3 overview

The SIBs act as mediators of communication between KPs through the rules
and syntax specified in the Smart Space Access Control (SSAP) [8] protocol. The
SSAP protocol defines the following operations that a KP can perform on a SIB:
join the SIB, leave the SIB, subscribe to changes to certain pieces of information,
unsubscribe from an active subscription, add triple/triples to the SIB, remove
triple/triples, update a triple and query the SIB. The most novel of the operations
mentioned above are subscribe and unsubscribe4, which provide the smart space
with a publish/subscribe paradigm. This paradigm works through users defining
persistent triple matching subscription queries that are triggered whenever a
change has occurred in the corresponding triples for the query in the knowledge
base. When a subscription is triggered, the SIB notifies the KP that produced
the subscription about the changes that has happened related to the subscription
since the last notification. In a sense, one can look at it as the SIB notifying the
KP that an event has happened in the smart space.

The early use cases for the Smart-M3 were related to intelligent homes [29,
58,59], in which interaction between the devices and the users in the home were
made easier by automating events and centralizing how functions of devices
were accessible. Since then, other use cases ranging from home entertainment

4 The OWLIM-SE software suite offers a somewhat similar notification system.
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systems [57] to person health monitoring security [45] or bioimaging [28] purposes
have been proposed.

As was briefly mentioned earlier, one of the major factors affecting the per-
formance of the Smart-M3 platform is the underlying RDF store that is used in
the SIB. Most of the activity in smart space environments involves either adding
pieces of information to the knowledge base or accessing the information in the
knowledge base. When considering how prevalent these operations are in combi-
nation with the large difference in performance of the different RDF stores that
were discussed in Sect. 2.3, the choice of storage solution for the Smart-M3 does
have impact the performance of the system as a whole.

The earliest versions of the Smart-M3 platform used a RDF store that relied
on an embedded MySQL database that was accessed using a specialized domain
modeling language. The most recent version of the Smart-M3 SIB, RedSIB, uses
the libraries found in the Redland framework [12] for all its data storage needs.
Consequently, the Redland storage library gives Smart-M3 access to storage
modules that use embedded RDF stores, in-memory RDF stores or native RDF
stores. All the RDF storage modules are listed in Table 5 alongside some of the
functional and non-functional features for each module.

The default storage module in Redland is the embedded Berkeley DB (BDB)
with an enabled hash indexing option. This module is also the default storage
option used in the RedSIB software. In the BDB storage module, the triples are
mapped to the BDB key-value store with the help of three indices: SP2O, SO2P
and PO2S, for which the (S, P, O) resources to the left of the 2 build the key and
the resource on the right side represents the value. The BDB storage solution
performs well when small RDF graphs are used, but the scalability of this storage
solution is limited by the indexing scheme used. The indexing scheme leads to
vast amounts of storage space needed to store large RDF graphs, rendering the
module unusable in Smart-M3 environments that contain large knowledge bases.
Of the other modules listed in Table 5, Virtuoso is the only full-featured RDF
store capable of handling datasets over tens of millions of triples. The Virtuoso
storage module includes the option to use an internal query engine for handling
SPARQL queries.

3.2 Problems Related to the Existing RDF Stores in RedSIB

In the latest version of RedSIB, the publish/subscribe functionality was imple-
mented with the help of two separate RDF store instances that keep track of
triples that have been added and removed. As triples are added to the storage
instances, they get matched with the active subscriptions in the SIB in order
to evaluate if the subscription should trigger. Caching features are used to limit
the overhead that the publish/subscribe functionality causes. Nevertheless, the
insertion and the removal of triples become linearly slower with every subscrip-
tion that is added to the RedSIB [48].

One feature missing in all of the alternatives for the Redland libraries is the
lack of scale-out capabilities. As one of the aims has been to create a scalable
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Table 5. A feature run down on RDF storage modules provided by the Redland storage
library

Module Storage
type

Persistent
storage

Scalability Transaction
support

Named
graphs

Additional
notes

Berkeley DB Key-value
store

Yes Tested
up to 10MT

Yes Yes Large disk
usage when
the indexed
option is
used

MySQL 3 an 4 RDBMS Yes Larger data
models

Yes No -

PostgreSQL RDBMS Yes Larger data
models

Yes No Indexed but
not
optimized

SQLite RDBMS Unknown Unknown No Unknown -

Virtuoso 6 Row-wise
RDBMS

Yes 1B+ triples No Yes -

Memory In-memory No Poor No Optional Fast with
small
models

File In-
memory/file
storage

Yes Poor No No Uses the
memory
module on
a file

URI In-memory No Poor No No Uses the
memory
module on
a file

3store Triple table Yes A few
million
triples

No No Alpha
quality
support

solution that can be extended when the need for more storage space and pro-
cessing power is needed, this was concluded to be a desirable function for the
RDF store used in RedSIB.

3.3 Previous RDF Store Evaluations for Smart Spaces

The use of RDF stores for smart spaces was explored during the DIEM project in
2011 [53]. In the study, Allegrograph, OWLIM-SE, Virtuoso, 4store and Bigdata
were chosen for the evaluation based on the fact that they were identified as
capable of handling up to 10 billion triples knowledge bases. The study includes
a feature run-through for each of the possible stores with some commentary on
the suitability of each store as a part of the smart space environment. At the time
of the evaluation, none of the RDF stores provided full SPARQL 1.1 coverage as
it was still in draft status. In the evaluation, no conclusive recommendation of
what RDF store would fit the Smart-M3 best was made. The major observations
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made in this direction were that OWLIM-SE was identified as having favourable
usability aspects and Virtuoso was noted to show a good query performance.
What can be considered an omission in the DIEM study is that the hardware
constraints of typical Smart-M3 platforms was not properly taken into account.
Even though it is often favourable to run the SIB using low-power commodity
hardware that are running all the time, the study only considered RDF store
benchmark experiments run on server grade hardware. Furthermore, a great deal
of progress has happened in the field of RDF stores since the study was made,
warranting a new evaluation of the possible RDF stores.

3.4 Defining Requirements in Smart Spaces

The major factor that has affected the outlining of the requirement definition
for the storage solution for the Smart-M3 platform is how well it fits into the
vision of a scalable in-house smart space system. The envisioned system implies
that the RDF store used in RedSIB should be able to store a large amount of
RDF triples, while at the same time it should continue to serve the information
sharing needs of the smart space environment. With these assumptions in mind,
a conscious decision was made to aid the decision process of choosing an RDF
store in a cluster structure that consists of several low-energy hardware nodes.
It was therefore concluded that a preference should be made for selecting RDF
stores for which the triples in the RDF store could be distributed between the
low-energy nodes.

For the evaluation, the feasibility of a centralized clustered in-home SIB box,
a hardware prototype (hereafter referenced as prototype) that consists of two
ODROID U2 [5] development boards. The boards are based on the Samsung
Exynos 5 32-bit ARM architecture chipsets with each board equipped with 2 GB
of DDR2 SDRAM and an 8 GB SDCARD memory modules. To be considered in
the evaluation, the proposed RDF stores should be able to run on the prototype
hardware.

Defining requirements for the RDF stores for the Smart-M3 in this evaluation
relies on rough estimates, as no Smart-M3 environment has been created that
could give an accurate representation of the storage needs of a large scale smart
space environment. As discussed in Sect. 2.3, the properties of the RDF dataset
that are used and the type of queries that are normally performed in a smart
space setting will affect the performance of the RDF-store. Additionally, the
size of the datasets that the underlying RDF store can handle will limit the
scalability of the system. To know how the above mentioned factors affect the
functionality of the Smart-M3 system, it would be preferable to know in advance
what kind of data is to be used in the Smart-M35.

The defining factor of many of the use case scenarios is that the system will
need to handle frequent small inserts and deletions of triples. For updates of

5 Unfortunately, for the evaluation in this chapter, no figures for either the perfor-
mance or the scalability of the future needs of the envisioned large scale smart space
environment were available at the outline and the only option was to use estimates.
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the knowledge base, this works well in RDF stores that do not need to perform
expensive index updates every time the knowledge base has been updated. The
frequent updates were identified as a possible concern for the index-based RDF
solution for which batched triple inserts and removes are preferred.

For evaluation purposes, it was decided that the RDF stores should at a
bare minimum be able to handle an arbitrarily chosen number of ten millions of
triples, based on what can be considered to be a reasonable number of triples
that a smart space should be able to serve. The criteria for the RDF stores in this
evaluation are that they should be able to keep loading this number of triples,
while at the same time they should be able to perform simple queries within the
millisecond range.

At the outlook the evaluation, there were no hard criteria on how fast queries
should be handled in a smart space. As is observable from RDF store bench-
marks, it is not unreasonable to expect a modern RDF store to be able to execute
simple SPARQL queries in milliseconds. This order of magnitude of query exe-
cution times should reasonably be assumed not to incur noticeable delays in the
RedSIB software. More complex queries require more execution time and this
can potentially slow down the Smart-M3 system due to only one query being
processed at a time, effectively leaving the whole system waiting for the query
to finish before a new query is performed.

RDF store transaction support was not considered to be an obligatory fea-
ture as the Smart-M3 software does not, at the time of writing, have support
for transactions. Nevertheless, it is not unreasonable to expect that transactions
will become part of future releases of the RedSIB software in order to support
transactions, as it is a proven method for handling the reliability and security
aspects of sensitive information. For this reason, transaction database operation
support was considered as a desirable feature for future use. However, the intro-
duction of transactions in the RedSIB software is out of the scope for the work
performed in this chapter.

Even though data persistence and data integrity might not be a hard require-
ment in all smart space environments, there are certain use cases, such as those
involving medical data, for which the integrity of the data in the smart space is
of high importance. When considering main memory RDF stores, the recover-
ability of data in case of machine failure or sudden power loss is an issue that
cannot be ignored. However, since the RedSIB software does not currently sup-
port reversible transactions, transactional data recoverability was considered a
preferable feature of the RDF stores, but not a strict requirement. A reasonable
system for making regular back-ups of the data would suffice for the RDF stores.

To ensure that the ethos of openness as pertained for the Smart-M3 project,
it was considered mandatory that the RDF store should be provided under both
an open-source license, and preferably a free-to-use license. This requirement
limits the number of possible RDF stores as many of the more mature RDF
stores discussed in Sect. 2.3 that support distributed storage are released under
a commercial license.
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A non-functional requirement worth mentioning is that due to the limited
time frame available for the integration of a new RDF store into the Smart-M3 in
combination with the extensive use of the Redland storage library in RedSIB, it
is mandatory that the chosen RDF store should be interfacable with the RedSIB
software through the Redland storage library. A summary of the requirements
and desired features for RDF stores are listed in Table 6 below.

Table 6. Features identified as pertinent when considering an RDF store for smart
spaces

Criteria Requirement

Ease of implementation Should be implementable in 2 months as part of the RedSIB
platform

Hardware criterion Should run on the prototype hardware

Query language Should support at least the most essential parts of the SPARQL 1.1
standard

Scalability Should scale to at least ten million triples. Scale-out feature is
preferable

Security Transaction support is preferable for future needs

Data provenance Named graphs like feature should be supported for future needs

Data persistence The storage should as bare minimum offer backups

3.5 RDF Stores Short-List

As was presented in the previous section, there are numerous RDF stores avail-
able with both free and commercial licensing options. Considering the require-
ments listed in Table 6, the list of suitable RDF stores for smart space becomes
significantly shorter. Based on these criteria, short-listed promising RDF stores
were identified: 4store, Virtuoso, OWLIM, Bigdata and RDF-3X. A discussion
on the identified alternatives will follow.

3.6 4store in Smart-M3

4store is one of the few distributed RDF stores that is released under both an
open-source and a free-to-use license. 4store has performed favourably in the
BSBM version 3.1 experiment, performing on par with Virtuoso 6 for a large
number of evaluated queries. An advantage to 4store is that the set up process for
4store back ends is not complicated compared to other RDF stores. Additionally,
4store uses a triple representation that is very close to that used in the Redland
libraries, and it uses the Raptor and Rasqal Redland libraries, meaning that the
integration of 4store into the Redland storage library can reasonably be assumed
to be performed within the allotted time frame.

A concern that was raised for the 4store systems was how well the prototype
hardware would handle the heavy use of UMAC 64-bit hashing functions in
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4store. The developers of 4store offer no guarantees for the performance and
stability of 4store on 32-bit hardware, as 4store has only been tested using 64-bit
based systems. Additional concerns were that the 4store software in its current
form has some other lack in transaction support and that a large part of the
SPARQL 1.1 language is yet to be implemented in 4store.

3.7 Virtuoso in Smart-M3

Virtuoso has shown some of the best query performances in RDF benchmarks of
all complete RDF stores, especially version 7 of the software. Virtuoso has also
been shown to be able to scale up to datasets over trillions of triples [14]. The
compliance with the latest version of SPARQL is also good in Virtuoso, and it
can be considered a well-documented system with a sizeable number of active
developers working on improving the system. The fact that a storage module for
Virtuoso 6 has already been created for the Redland storage library means that
adding a Virtuoso option to the RedSIB software is a trivial task. The biggest
downside for Virtuoso is, that compared to 4store and Bigdata, that the open
source version of the software does not support federation.

3.8 Bigdata in Smart-M3

A third alternative considered was the Bigdata software, which is provided under
both open-source and free-to-use license. The software is well-documented, and
it showed a comparable performance with both 4store and Virtuoso 6 in the
BSBM 3.1 experiment.

A major unfavourable factor when considering Bigdata as RDF store in
Smart-M3 is that there is a large difference in the data structures used by Big-
data and the triple representation used in the Redland storage library. Due to the
limited time to complete the project, creating the necessary interface between
Bigdata and librdf was concluded infeasible, and therefore Bigdata had to be
discarded as a possible candidate for the project.

3.9 RDF-3X in Smart-M3

The forth storage solution considered was to use a state-of-the-art RDF store
in Smart-M3. The most promising alternative was identified as RDF-3X, with
the motivation being that it performed well in independent benchmarks and
that it had a simple interface. Additionally, it was written in C and it uses a
simple triple structure, which would make the implementation of the interface
to the Redland libraries considerably easier. The official release of the RDF-3X
does not support distributed storage out of the box, but it has been shown that
RDF-3X can be used in a cluster setting if it is motivated.
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3.10 Choice of RDF Store

The requirements discussed in Sect. 3.4 severely limited the possible alternatives
for the selection of an RDF store. Most of the distributed RDF stores that were
mature and had good scalability were only available under commercial licenses.
The only open-sourced distributed mature RDF stores that are released under a
free-to-use license are 4store and Bigdata, which show comparable performance
results in internal BSBM tests run on the prototype hardware. Based on the
observations presented in this section, a choice was made to integrate 4store as
a storage option in the RedSIB software.

4 Implementation and Evaluation

As motivated from previous sections, 4store was identified as the only viable
addition to the array of RDF storage options for the Smart-M3 platform and
the RDF store was subsequently integrated as a storage option in the RedSIB
software during a two month time period. This section presents a rough overview
of the integration of 4store into the RedSIB software. This presentation is fol-
lowed by an evaluation of the implementation in comparison to the default RDF
storage option in RedSIB.

4store Integration into Smart-M3. As the RedSIB software almost exclu-
sively uses the Redland libraries for handling all its storage needs, it was a
natural choice to integrate 4store to the RedSIB software through the Redland
storage library. An overview of the logical structure on how the integration of
4store into Smart-M3 was accomplished is outlined in Fig. 3. The additions that
were created are: the 4store C front end, which serves as an interface to the
functions in the 4store front end; the 4store Model/Storage inside the Redland
storage library, which is used to perform database operations on the 4store back
end; and the 4store Query module inside the Redland storage library, which is
used to evaluate SPARQL queries on the 4store back ends.

4store C Front End. At the start of the implementation, the only interfaces
available for accessing the 4store back ends was either through a HTTPS front
end [10] or through a command line front end. As these interfaces are not suitable
to be used in the Redland storage library, the first point of action was to create
a separate 4store front end with C bindings. The aim with the new front end
was to support the functionality of both the 4store Model/Storage module and
the 4store Query module. A list of the functionality that the 4store C front end
should support is presented below:

– creation of connections to 4store back ends
– addition of individual triples
– bulk insertion of triples
– removal of individual triples
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– removal of entire named graphs
– evaluation of SPARQL queries

The front end was implemented as a Linux shared library. The shared library
was based on, unrelated to the work done towards this chapter, work done by the
Perl Community during a Perl Hackathon event in London 2012. The original
library had the functionality of supporting basic triple matching operations and
was aimed to be an addition to the Trine framework [11]. As the syntax for
RDF::Trine is very similar to that of the Redland storage API, most of the
work performed in the original library could be used directly with only minor
modifications. The additions made especially for the librdf integration consisted
of functionality for adding and removing triples and performing SPARQL queries
on 4store back ends. Transactional support was not included as it is not yet
supported in 4store, but it could be added to the 4store C front end if the
support for it was added to the 4store software in the future.

Fig. 3. Logical overview of the integration of 4store into Redland librdf and Smart-M3

Integration of 4store into the Redland Libraries. After the appropri-
ate functionality had been added to the 4store C front end, the integration of
4store into the librdf library was started. First the 4store Model/Storage module
was integrated and when it was completed, the integration of the 4store Query
module followed.

4store uses the Raptor [16] library to parse and serialize RDF data and the
RASQAL [17] library to parse SPARQL queries that both are part of the Redland
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library collection. Additionally, the triple representation structure in the Redland
libraries is similar to the ones used in 4store. The similarities alleviated the
implementation of a large part of the functions for the 4store Model/Storage and
the Query modules as the need for triple representation transform was minimal.

4store Model/Storage Module. The librdf library makes a distinction
between Model and Storage. For the access of the underlying storage solution,
the librdf library uses two separate modules: a model module that works as an
interface that the user can call to access the triples and a storage module that
the model module can call upon to perform operations in the underlying stor-
age solution. Applications create instances of the storage module that can later
be bound to an instance of a model module. A more in-depth description of
the modules and their functionality can be found in an article by Dave Beck-
ett released in 2001 [23]. For simplicity purposes, the Model and the Storage
modules are treated as a single module in this work.

Model/Storage modules inside librdf give a limited number of functions that
can be called from applications to perform actions on the underlying storage.
The functions can be grouped based on their functionality into actions that are
related to the creation, initialization and closing of connections to the underlying
storage module, the addition and removal of statements to and from the storage
module, fetching of triples from the storage using triple matching patterns and
the optional transactional and statement context-related functionality.

The 4store Model/Storage module was implemented in a similar fashion to
the respective Virtuoso Model/Storage module. The functions provided in the
Model/Storage module are transformed into the appropriate 4store C front end
operations that ensure that the relevant actions are performed in the 4store
knowledge base.

4store Query Module. The librdf has an internal query handler module in
librdf for query processing and an external query module for using the RDF
stores own query engine. The librdf internal query processing in librdf is per-
formed by translating the SPARQL query into corresponding RASQAL state-
ments that can be evaluated on the storage module. The functionality of the
internal query processing only encompassed a limited set of the SPARQL lan-
guage with most of the SPARQL 1.1 features yet to be implemented at the
moment.

For native RDF stores that implement their own query engine, the internal
query processing in librdf can be considerer to be rather inefficient as a result of
fact that the query optimization of the query engine in librdf is done based on
the in-data structures of the embedded storage modules. In addition to that, the
query capabilities of the librdf are limited in functionality compared to query
engines in native RDF stores. It was therefore a conscious decision to let the
query engine process all the queries for 4store.

When using the 4stores own query engine, the queries are passed directly
onto the 4store C front end, in which the 4stores’ own query engine evaluates
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the query. The query bindings that are produced in the 4store query engine
are passed back to the Redland query interface where they are processed and
serialized. Queries can also be performed through the librdf’s internal query
engine, but without any guarantees of accuracy and performance of receiving
the correct results.

Changes in RedSIB. No major structural changes had to be made inside
the RedSIB software. An option to use the 4store module was included in the
same fashion as the other storage option, with the exception that the 4store
storage instance was set to use the 4stores’ own query engine for evaluating
SPARQL queries and importing multiple triples to 4store is performed as an
bulk operation.

4.1 Experiments

Almost all the functionality that was set out in the planning phase of the work
was completed during the allotted time. All the functionality for the 4store
storage module in librdf thought of in the planning phase was also indeed imple-
mented. The bulk insert was implemented using the same procedure as in 4store
itself. The similarities on how triples handles in both 4store and librdf made
the work easier. The major difference was that 4store stores triples as quads,
while librdf stores triples as triple statements extended with the context field.
This difference was resolved by setting the context resource to the name of the
Smart-M3 smart space instance name. In RedSIB, this implies that all triples
will be inserted in 4stores with the smart space instance name as the model for
all triples.

The evaluation of the implementation non-functional aspects is more difficult,
mostly due to the vagueness of the criteria set out in Sect. 3.4. An attempt to
measure the query performance and scalability was nonetheless performed using
the LUBM data generator [37] and the provided test queries.

LUBM Experiment Setup. The test queries ware performed on the Smart-
M3 system using data generated with the LUBM data generator using options for
1 and 10 universities. The LUBM dataset size for one university option consists
of approximately 100K triples and the dataset for the ten universities option
consists of approximately 1,2 million triples. The 14 text queries from the LUMB
test suite was then performed on the Smart-M3 system with the BDB and 4store
storage options through the Smart-M3 Python KPI interface.

LUBM Experiment Results. The results from the benchmark are displayed
in Figs. 4 and 5 below. Missing from the figure are the results from the BDB
option as they could not be produced with that storage option. Even with the
smaller dataset, none of the queries could successfully be performed when the
BDB storage was used.
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Fig. 4. Experimental run of LUBM test queries for the dataset with one university

Fig. 5. Experimental run of LUBM test queries for the dataset with ten universities

As can be noted in Figs. 4 and 5 above, the query execution times are not that
affected by the number of 4store back end nodes that are used in small to mod-
erately sized datasets. The main advantage of the distributed 4store knowledge
base is that it makes the system as a whole capable of storing larger datasets.
The inability of the Smart-M3 system with the BDB storage option to produce
results even with the smallest dataset clearly points out the limitations of the
query capabilities for the default storage option in the Smart-M3.

The implementation of the Smart-M3 query modules can take SPARQL
queries and execute them without any major overhead compared to running
the queries directly through the other 4store front end. SPARQL UPDATE
operations were not implemented in the 4store query module in librdf as the
knowledge base modification operations that are already present in the librdf
storage module were considered sufficient to serve the needs of the smart space.
As can be noted from the experiment results, the 4store storage option in Smart-
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M3 can serve significantly larger dataset sizes than the default storage option of
the Berkeley DB. With regards to this, the 4store storage option in Smart-M3
can be considered successful.

An unanticipated flaw detected in 4store during the implementation was that
the inserting of individual triples is a highly inefficient process compared to the
bulk insertion of triples. A modification of a single triple results in that all the
indices in 4store that contain that triple must also be updated. This feature of
4store was not properly taken into account during the planning phase, leading
to significantly slower single triple insertion times compared to the BDB based
storage module. The long time it takes to update the indices of a large 4store
knowledge bases can be considered a very unfavourably feature in smart space
use cases for which the majority of operations are related to the addition and
removal of individual triples.

5 Discussion and Future Work

In this chapter, the RDF store’s landscape was outlined based on publicly avail-
able literature in Sect. 2.3 and summarized in Table 7. The Smart-M3 platform
was introduced and the problems related to the current RDF store in the Red-
SIB were identified in Sect. 3. According to the findings, when exploring available
RDF stores, the most suitable RDF store for the Smart-M3 project was iden-
tified as the 4store. The implementation and results of the integration of the
chosen system into a Smart Space environment were presented in Sect. 4.

Even if the integration of 4store on the whole system was successful, the
4store had drawbacks that resulted in a poor performance in Smart Space use
cases consisting of single triple addition and removal. Therefore, further scala-
bility storage solutions to run efficiently on low-power devices must be studied.

The Smart-M3 system was not able to scale to the lengths envisioned for
an off-line ambient intelligence setting. This inability is due to factors outside
the scope of the underlying RDF store. The most obvious fault of Smart-M3 is
the incapacity to import knowledge bases larger than 60K triples at a time, the
limits of the restricted SSAP protocol and the overall instability of the system.

Furthermore, the best suiting RDF store choice is highly dependent on the
intended use case. The type of low-energy profile hardware used in Smart Space
environments needs a different type of RDF store than for example large scale
Web data mining systems. Finding the right RDF store for the use case and the
hardware implies knowledge about the system needs before it is built, a task that
can be very challenging to predict. Luckily, the RDF framework is very lenient
when it comes to migrating from an RDF store to another. This means that
several RDF stores need to be evaluated in order to find the right one by using a
minimal amount of effort. Future work should evaluate newer RDF stores such
as BitMat, MonetDB, TriAD, AdPart, H2RDF, etc. Other benchmark tests may
include WatDiv, Bio2RDF, Yago2. While we focused on reasoning capabilities,
other RDF store functionality should be further assessed depending on the use
case; for instance, evaluating OWL reasoning, filter capabilities, nested queries,
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property paths, etc. For less low-power and less domain specific review on RDF
storage and solutions we refer the reader to [34,47,54].

Distributing the knowledge base over several RDF store nodes is not a choice
that should be taken lightly. Even though, in theory, the distribution seems to
provide a good way in order to achieve scalability in a system, in many cases,
the distribution often means adding complexity to the system that cannot be
motivated by the upsides of the distributed storage. When dealing with Smart
Spaces, one can speculate that in most cases it is best to store the knowledge
base on one node and to delay the distribution of RDF stores until the system
cannot possibly scale vertically any more. Again, the standardized RDF data
format makes the migration to a scalable RDF store easy.

A lot of interesting research is being conducted within both RDF stores
and energy-efficient devices. Future work within the context of RDF stores in
Smart Spaces would be to further explore a wider array of RDF stores and to
investigate how well they perform on a range of low-power hardware suitable for
Smart Spaces.
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Architectures and Platforms for Enhanced Living Environments (AAPELE www.
aapele.eu) within the WG4 - Medical Data Acquisition and Algorithms.

References

1. Allegrograph. http://franz.com/agraph/support/documentation/current/agraph-
introduction.html

2. Apache Jena website. https://jena.apache.org/
3. Apache Lucene, a high-performance, full-featured text search library. http://

lucene.apache.org/
4. Named graph wikipedia page. http://en.wikipedia.org/wiki/Named graph
5. Odroid XU development board. http://www.hardkernel.com/main/products/

prdt info.php?g code=G137510300620
6. OpenRDF Semame website. http://www.openrdf.org/
7. Reduced instruction set computing Wikipedia page. http://en.wikipedia.org/wiki/

Reduced instruction set computing
8. Architecture for Sofia Interoperability Platform - Deliverable 5.22: Logical Service

Architecture. ARTEMIS JU SP3 D5.22-v1.0, ARTEMIS JUs SP3/100017: Smart
Objects For Intelligent Applications (SOFIA), March 2009. http://www.sofia-
community.org/files/SOFIA D5-22-LogicalServiceArchitecture-v1-2011-01-02 0.
pdf

9. Oracle NoSQL Database. White Paper, September 2011. http://www.oracle.com/
technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf

10. 4store SPARQL HTTP server wiki (2012). http://4store.org/trac/wiki/
SparqlServer

11. RDF: Trine - An RDF Framework for Perl. Webpage (2012). http://search.cpan.
org/gwilliams/RDF-Trine-1.007/lib/RDF/Trine.pm

12. Redland librdf RDF API: library (2012)
13. Database, bigdata: architecture, May 2013

www.aapele.eu
www.aapele.eu
http://franz.com/agraph/support/documentation/current/agraph-introduction.html
http://franz.com/agraph/support/documentation/current/agraph-introduction.html
https://jena.apache.org/
http://lucene.apache.org/
http://lucene.apache.org/
http://en.wikipedia.org/wiki/Named_graph
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620
http://www.hardkernel.com/main/products/prdt_info.php?g_code=G137510300620
http://www.openrdf.org/
http://en.wikipedia.org/wiki/Reduced_instruction_set_computing
http://en.wikipedia.org/wiki/Reduced_instruction_set_computing
http://www.sofia-community.org/files/SOFIA_D5-22-LogicalServiceArchitecture-v1-2011-01-02_0.pdf
http://www.sofia-community.org/files/SOFIA_D5-22-LogicalServiceArchitecture-v1-2011-01-02_0.pdf
http://www.sofia-community.org/files/SOFIA_D5-22-LogicalServiceArchitecture-v1-2011-01-02_0.pdf
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://www.oracle.com/technetwork/database/nosqldb/learnmore/nosql-database-498041.pdf
http://4store.org/trac/wiki/SparqlServer
http://4store.org/trac/wiki/SparqlServer
http://search.cpan.org/gwilliams/RDF-Trine-1.007/lib/RDF/Trine.pm
http://search.cpan.org/gwilliams/RDF-Trine-1.007/lib/RDF/Trine.pm


RDF Stores for Enhanced Living Environments: An Overview 49

14. BSBM V3.1 Results, April 2013. http://wifo5-03.informatik.uni-mannheim.de/
bizer/berlinsparqlbenchmark/results/V7/index.html

15. Oracle Spatial and Graph: 12c RDF. Semantic graph (2013)
16. Raptor RDF syntax: library (2013)
17. Rasqal RDF query: library (2013)
18. Abadi, D.J., Marcus, A., Madden, S., Hollenbach, K.: SW-store: a vertically par-

titioned DBMS for Semantic Web data management. VLDB J. 18(2), 385–406
(2009)

19. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Using the Barton libraries
dataset as an RDF benchmark. Technical report, MIT-CSAIL-TR-2007-036, MIT
(2007)
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