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Abstract The main objective of this chapter is to offer to practitioners, researchers
and all interested parties a brief categorized catalog of existing lightweight sym-
metric primitives with their main cryptographic features, ultimate hardware per-
formance, and existing security analysis, so they can easily compare the ciphers
or choose some of them according to their needs. Certain security evaluation
issues have been addressed as well. In particular, the reason behind why modern
lightweight block cipher designs have in the last decade overwhelmingly dominated
stream cipher design is analyzed in terms of security against tradeoff attacks. It turns
out that it is possible to design stream ciphers having much smaller internal states.

2.1 Introduction

Lightweight cryptography aims to deploy cryptographic algorithms in resource-
constrained devices such as embedded systems, RFID devices and sensor net-
works. The cryptographic community has done a significant amount of work in
this area, including design, implementation and cryptanalysis of new lightweight
cryptographic algorithms, together with efficient implementation of conventional
cryptography algorithms in constrained environments (see the Lightweight Cryp-
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tography Lounge,1 [89, 260, 391]). Most recent cryptographic competitions such
as NIST’s SHA-3 Cryptographic Hash Algorithm Competition2 and eSTREAM
project3 (with the Profile 2) had requirements that support implementations for
highly constrained devices. Additionally, NIST currently is working on a special
call4 to create a portfolio of lightweight algorithms through an open standardization
process.

The lightweightness of a given cryptographic algorithm can be obtained in
two ways, by optimized implementations with respect to different constraints or
by dedicated designs which use smaller key sizes, smaller internal states, smaller
building blocks, simpler rounds, simpler key schedules, etc. There are several
relevant metrics for assessing lightweight algorithms, such as power and energy
consumption, latency, throughput and resource requirements [404]. Power and
energy consumption are important for devices that are battery-oriented or energy
harvesting. Latency is the time taken to perform a given task, and is important
for applications where fast response time is necessary (e.g., Advanced Driver
Assistance Systems), while throughput can be defined as the rate at which the
plaintext is processed per time unit, and is measured in Bps.

Resource requirements are expressed differently in hardware and software
implementations. In the hardware case, they are described as gate area, expressed by
logic blocks for FPGAs or by Gate Equivalents (GEs) for ASIC implementations.
However, these measures highly depend on the particular technology, so it is not
possible to do a fair and relevant comparison of the lightweight algorithm imple-
mentations exactly across different technologies. In the software case, resource
requirements are described as number of registers, RAM and ROM consumption
in bytes. ROM consumption corresponds in fact with the code size.

Hardware implementations are suitable for highly constrained devices. For
example, on the low end, low-cost passive RFID tags may have a total of 1000–
10,000 gates, with only 200–2000 budgeted for security purposes [309]. Software
implementations are suitable for less constrained devices, and they are optimized
for throughput and energy consumption.

Some design choices related to dedicated lightweight cryptographic algorithms
have influences on the security margins. For example, smaller key sizes such as 80
bits or 96 bits are in conflict with the current NIST minimum key size requirement
of 112 bits. Smaller block and output sizes in some algorithms may lead to plaintext
recovery or codebook attacks. Simpler key schedules may enable different attacks
using related keys, weak keys, etc. Smaller internal state (IS) and digest sizes in
hash functions may lead to collision attacks. Simpler rounds sometimes means that
more iterations are required to achieve security.

1https://cryptolux.org/index.php/Lightweight_Cryptography.
2Part 2.B.2, Federal Register Notice (2 November 2007).
3http://www.ecrypt.eu.org/stream/call/.
4https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/Draft-LWC-
Submission-Requirements-April2018.pdf.

https://cryptolux.org/index.php/Lightweight_Cryptography
http://www.ecrypt.eu.org/stream/call/
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/Draft-LWC-Submission-Requirements-April2018.pdf
https://csrc.nist.gov/CSRC/media/Projects/Lightweight-Cryptography/documents/Draft-LWC-Submission-Requirements-April2018.pdf
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The main objective of this chapter is to offer to practitioners, researchers and
all interested parties a short categorized catalog of existing symmetric lightweight
primitives with their main features, some details about known software and
hardware performance, and existing security analysis, to enable selection according
to specific needs. These cryptographic primitives can be categorized into five
areas: block and stream ciphers, hash functions, message authentication codes,
and authenticated encryption schemes. As a consequence of the simplicity which
provides lightweightness, the security evaluation of lightweight stream ciphers
appears as an issue of top importance, and so a number of illustrative elements
relevant for cryptanalysis of lightweight encryption techniques have been pointed
out as well.

It can easily be observed that (see Sect. 2.2) almost all of the recently designed
lightweight ciphers are block ciphers. The requirement for unnecessarily large
internal states results in extra hardware area cost which definitely hinders designing
ultralightweight stream ciphers. We analyze the arguments behind this criterion
and propose to loosen it by justifying the security analysis in Sect. 2.3. We believe
this adoption will promote the design and even the analysis of lightweight stream
ciphers.

2.2 Catalog of Lightweight Cryptographic Primitives

The catalog of lightweight cryptographic primitives is divided in five categories:
block and stream ciphers, hash functions, message authentication codes, and
authenticated encryption schemes.

2.2.1 Block Ciphers

Block ciphers encrypt one block of plaintext bits at a time, to a block of ciphertext
bits, through multiple rounds, and using a secret key. Each round is a sequence
of several simple transformations, which provide confusion and diffusion [522].
In each round, a round key is used, which is derived from the secret key using a
key schedule algorithm. According to the algorithm structure, block ciphers can be
divided into several types:

• Substitution Permutation Network (SPN)—each round consists of substitution
(S-) and permutation (P-) boxes. Usually, S-boxes are non-linear transformations
and provide confusion, while P-boxes are linear and provide diffusion.

• Feistel Network (Feistel)—divides the input block into two halves, Li and Ri ,
and in each round, the output block is (Li+1, Ri+1) = (Ri, Li ⊕ F(Ri,Ki+1)),
where F is the round-function (introduced by H. Feistel [209]).
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• Add-Rotate-XOR (ARX)—only three operations are used: modular addition,
rotation and XOR.

• Generalized Feistel Network (GFN)—divides the input block into n parts, and
each round consists of a round-function layer and a block-permutation layer,
which usually is a cyclic shift. If the round-function is applied only to one part,
we speak about Type-1, and if it is applied on the n/2 parts, we speak about
Type-2 GFN. If there is an additional linear layer between the two layers, we
speak about Extended GFN [78].

• LFSR-based—in the round function they use one or more Linear Feedback Shift
Registers (LFSRs) in combination with non-linear functions.

• LS-design—each round combines linear diffusion L-boxes with non-linear
bitslice S-boxes, and they are aimed at efficient masked implementations against
side-channel analysis [247].

• XLS-design—a variation of the LS-design, that uses the additional ShiftColumns
operation, and Super S-boxes [306].

There are also tweakable block ciphers, which in addition to the key and the
message have a third input named tweak, and they must be secure even if the attacker
is able to control the tweak input. Each tweakable block cipher can be seen as a
family of permutations in which each (key, tweak) pair selects one permutation.

The standard block cipher approach can be made lightweight by using smaller
key sizes (e.g., 80 or 96 bits), smaller block sizes (e.g., 64 bits), smaller or
special building blocks (e.g., 4-bit S-boxes, no S-boxes at all, or recursive diffusion
layers), simpler key schedules (e.g., selecting a key schedule where bits from the
master key are selected as round keys), smaller hardware implementation, involutive
encryption, etc. AES-128 belongs in this group also, because there are ASIC
implementations of it with an area of just 2400 GE[426] on 0.18µm technology, but
it cannot be applied in every scenario. In Table 2.1, we give a summary of the known
lightweight block ciphers, sorted in alphabetical order, with their type, key and block
size in bits, number of rounds, used technology and number of GEs if known, and we
give the best known attacks in Table 2.2. KASUMI used in UMTS, GSM, and GPRS
mobile communications systems, 3-Way and MANTIS are considered insecure.
Additionally, CLEFIA and PRESENT are part of the ISO-29192-2 standard, while
HIGHT, MISTY1 and AES are part of the ISO/IEC 18033-3:2010 standard.

For fair and consistent evaluation and comparison of software implementations
of lightweight block and stream ciphers, one can use a free and open-source
benchmarking framework FELICS (Fair Evaluation of Lightweight Cryptographic
Systems) [182]. Currently, the assessment can be done on three widely used
microcontrollers: 8-bit AVR, 16-bit MSP and 32-bit ARM, and extracted metrics
are the execution time, RAM consumption and binary code size, from which one
single value “Figure Of Merit” (FOM) is calculated. Table 2.3 presents some details
about software performance of some lightweight block ciphers with the current
best FELICS results for encryption of 128 bytes of data in CBC mode (scenario
1 in [182]), sorted according to the FoM measure, where the lowest result is the
best.
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Table 2.2 Lightweight block ciphers (best known attacks)

Best known attack: data complexity/memory/time

Name Ref complexity

3-Way [164] Practical related-key attack [320], 1 related key pair, 222

CPs

AES-128 [166] Biclique key-recovery attack [545]: 256 / − /2126.13

CLEFIA [527] Impossible differential attack [106]: 2114.58 / 283.16B

/2116.16

DESL/ [361] Linear cryptanalysis on DES [311]: 239 − 241 DES
evaluations

DESLX Related-key attack on DESX[474]:23.5 KPs/− / 256 DES
evaluations

Fantomas [247] −
FLY [317] −
GOST
revisited

[487] Single-key KP differential attack [159]: 264 / 270B /2179

GRANULE [54] −
HIGHT [283] Biclique cryptanalysis [15]: 28 / _ /2126.07

ICEBERG [541] Differential cryptanalysis [543]: 263 CPs /296 enc. on 8
rounds

ITUbee [315] −
KASUMI [1] Practical related-key attack [192]: 4 related keys, 226 / 230

B / 232

KATANn/ [126] Meet-In-The-Middle attack on KTANTANn [104]

KTANTANn (3, 2, 2) pairs/ −/(275.17, 275.044, 275.584)

KLEIN [239] Truncated differential attack [497]: 248.6 / 232 /254.9 on
KLEIN-64

LBlock [583] CP related-key impossible differential attack[584]: 263 / −
/275.42 on 24 rounds

LEA [282] −
LED [252] Random-difference distinguishers [443]: − / 260B/260.3 on

40 rounds LED-128

Lilliput [78] Key-recovery attack with the division property [512]: 263 /
− /277 on 17 rounds

MANTISr [68] Practical key-recovery attack [185]: 228 / − /238 enc. on
MANTIS5

mCrypton [372] Related-key impossible differential cryptanalysis [388]:

(259.9, 259.7) / (263.9, 255.7)B /(274.9, 266.7) on 9 rounds

MIBS [299] Biclique cryptanalysis [519] (MIBS-80): 252/− /278.98

Midori [51] Key-recovery attack for the class of 232 weak keys in
Midori64 [250]: 2/− /216

MISTY1 [398] Single-key integral attack [56]: 264/− /269.5

Mysterion [306] −
(continued)
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Table 2.2 (continued)

Best known attack: data complexity/memory/time

Name Ref complexity

Noekeon [165] Many related keys (weakness) [334]

PICARO [485] Related-key attack [129]: 299/222B /2107.4

Piccolo [526] Biclique cryptanalysis [15]: 24/− /(279.07, 2127.12)

PRESENT [101] Biclique cryptanalysis (PRESENT-80) [15]: 222/− /279.37

PRIDE [17] Multiple related-key differential attack [167]: 241.6/−
/242.7

PRINCE [105] Multiple differential attack [128]: 257.94/261.52 /260.62 on
10 rounds

PRINTcipher [333] Invariance subspace attack [359] applicable to 252/ 2102

weak keys:

5 CPs/ −/ negligible

PUFFIN2 [569] Differential attack [95]: 252.3 CPs/− /274.78

RC5-12 [502] Differential attack [88]: 244 CPs

RECTANGLE [598] Related-key differential attack [521]: 262/272B/267.42 on
19 rounds

RoadRunneR [63] −
Robin [247] Key-recovery attack for the weak key set of density

2−32 [360]: 1 CP/− /264

SEA [542] −
SKINNY [68] Related-tweakey impossible differential attacks [23]:

271.4/264 /279 up to 23 rounds

Simeck [588] Linear hull attack with dynamic key-guessing
techniques [491]:

(231.91, 247.66, 263.09)/ −/(261.78, 292.2, 2111.44) add. and
(256.41, 288.04, 2121.25) enc.

SIMON [65] Differential cryptanalysis on 12/16/19/28/37
reduced-round

SIMON-32/48/64/96/128

SPARX [181] Truncated-differential attack [24]: 232 /261/293 on 16
rounds ( SPARX-64/128)

SPECK [65] Differential cryptanalysis [537]:

2125.35/222/2125.35 on 23 rounds of the SPECK-128/128

TWINE [544] Impossible differential and multidimensional zero
correlation linear attack [373]:

262.1 KPs/ 260B / 273 (TWINE-80)

QARMA [39] −
XTEA [436] Related-key rectangle attack [380]: 263.83 / − / 2104.33 on

36 rounds

Zorro [227] Differential attack [55]: 241.5 / 210 / 245

KP—Known Plaintext
CP—Chosen Plaintext
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Table 2.3 The current best FELICS results for scenario 1: Encrypt 128 bytes of data in CBC
mode

AVR MSP ARM

Code RAM Time Code RAM Time Code RAM Time

Cipher (B) (B) (Cyc.) (B) (B) (Cyc.) (B) (B) (Cyc.) FoM

Speck 966 294 39,875 556 288 31,360 492 308 15,427 5.1

Speck 874 302 44,895 572 296 32,333 444 308 16,505 5.2

Simon 1084 363 63,649 738 360 47,767 600 376 23,056 7.0

Simon 1122 375 66,613 760 372 49,829 560 392 23,930 7.2

RECTANGLE 1152 352 66,722 812 398 44,551 664 426 35,286 8.0

RECTANGLE 1118 353 64,813 826 404 44,885 660 432 36,121 8.0

LEA 1684 631 61, 020 1154 630 46,374 524 664 17,417 8.3

SPARX 1198 392 65,539 966 392 36,766 1200 424 40,887 8.8

SPARX 1736 753 83,663 1118 760 53,936 1122 788 67,581 13.2

HIGHT 1414 333 94,557 1238 328 120,716 1444 380 90,385 14.8

AES 3010 408 58,246 2684 408 86,506 3050 452 73,868 15.8

Fantomas 3520 227 141,838 2918 222 85,911 2916 268 94,921 17.8

Robin 2474 229 184,622 3170 238 76,588 3668 304 91,909 18.7

Robin� 5076 271 157,205 3312 238 88,804 3860 304 103,973 20.7

RC5-20 3706 368 252,368 1240 378 386,026 624 376 36,473 20.8

PRIDE 1402 369 146,742 2566 212 242,784 2240 452 130,017 22.8

RoadRunneR 2504 330 144,071 3088 338 235,317 2788 418 119,537 23.3

RoadRunneR 2316 209 125,635 3218 218 222,032 2504 448 140,664 23.4

LBlock 2954 494 183,324 1632 324 263,778 2204 574 140,647 25.2

PRESENT 2160 448 245,232 1818 448 202,050 2116 470 274,463 32.8

PRINCE 2412 367 288,119 2028 236 386,781 1700 448 233,941 34.9

Piccolo 1992 314 407,269 1354 310 324,221 1596 406 294,478 38.4

TWINE 4236 646 297,265 3796 564 387,562 2456 474 255,450 40.0

LED 5156 574 2,221,555 7004 252 2,065,695 3696 654 594,453 138.6

2.2.2 Stream Ciphers

Stream ciphers encrypt small portions of data (one or several bits) at a time. By using
a secret key, they generate a pseudorandom keystream, which is then combined with
the plaintext bits to produce the ciphertext bits. Very often the combining function
is bitwise XORing, and in that case we speak about binary additive stream ciphers.
The basic security rule for stream ciphers is not to encrypt two different messages
with the same pair of key/IV. So, stream ciphers usually have a large keystream
period, and a different key and/or IV should be used after the period elapses. Each
stream cipher usually has an initialization phase with some number of rounds (or
clock-cycles), followed by an encryption phase. A fast initialization phase makes a
given cipher suitable for encrypting many short messages, while when several large
messages need to be encrypted, stream ciphers with a fast encryption phase are more
appropriate.

The standard stream cipher approach can be made lightweight by using: smaller
key sizes (e.g., 80 bits), smaller IV/nonce sizes (e.g., 64 bits), a smaller internal state
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(e.g., 80 or 100 bits), simpler key schedules, a smaller hardware implementation,
etc. Table 2.4 lists the known lightweight stream ciphers in alphabetical order, with
their main parameters and details about hardware implementation, and Table 2.5
provides the best known attacks. One can notice that all eSTREAM Profile 2
candidates that were not selected as finalists are not in the table. Also, according
to the hardware implementations, ZUC, ChaCha and Salsa20 cannot really be
considered as lightweight. While Lizard uses 120 bit keys, its designers claim only
80-bit security against key-recovery attacks. A5/1 used in GSM protocol, E0 used
in Bluetooth, A2U2, and Sprout are considered insecure.

Additionally, Enocoro and Trivium are part of the ISO/IEC 29192-3:2012
standard, and Rabbit is part of ISO/IEC 18033-4:2011. SNOW 3G was chosen
for the 3GPP encryption algorithms UEA2 and UIA2, while ZUC was chosen for
the 3GPP algorithms 128-EEA3 and 128-EIA3. The profile 2 eSTREAM portfolio
includes Grain v1, MICKEY 2.0 and Trivium. There is an IETF implementation of
the ChaCha20, published in RFC 7539, with 96-bit nonce and maximum message
length up to 232 − 1B that can be safely encrypted with the same key/nonce, as a
modification.

2.2.3 Hash Functions

A hash function is any function that maps a variable length input message into a
fixed length output. The output is usually called a hashcode, message digest, hash
value or hash result. Cryptographic hash functions must be preimage (one-way),
second preimage and collision resistant.

Usually the message is first padded and then divided into blocks of fixed length.
The most common method is to iterate over a so-called compression function, that
takes two fixed size inputs, a message block and a chaining value, and produces
the next chaining value. This is known as a Merkle-Damgård (MD) construction.
The sponge construction is based on fixed-length unkeyed permutation (P-Sponge)
or random function (T-Sponge), that operates on b bits, where b = r + c. b is
called the width, r is called the rate (the size of the message block) and the value c

the capacity. The capacity determines the security level of the given hash function.
There is also a JH-like sponge in which the message block is injected twice.

The main problem of using conventional hash functions in constrained environ-
ments is their large internal state. SHA-3 uses a 1600 bit IS, and its most compact
hardware implementation needs 5522 GE [471] on 0.13µm technology. On the
other hand, SHA-256 has a smaller IS (256 bit), but one of its smaller hardware
implementations uses 10,868 GE [211] on 0.35µm technology.

Lightweight hash functions can have smaller internal state and digest sizes (for
applications where collision resistance is not required), better performance on short
messages, small hardware implementations, etc. In some cases, for example tag-
based applications, there is a need only for the one-way property. Also, most tag
protocols require hashing of small messages, usually much less than 256 bits.
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Table 2.5 Lightweight stream ciphers (best known attacks)

Best known attack: data complexity/memory/time

Name Ref complexity

A2U2 [173] Practical key-recovery attack [524] under the KP attack model
210/−/224.7

A5/1 [92] Practical Time-Memory tradeoff attack [92] 2sec KPs/ 248

preprocessing steps to compute 300GB/ 224

BEAN [350] Distinguishing attack [13] with 217 keystream bits

CAR30 [172] −
CAvium [511] −
ChaCha [79] Multi-bit differential attack [143]: 228 / −/ 2233 on 7 rounds

E0 [96] Practical key-recovery attack [381] using the first 24 bits of
223.8 frames and 238 computations

Enocoro [574, 575] −
Fruit-80 [228] −
Grain [266, 267] Fast near collision attack [595]: 219 / 228/ 275.7 on Grainv1

LILLE [53] −
LIZARD [253] Distinguishing attack [52]: −/276.6/251.5 random IV enc

MICKEY 2.0 [48] Practical related key attack [179] with 65/113 related (K,?IV)
pairs and 0.9835/0.9714 success rate

Plantlet [421] Distinguishing attack [422]

Rabbit [98] Differential fault analysis [330] with 128 − 256 faults: −/241.6

B/238

RAKAPOSHI [148] Related key attack [297]: 238 chosen IVs/−/ 241

Salsa20 [80] Multi-bit differential attack [143]: 296 / −/ 2244.9 on 8 rounds

SNOW 3G [204] Multiset distinguisher [90]: 28 on 13 rounds

Sprout [27] Many, e.g., key recovery attack [50]: −/−/266.7 enc.

Trivium [127] Key-recovery attack [224]: 277 on 855 rounds

Quavium [555] −
WG-8 [207] Related key attacks [180] with one related key 252 chosen

IVs/−/ 253.32

ZUC (v 1.6) −
KP—Known Plaintext

Tables 2.6 and 2.7 list the cryptographic and implementation properties of
the known lightweight hash functions. ARMADILLO is considered insecure.
Lesamnta-LW, PHOTON, and SPONGENT are part of the ISO/IEC 29192-5:2016
standard.

2.2.4 Message Authentication Codes

A message authentication code (MAC) protects the integrity and authenticity of
a given message, by generating a tag from the message and a secret key. MAC
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schemes can be constructed from block ciphers (e.g., CBC-MAC (part of the
ISO/IEC 9797-1:1999 standard) or OCB-MAC [504]), from cryptographic hash
functions (e.g., HMAC (RFC 2104)), etc. Three lightweight security architectures
have been proposed for wireless sensor networks: TinySec [316], MiniSec [382] and
SenSec[370]. TinySec and MiniSec recommend CBC-MAC and the patented OCB-
MAC, while SenSec recommends XCBC-MAC, for which there is an existential
forgery attack [238], and all suggest the use of 32-bit tags. 32-bit security is not
enough—the recommended size is at least 64 bits.

Design choices for lightweight MACs include shorter tag sizes, simpler key
schedules, small hardware and/or software implementations, better performance
on very short messages, no use of nonces, and generation from lightweight block
ciphers and hash functions. Some lightweight MACs are listed in Table 2.8, and the
best known attacks against these MACs are provided in Table 2.9.

2.2.5 Authenticated Encryption Schemes

Authenticated encryption (AE) schemes combine the functions of ciphers and
MACs in one primitive, so they provide confidentiality, integrity, and authentication
of a given message. Besides the plaintext and the secret key, they usually accept
variable length Associated Data (AEAD schemes), a public nonce, and an optional
secret nonce. AD is a part of a message that should be authenticated, but not
encrypted.

Lightweight authenticated encryption schemes are presented in Table 2.10, and
the best known attacks against these schemes are provided in Table 2.11. Sablier
and SCREAM/iSCREAM are considered insecure. The hardware implementation
is given with encryption/authentication and decryption/verification functionalities.

2.3 Illustrative Issues in Security Evaluation of Certain
Encryption Schemes

As a consequence of the simplicity which makes them lightweight, the security
evaluation of lightweight encryption schemes arises as an issue of top impor-
tance. However, constraints on chapter space limit our discussion of the security
evaluation. Consequently, this section shows only a number of illustrative issues
relevant for the cryptanalysis of lightweight encryption techniques. In the first part, a
generic approach for security evaluation is discussed, and in the second an advanced
dedicated approach is pointed out.
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Table 2.9 Lightweight MACs (best known attacks)

Best known attack: data / time complexity

Chaskey [428] Differential-linear attack [369] 248/ 267 on 7 rounds

LightMAC [384] −
SipHash -2-4 [32] −
TuLP [238] −

2.3.1 Reconsidering TMD Tradeoff Attacks for Lightweight
Stream Cipher Designs

We can simply divide the tradeoff attacks against ciphers into two groups, key
recovery attacks and internal state recovery attacks. The first tradeoff attack against
symmetric ciphers was introduced by Hellman [268] to illustrate that the key length
of DES was indeed too short. Hellman prepared several tables containing DES keys.
In general, the tradeoff curve is T M2 = N2 where T is the time complexity and
M is the memory complexity. N is the cardinality of the key space. Here, the data
complexity D = 1 since only one chosen plaintext is used to define a one way
function which produces the (reduction of the) ciphertext of the chosen plaintext
for a given key. Then, the tables are prepared during the precomputation phase. In
practice, one generally considers the point T = M = N2/3 on the curve since
the overall complexity also becomes N2/3. The precomputation phase costs roughly
O(N) encryptions. This is a generic attack which is applicable to any block cipher.
Therefore, we can say that the security level diminishes to 2k/3-bit security during
the online phase of the Hellman tradeoff attack where k is the key length of a block
cipher. However, one must pay a cost equivalent to exhaustive search to prepare the
tables during the precomputation phase.

Stream ciphers also suffer from the same affliction by tradeoff attacks in that
their keys can be recovered with an effort of 22k/3 for each of them during the online
phase. Stream ciphers consist of two parts. The initialization part uses an IV and a
key to produce a seed value S0. Then, S0 is used to produce the keystream sequence
through a keystream generator. While a state update function updates the internal
states Si , an output function produces the keystream bits (or words) zi . It is possible
to define a one way function from the key to the first k bits of the keystream sequence
by choosing an IV value and fixing it. This is similar to the case of tradeoff attacks
on block ciphers with a chosen plaintext. However, the attack may only be mounted
on a decryption mechanism since it may not be possible to choose the IV during
the encryption. Then, by preparing the Hellman tables, one can recover a key in
22k/3 encryptions using 22k/3 memory. The precomputation is 2k . This is similar to
the Hellman attack. Therefore, stream ciphers are prone to tradeoff attacks as with
block ciphers in the key recovery case.

The other category of tradeoff attacks is aimed at recovering internal states of
stream ciphers, rather than keys. Babbage [47] and Golić [236], independently,
introduced another type of tradeoff curve DM = N to recover an internal state.
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Table 2.11 Lightweight authenticated encryption schemes (best known attacks)

Best known attack: data complexity/memory/time

Name Ref complexity

ACORN v3 [581] −
ALE [103] Forgery attack [324]: 240/−/2110

APE [22] −
ASC-1 [300] −
Ascon [186] Key-recovery attack [371]: 2103.9 time on 7 out of 12

rounds ASCON-128

C-QUARK [36] −
FIDES [87] State-recovery/forgery attacks [184]:

1KP/(215, 218)/(275, 290)

Hummingbird-2 [200] Related key-recovery attack [525]: 24 pairs of related
keys/−/240

Helix [215] Key-recovery attack [432]: 217 CP/−/288

Joltik [304] −
KETJE [82] −
LAC [596] Differential forgery attack [368] with probability

2−61.52

NORX32 v.3 [35] −
NORX8/NORX16 [34] −
Sablier [594] Practical state/key recovery attack [213]: −/−/244

SCREAM/iSCREAM [246] Practical forgery attack [530] with 2 queries

sLiSCP [20] −
TriviA-v2/uTriviA [132] −

One can pick out the point D = M = N1/2 to get an overall complexity of
N1/2. Then, storing

√
N internal states with their outputs (keystream parts with an

appropriate length), one can recover a keystream used during encryption/decryption
if it is loaded in the table. We need roughly

√
N data to ensure a remarkable success

rate. So, it is conventionally adopted that
√

N should be larger than 2k as a security
criterion just to ensure that the internal state recovery attack through tradeoff is
slower than the exhaustive search. This simply means that the internal state size
should be at least twice as large as the key size. This extremely strict criterion has
played a very crucial role in raising extra difficulties in designing lightweight stream
ciphers.

Another highly effective tradeoff attack for internal state recovery is the
Biryukov-Shamir attack [91]. This simply makes use of Hellman tables. But,
instead of recovering just one specific internal state, it is enough to recover only one
of D internal states. Then, preparing just one Hellman table is an optimum solution
and the table can contain N/D states. So, the precomputation phase is around
O(N/D) and the tradeoff curve is T M2D2 = N2 where D is bounded above by√

T since the number of internal states contained in just one table is limited to
avoid merging of collisions. We can pick out the point on the curve where time and
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memory are equal and maximize the data, namely T = M = N1/2 and D = N1/4.
We need N1/2 to be larger than 2k if we want the online phase of the attack to be
slower than an exhaustive search. This again simply implies that the internal state
size should be at least twice as large as the key size.

The condition on the size of the internal states of stream ciphers makes
designing ultralightweight stream ciphers too difficult. Indeed, there are sev-
eral ultralightweight (say less than 1000 GE) block ciphers recently designed,
such as PRESENT [101], LED [252], KTANTAN [126], Piccolo [526], and
SIMON/SPECK [65], whereas there are almost no modern stream ciphers with
hardware area cost less than 1000 GE.

The security margin for state recovery attacks through tradeoff techniques is k

bits, whereas it is much less, 2k/3 bits, for the key recovery attacks, although any
information about the key is assumed to be more sensitive than any information
about the internal states. One can produce any internal state once the key is
recovered. However, recovery of an internal state may reveal only one session of
the encryption/decryption with the corresponding IV . Hence, it seems that the more
sensitive data are, contradictorily, protected less against tradeoff attacks!

The security level of tradeoff attacks to recover internal states should be the
same as the security level of tradeoff attacks to recover keys, just to be fair.
So, the online phase of a tradeoff attack should be at least 22k/3 instead of 2k .
Similarly, the precomputation should be not faster than exhaustive search. In this
case, D = M = N1/2 ≥ 22k/3 for the Babbage-Golić attack. Then, N should be at
least 24k/3. The same bound is valid for Biryukov-Shamir attack since the smallest
overall complexity is attained when T = M = N1/2.

The precomputation phase of the Biryukov-Shamir attack is roughly N/D; which
is simply N3/4 when D = N1/4. So, the precomputation phase is more than
2k . This means that it is slower than an exhaustive search. On the other hand,
the precomputation phase of the Babbage-Golić attack is M , and hence if the
data is restricted to at most 2k/3 for each key we have M ≥ 2k and hence the
precomputation phase will be slower than an exhaustive search.

It seems it is enough to take the internal state size as at least 4k/3, not at least 2k,
for security against tradeoff attacks. This simply implies that it is possible to design
lightweight stream ciphers with much smaller internal states. However, it is an open
question how to design stream ciphers with very small internal states. The security
is generally based on the largeness of the states.

2.3.2 Guess-and-Determine Based Cryptanalysis Employing
Dedicated TMD-TO

This section presents an illustrative framework for cryptanalysis employing guess-
and-determine and time-memory-data trade-off (TMD-TO) methods using the
results of security evaluations of the lightweight stream ciphers Grain-v1, Grain-
128 and LILI-128, reported in [415, 416], and [417], respectively.
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2.3.2.1 Generic Approach

Certain stream ciphers can be attacked by employing the following approach: (1)
Assuming the availability of a sufficiently long sample for recovering an internal
state, we develop a dedicated TMD-TO attack which allows recovery of the internal
state for a certain segment of the available sample. (2) The dedicated TMD-TO
attack is developed over a subset of the internal states in which certain parts of
the internal state are preset or algebraically recovered based on the considered
keystream segment. Assume that the state size is ν and that certain bits (say β) of the
internal state are fixed according to a specific pattern. Then, with this information,
for the corresponding keystream segment, we try to obtain some more bits (say γ )
of the internal state. The final goal is to recover the unknown bits of the internal
state δ = ν − β − γ by employing a suitable TMD-TO attack. Accordingly, the
cryptanalysis is based on the following framework:

• preset certain bits of the internal state to a suitable pattern (the all-zeros pattern,
for example);

• for a given m-bit prefix (usually an m-zeros prefix) of the keystream segment,
algebraically recover up to m bits of the internal state assuming that the remaining
internal state bits are known;

• recover the assumed bits of the internal state by employing the dedicated TMD-
TO attack.

2.3.2.2 Summary of Cryptanalysis of Grain-v1 Employing
Guess-and-Determine and Dedicated TMD-TO Approaches

The internal state of Grain-v1 consists of 160 bits corresponding to the employed
nonlinear and linear feedback shift registers NFSR and LFSR, respectively. For
a given parameter m, let Ω(m) be a subset of all internal states where three
m-length segments of all zeros exist which implies that the state generates m

consecutive zero outputs. Let the vectors b(i) and s(i) be the states of the NFSR
and LFSR, respectively, at the instant i, s(i) = [si, si+1, . . . , si+79] and b(i) =
[bi, bi+1, . . . , bi+79]. Let u(i) be the internal state of Grain-v1, and accordingly,
u(i) = [s(i)||b(i)] = [si, si+1, . . . , si+79, bi, bi+1, . . . , bi+79]. For a given parameter
m, the set Ω(m) is the set of internal state vectors defined as follows Ω(m) =
{u(i)|si+25−j = 0, si+64−j = 0, bi+63−j = 0 , j = 0, 1, . . . , m − 1}.
Consequently, the number of internal states belonging to Ω(m) is upper-bounded
by 2160−3m.

The internal state recovery is based on the following: Whenever we observe an
m-zeros prefix of a keystream segment, we suppose that the segment is generated
by an internal state belonging to Ω(m) and we employ a dedicated TMD-TO attack
to check the hypothesis. The complexities of this cryptanalysis and a related one are
illustrated in Table 2.12.
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Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.
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