
Chapter 10
Challenges in Certifying Small-Scale
(IoT) Hardware Random Number
Generators

Darren Hurley-Smith and Julio Hernandez-Castro

Abstract This chapter focuses on the testing and certification of Random Number
Generators (RNG). Statistical testing is required to identify whether sequences
produced by RNG demonstrate non-random characteristics. These can include
structures within their output, repetition of sequences, and any other form of
predictability. Certification of computer security systems draws on such evaluations
to determine whether a given RNG implementation contributes to a secure, robust
security system. Recently, small-scale hardware RNGs have been targeted at IoT
devices, especially those requiring security. This, however, introduces new technical
challenges; low computational resources for post-processing and evaluation of on-
board RNGs being just two examples. Can we rely on the current suite of statistical
tests? What other challenges are encountered when evaluating RNG?

10.1 Introduction

Randomly generated values are sought after for a variety of applications, in which
they are often vital. Cryptographic systems require random values to ensure that
generated keys are unpredictable, making brute force attacks against those keys
unfeasible. Even in the entertainment industry, there is a demand for randomness:
lotteries and games both rely on random number generation to guarantee the fairness
of the game in question.

However, random number generation is a non-trivial task. Deterministic Random
Number Generators (DRNG), also known as Pseudo-Random Number Generators
(PRNG), are incapable of truly random output [514]. PRNG achieve an appropriate
degree of randomness by using an initial seed value to populate a proportionally
far longer sequence of apparently random output. This form of random number
generation is only unpredictable if the seed value remains unknown. To this end,
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most PRNG algorithms are periodically re-seeded from a natural source of entropy.
The primary benefit of PRNGs is that they are usually extremely fast, especially
when compared to the natural entropy sources used to seed them. This makes them
highly attractive for use in computer systems, and in applications requiring high-
volume RNG.

Physical sources of entropy can provide what is referred to as true randomness.
True Random Number Generators (TRNG) use a broad array of different entropy
sources as their key component but share several common characteristics. They
do not require seeding to generate randomness and use a natural phenomenon as
their entropy source. TRNGs can be classified further, as classical or Quantum
Random Number Generators (QRNGs). To simplify matters, TRNG will refer to
classical methods, and QRNGwill refer to quantummethods from this point. TRNG
utilize microscopic phenomena that generate statistically random noise signals. The
photoelectric effect and thermal noise are two examples of classical entropy sources.
QRNG operate on similar principles but instead make use of quantum phenomena.
These include photon-counting, using a beam-splitter, or the observation of quantum
shot-noise in MOS/CMOS devices.

All random number generators can be evaluated using statistical test batteries.
Dieharder, Federal Information Processing Standard (FIPS) 140-1/2, and National
Institute of Standards and Technology (NIST) SP800-22 [448] represent the three
most common test batteries used for professional testing of random number gen-
erators. Manufacturers often use such tests to demonstrate the correct functioning
of their products, but they are also used by third-parties to independently verify the
randomness of a device. NIST and Common Criteria [407] provide guidelines and
tests that have been independently developed to ascertain whether an RNG is non-
random. These tests evaluate RNGs by identifying whether there is any observable
bias, structure or predictability in an RNG’s output. It is not possible to identify
randomness, but non-randomness can be detected. Certification schemes make use
of such tests to publicly acknowledge the robustness of computational security
systems. Specific methodologies have been devised to guide and ensure the quality
of these evaluations in the area of RNG validation.

Significant trust is placed in statistical testing to determine whether an RNG
provides sufficiently random output. The aim of this chapter is to demonstrate
that the challenges of statistical testing of randomness are far from solved. We
evaluate a selection of contemporary TRNG to highlight issues in data collection,
test correlation and the overuse of older test batteries to the exclusion of newer tests.
As minuscule, integrated TRNG become more prolific through their use in Internet
of Things (IoT) products, these considerations become all the more important.

The following sections discuss, in order: certification of RNGs and the stan-
dards/testing procedures that apply, the challenges faced during the collection of
data from RNGs, and two sets of experimental results demonstrating issues in the
appropriate selection of statistical tests for RNG evaluation.
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10.2 Certification, Standards, and Testing

Many companies employ their own testing teams, to whom the responsibility of
carrying out company mandated quality control falls. ID Quantique (IDQ) and
NXP are two examples, both of whom perform varying degrees of testing on their
products. In the case of products implementing cryptography, RNG testing is vital
for the validation of the cryptosystem in question. However, in-house testing is
insufficient for certification, with the exception of self-certification (as performed
by IDQ). Testing must be performed by a third-party to ensure impartiality.

NIST is one example of a standards and testing institution. This US institute
concerns itself with the advancement of measurement science, standards and
technology. This body does not conduct testing or reward certificates itself but is
responsible for the publication and impartial development of statistical test suites
for randomness tests. Special Publications (SP) are created to circulate accepted
developments in the field of RNG testing and formal verification of RNG. Of
particular note are SP800-90B [449] and SP800-22 [448]. SP800-90B details
specific tests for the entropy source and final outputs of PRNG and TRNG. SP800-
22 details an extensive test battery suitable for use over PRNG and TRNG (including
QRNG by association with TRNG).

Common Criteria (CC) is an international standard (ISO/IEC 15408). Unlike
the NIST SP documents discussed previously, CC is a broad framework for the
verification of computer security systems [407]. Functionality, construction, and
assurance requirements are the core tenets of the CC. It is important to emphasize
that this is a whole-system-security verification: RNG testing is only part of a larger
verification process. However, it can be argued that RNG validation is a keystone
for the certification of a computer-based security system. If the RNG is incapable of
providing the appropriate output, then it is unlikely that the security system will be
robust to the degree demanded by the CC.

To differentiate between different applications and their security requirements,
the CC has developed the Evaluation Assurance Level (EAL) scheme. These
numbered levels, from 1 to 7, reflect an increasing security requirement. At level 1,
testing is cursory and reports provided by manufacturers are acceptable. As higher
certifications are sought, more third party and design-stage tests by third parties
are required. At levels 5+, spot checks of manufacturing plants and implementation
of security critical systems are performed. NXP produces two CC EAL certified
devices: the DESFire EV1 (EAL4+), and the DESFire EV2 (EAL5+).

The test methodology employed by the CC when testing RNGs is outlined
in AIS-31 [327]. AIS-31 outlines the test methodology for entropy sources in
computer-based security systems [327]. AIS-20 is referred to as the source of
information for recommended tests and parameters for TRNG evaluation. Both
documents have a TRNG focus, as they are aimed at the evaluation of the formal
verification of entropy sources, not the PRNG algorithms that they may seed. As a
result, hardware RNGs are the focus of these documents.
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Table 10.1 Standards applied in the testing of selected RNGs

Cost

Manufacturer Device e Entropy source Certifications/tests

NXP DESFire EV1 0.59 Not disclosed CC EAL4+

NXP DESFire EV2 1.25 Not disclosed CC EAL5+

IDQ Quantis 16M 2900 Beam splitter NIST SP800-22, METAS, CTL

IDQ Quantis 4M 1299 Beam splitter NIST SP800-22, METAS, CTL

IDQ Quantis USB 4M 990 Beam splitter NIST SP800-22, METAS, CTL

Comscire PQ32MU 1211 Shot noise NIST SP800-90B/C

NIST SP800-22

Diehard

Altus Metrum ChaosKey 45 RBSJa FIPS 140-2
aReverse biased semiconductor junction

Table 10.1 shows a selection of RNGs and their associated certifications. CC
EAL, METAS, CTL, and FIPS 140-2 are applicable as certifications from their
respective institutions. NIST SP800-22 indicates that the NIST methodology and
test battery were applied when testing the RNG in question (whether internally or
externally). Any RNG testing process requires a set of statistical tests. One of the
earliest examples of a statistical test battery for randomness is Marsaglia’s Diehard
battery [393]. NIST SP800-22 provides a more expansive series of tests developed
by Rukhin et al. [508]. The NIST battery contains 15 tests, which are evaluated
in terms of uniformity and proportion of p-values for each test. There has been
some criticism of the accuracy of these results. Marton and Suciu observed that
false alarms were common and that more tests that SP800-22 suggests can be failed
by otherwise robust RNGs [396]. NIST itself states that any failure is cause for
further investigation, but does not suggest any specific follow up procedures for
RNG testing. It is implied that further data collection and testing a larger number of
target devices are initial approaches to the problem.

Dieharder is an extension of Diehard, integrating the SP800-22 tests and the
original Diehard tests [116]. This brings the battery up to a total of 30 tests, with 76
variant tests in total. This battery requires a much larger body of test data than its
predecessors. To test a stream of data with no rewinds with every test in the suite,
one must collect 228GB of data. This is far beyond the recommended parameters
suggested by NIST and CC. A 4GB sample would rewind 57 times under the same
test conditions. If a sequence of repeats during a single execution of a given test,
type-1 errors may be introduced. The test may report such repetition as a violation
of its definition of randomness, and identify the sequence as non-random, when in
fact it was just insufficiently large. This highlights the importance of appropriate
data collection.

TestU01, developed by L’Ecuyer and Simard, is more of an RNG developer’s
toolbox than test battery [362]. However, it incorporates 5 different test batteries:
Alphabits, Rabbit, Small Crush, Crush, and Big Crush. Each battery has a differing
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number of tests. Alphabits and Rabbit operate over bits, whilst the Crush batteries
operate over floating point numbers between 0 and 1. Alphabits, Rabbit, and Small
Crush complete in minutes over samples of 2GB in size. Big Crush requires a large
amount of data (or a constant stream of input from the target device) and can take
hours to complete. McCullough et al. identify some potential issues with this tool-
set. Some tests are only able to read 32 bits and are more sensitive to errors in
their most significant bits than their least significant bits [403]. To resolve this, they
suggest that tests are performed over the sequences forwards and backwards. The
issue here is that a test on live data cannot be performed in this manner. This limits
many tests and prevents them from being used as live tests.

Another class of tests exists; continuous tests. These tests are designed to identify
whether there have been hardware failures that lead to corruption or cessation
of the entropy stream. FIPS 140-1/2 are designed with hardware in mind [121].
Both tests suites can be implemented in the circuitry of an RNG, providing a
constant series of results regarding the health and functionality of the device. A core
requirement of any continuous test is that no RNG should output two identical N bit
blocks in succession. If this condition is not met, the device should cease function
immediately and alert the user that it is not performing as expected. However,
this does not detect more subtle flaws. The astute reader may also have deduced
that requiring that no two N bit blocks be identical actually results in reduced
entropy. This has an impact on the legitimacy of such tests when considering that
the definition of an ideal RNG is one that is completely unpredictable. These tests
are likely to be implemented alongside IoT TRNG implementations due to their
efficient implementation in hardware, carrying the previous concerns to millions of
potential devices.

The usage of NIST, Dieharder, TestU01, and other statistical test batteries can
vary between institutions. NIST SP800-22 outlines minimum sample sizes and
Dieharder implies these by rewinding samples if insufficient data is provided.
However, during self-certification, some companies have been found to test small
samples, below the suggested guidelines. This can cast doubt over the validity of
their findings.

10.3 Challenges in Data Collection

For standalone RNG, data collection may be simple. However, there are no official
certifications for standalone RNG. FIPS and CC both certify whole security systems,
not individual elements, so even though RNG testing is key to this process, a
standalone RNG that passes these tests still cannot be certified. Regardless, RNG
testing as a part of whole system certification is a critical consideration. Data
collection from certain integrated RNGs may not be trivial. As IoT devices represent
a whole-system security implementation, they may be certified; RNG evaluation
forms a critical part of any such evaluation process.



170 D. Hurley-Smith and J. Hernandez-Castro

Black-box design is often employed by companies using licensed technology, or
who need to protect their Intellectual Property (IP). This means that schematics of
their security implementation, including RNG, may not be publicly accessible. For
lower EAL awards, such obfuscation of technical detail may extend to inspectors
and CC officials. At higher levels, non-disclosure agreements are required as a part
of the certification contract between the petitioning company and the evaluating
body. Such arrangements are expensive. Inspectors and independent testers have
to be compensated for their times and the cost falls to the company requesting an
evaluation at a given EAL. As a result, self-certification is common.

The speed with which an RNG may be read depends on a great many factors.
In situations where the RNG is fully integrated, there may be additional overheads
such as post-processing, use of a PRNG to clean TRNG output used as an entropy
source, or simply a hard limit on output size and speed. A poignant example of
this is the DESFire EV1 and EV2. These RFID cards do not directly expose their
internal TRNG to the user, requiring that the user extracts random numbers using
the authentication protocol instead. This protocol requires that both the card and
reader exchange random values as part of their authentication handshake [289].
The 16 bytes values transmitted by the card can be collected and stored in a file
for analysis using statistical tests for randomness [288]. This is a time-consuming
procedure, as Table 10.2 shows. To collect 64MB of data from the DESFire cards,
approximately 12 days were required. The primary bottleneck in this process was
the need to complete the authentication protocol before a second handshake could
be initiated to gather additional 16-byte sequences. Attempting to terminate the
protocol by switching off the reader, thus resetting the card, proved to be even more
time-intensive [288]. This issue is shared by IoT devices, many of which implement
integrated TRNGs.

IoT devices have a plethora of ways in which PRNG and TRNG may be
implemented. The FRDM K64F board implements a TRNG, though the output is
limited to making calls internally for use, or outputting values over an I/O pin in
the form of unsigned integers. Though significantly faster than the EV1 and EV2,
this is still much slower than most standalone TRNGs. The Red Bear Duo does
not implement a local entropy source. An on-board PRNG must be supplied with
off-device entropy, with no checks or continuous tests performed on-device. In a
full-system implementation, such a device can make it difficult to identify where
the flaw in its RNG occurs.

Table 10.2 RNG output
speed of selected devices

Sample size (MB) Mean data rate (bit/s)

DESFire EV1 64 4.93 · 102
DESFire EV2 64 4.90 · 102
Quantis 16M 2100 1.27 · 108
Quantis 4M 2100 3.08 · 107
Quantis USB 4M 2100 3.11 · 107
Comscire PQ32MU 2100 2.48 · 108
ChaosKey 2100 3.07 · 107
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The standalone generators (Quantis, Comscire and ChaosKey entries in
Table 10.2) are substantially faster, making data collection trivial by comparison.
However, this does not mean that samples of appropriate size were tested.

SP800-90B states that an entropy source must provide 1,000,000 bits of sequen-
tial output for testing [449]. Concatenation of smaller sequences is tolerable if
contiguous output to that size is not possible, but is undesirable. 1000 such
sequences must be concatenated, according to NIST guidelines. SP800-22 extends
these requirements by recommending that 100 samples of the aforementioned size
are tested to validate the results [508]. AIS-31 and AIS-20 do not stipulate minimum
sample sizes. JohnWalker states that, in their default configuration, the Diehard tests
should be run over at least 100MB of data [568].

With this in mind, the test reports of several TRNG manufacturers can be more
thoroughly analyzed. IDQ states that their Quantis devices pass the Diehard and
NISTSP800-22 batteries with no failure.1 SP800-22 tests were conducted over 1000
samples of 1,000,000 bits in length. A significance level of 1% was maintained
throughout this process. Diehard was used over a single sample of 1 · 109 bits. Our
own tests confirm that IDQ’s report of no failures is true, even for larger samples
(ours were 2.1GB in size). In this case, IDQ is a good example of a test protocol
that is in line with the recommendations of test developers.

Comscire’s PQ32MU, a QRNG that uses shot-noise as an entropy source, is a
different story. Their NIST-Diehard report2 shows that the number of tests has been
reduced. The reduced sample size is one issue, but reducing the number of tests
can result in the loss of certain capabilities. Unless the removed tests are wholly
redundant, it is likely that their removal will impact the capability of the battery to
detect certain types of non-randomness. The insufficient sample size is cited as the
reason for excluding those tests. Comscire only tests this QRNG using 2 samples;
one of 8 · 107 bits and another of 1 · 106 bits. This is drastically below the suggested
sample size for Diehard. Even though these samples meet the requirements of NIST
SP800-90B in the most basic sense, they still fall short of SP800-22’s additional
recommendations requiring the testing of at least 100 samples. Considering the ease
with which samples can be generated from standalone RNGs such as these, it is
surprising that a more robust test process is not used.

10.4 Appropriate Selection of Tests

The correlation between tests in a battery, and as a whole if the evaluation
methodology involves multiple test batteries, must be considered. Statistical tests
have a limited range of issues that they are able to identify in the target RNG. Test

1https://marketing.idquantique.com/acton/attachment/11868/f-004c/1/-/-/-/-/Randomness
%20Test%20Report.pdf.
2https://comscire.com/files/cert/comscire-pq32mu-nist_diehard-validation-tests.pdf.

https://marketing.idquantique.com/acton/attachment/11868/f-004c/1/-/-/-/-/Randomness%20Test%20Report.pdf
https://marketing.idquantique.com/acton/attachment/11868/f-004c/1/-/-/-/-/Randomness%20Test%20Report.pdf
https://comscire.com/files/cert/comscire-pq32mu-nist_diehard-validation-tests.pdf
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Fig. 10.1 Example of Ent default output in byte mode [272]

batteries are intended to mitigate this issue by providing many statistical tests that
evaluate different aspects of the target RNG, providing a broader analysis.

Hernandez-Castro et al. identify a degree of correlation between tests in the Ent
battery. The Ent battery is a simple set of tests included in most Linux distributions
as a simple statistical testing tool [568]. Ent includes tests for estimated entropy,
compression, χ2, arithmetic mean, Monte Carlo π , and serial correlation. Bit and
byte level tests can be run over target sequences. Figure 10.1 shows the output of
the Ubuntu 16.04 Ent utility in byte mode.

By degenerating an initially random sequence using a genetic algorithm, Her-
nandez-Castro et al. were able to observe the test results of Ent as the sequence
slowly became more ordered and predictable [272]. The results demonstrate that
many of the Ent tests have a degree of correlation. Entropy and compression tests
analyze the same general attributes, both performing linear transformation and
ceiling operations on a sequence. The χ2 and excess statistics provided by the χ2

test are also closely correlated. The conclusion of the paper recommends that the
excess and compression statistics should be discarded.

Soto et al. explore the degree of correlation between tests in the NIST SP800-22
battery. Their work finds that the range of attributes evaluated by SP800-22 may
be insufficient to recognize issues [538]. TRNG and QRNG are particular issues,
as many examples of these RNGs have been developed since the development
of SP800-22. Soto describes the independence of tests in this battery as an open
problem.

Turan et al. provide a more recent analysis of SP800-22. Their work finds that
the frequency, overlapping template (input template 111), longest run of ones,
random walk height, and maximum order complexity tests produce correlated
statistics [560]. This issue is most evident when using small samples or block
sizes. Georgescu et al. build on Turan’s work, identifying and examining the
open problems in SP800-22 test correlation. The sample size is found to have a
significant effect on the correlations between tests. The correlations identified by
Turan et al. are confirmed, and their relationship with sample size explored in
greater depth [226]. Such results demonstrate that every element of an RNG test
methodology must be carefully examined to ensure a meaningful and unbiased
result. Georgescu et al. conclude by stating that better tests than those implemented
in SP800-22 may exist, as that battery is now quite old.
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Researchers have commented on the ambiguity of SP800-22’s hypothesis and
statistical output, stating that more descriptive test output is required. Zhu et al.
propose a Q-value, computed using test statistics prior to their consolidation to p-
values [601]. The proposed statistic is more sensitive to total variation distance
and Kullback-Leiber divergence. This overcomes some of the issues caused by
correlations between the non-χ2 level 2 tests of SP800-22 [601].

Dieharder implements many of the SP800-22 tests. As a result, it shares many of
the criticisms levelled at SP800-22 [206]. TestU01 is a more recent battery aimed at
allowing researchers to develop and evaluate their own RNGs, especially TRNGs.
There is little critical literature regarding this battery at present, so the independence
of tests in TestU01 is an open question at this time. Turan et al. comment on the
presence of some tests that they have found to be correlated being implemented in
the Crush batteries of TestU01 [560].

The diversity of a test methodology is related to, but separate from, the
independence of tests. Where independence is a measure of how related the results
from a set of tests may be, diversity is a measure of how many methods of evaluation
are used in the analysis of an RNG. A common observation is that the isolated use
of p-values is insufficient to fully characterize the randomness (or lack thereof) of a
sequence. Research by Hurley-Smith et al. explores TRNG and QRNG in detail to
identify flaws that were not detected by the most commonly used test batteries. In
these analyses, test correlation and diversity are key topics.

10.4.1 Randomness Testing Under Data Collection
Constraints: Analyzing the DESFire EV1

The first of these in-depth analyses was conducted over the Mifare DESFire EV1,
an RFID card produced by NXP [379]. The DESFire EV1 is used as a part of the
Transport for London (TfL) Oyster card scheme, as well as other loyalty and e-
wallet schemes throughout Europe. As a device that can store cash value, it requires
robust security to foster trust among vendors and users. The EV1 has achieved an
EAL4+ certification, based on its full security implementation.

Table 10.3 shows the Dieharder results for 3 DESFire EV1 cards. As mentioned
previously, data collection from the EV1 is challenging, requiring 12 days to obtain
64MB of data. As a result, this was the largest amount of data able to be collected. A
total of 100 cards were tested, with all 100 passing. The 3 cards shown in this table
show the p-values reported by the Dieharder tests for all tests that can be performed
on 64MB of data without rewinds.

Card 3 shows a single failure of the Dieharder battery, for the count the ones test.
However, this was not reproduced by any other card that was tested. Therefore, it is
reasonable to conclude that the Dieharder battery does not identify any significant
degree of non-randomness in the tested sequences.

Table 10.4 shows the pass rates for NIST tests. All SP800-22 tests were used
over the EV1 samples we collected.
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Table 10.3 Dieharder results [289]

Test Card 1 Card 2 Card 3

Birthday spacings 0.18194520 0.61105583 0.78263630

Overlapping permutations 0.38044164 0.58693289 0.44201308

32 × 32 Binary rank 0.42920693 0.23409500 0.55699838

6 × 8 Binary rank 0.31311490 0.32387215 0.66137580

Bitstream 0.97724174 0.18743536 0.59532464

Count the 1’s (stream) 0.17108396 0.74984724 0.87214241

Count the 1’s (byte) 0.65870385 0.01287807 0.00020194
Parking lot 0.18078043 0.24200626 0.38128677

Minimum distance (2d sphere) 0.76328000 0.95091635 0.34980807

3d sphere (minimum distance) 0.23871272 0.20826216 0.39340851

Squeeze 0.62598919 0.08843989 0.77057749

Runs 0.99778832 0.62043244 0.90550208

0.44719093 0.91228597 0.04870531

Craps 0.54077256 0.92769962 0.91803037

0.57614807 0.94245583 0.95209393

The bold values indicate those tests which fail, but such a degree that they are well outside the
bounds of confidence established by NIST (or in the case of Ent, our extrapolation of the NIST
SP800-22 confidence bound of a = 0.01)

Table 10.4 NIST SP800-22
results [289]

Test Card 1 Card 2 Card 3

Frequency 198/200 200/200 197/200

Block frequency 196/200 199/200 194/200

Cumulative sums 2/2 2/2 2/2

Longest run 196/200 198/200 198/200

Rank 198/200 199/200 197/200

FFT 197/200 199/200 198/200

Non-overlapping template 147/148 148/148 148/148

Overlapping template 198/200 198/200 198/200

Universal 198/200 198/200 198/200

Approximate entropy 197/200 198/200 196/200

Random excursions 8/8 8/8 8/8

Random excursions variant 18/18 18/18 18/18

Serial 2/2 2/2 2/2

Linear complexity 199/200 197/200 199/200

The bold values indicate those tests which fail, but such a
degree that they are well outside the bounds of confidence
established by NIST (or in the case of Ent, our extrapolation
of the NIST SP800-22 confidence bound of a = 0.01)

Cards 1 and 3 both show some borderline results, notably in the Runs and Non-
overlapping template tests. However, the majority of cards (98 of 100) passed this
battery. This was a cause for concern: any failure is a cause for further investigation
as stated by SP800-90B. As a result, further analysis was deemed necessary, and the
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Table 10.5 Mifare DESFire EV1 ENT results for 64MB of TRNG output [289]

Card 1 Card 2 Card 3 Optimal

Entropy 7.999969 7.999989 7.999972 8

Optimal compress. 0 0 0 0

χ2 2709.10 973.07 2470.32 256

Arith. mean 127.492921 127.500582 127.5006 127.5

Monte Carlo π est. 3.14167 3.142019 3.141909 3.14159

S. correlation 0.000008 0.000045 0.000093 0.0

The bold values indicate those tests which fail, but such a degree that they are well outside the
bounds of confidence established by NIST (or in the case of Ent, our extrapolation of the NIST
SP800-22 confidence bound of a = 0.01)

humble ENT battery was used as a starting point for a more generalized approach
to our EV1 TRNG evaluation.

Considering Hernandez-Castro et al.’s work on the independent of Ent tests, the
compression and excess statistics should be discarded. However, the full results
of the Ent battery over 3 EV1 cards are shown in Table 10.5 for the sake of
completeness.

All tests are passed, with the exception of the χ2 test. For the 3 64-MB samples
shown in Table 10.5, the χ2 statistic is exceptionally poor. By comparison, a
sequence that passes this test should have a χ2 statistic of between 220 and 305.
Even at a sample size of 1MB, 100 DESFire EV1 cards failed this test. These results
show that the values in the tested sequences are not uniformly distributed: there is
a bias towards some byte values and away from others. Considering that the χ2 test
is such a trivial (and widely used) test of the distribution of values in a sequence, it
is surprising that it would highlight issues in the output of the EV1’s TRNG while
Dieharder and NIST SP800-22 do not.

Non-uniform distribution of bytes is not an automatic indicator of non-
randomness. It is not a good indicator of randomness, but it is also possible for
a true source of randomness to produce a slightly biased sequence. However, as per
the guidelines of AIS-20 and SP800-90B, a TRNG should provide an output that is
functionally equivalent to that of a cryptographic PRNG. As a result, non-uniform
byte distribution is a concern. The fact that there is bias is an important observation,
but more important is the analysis of that bias.

Figure 10.2 provides a deeper examination of how bias is expressed by the TRNG
output of 100 DESFire EV1 cards. Figure 10.2a shows the mean bias of 100 1-
MB samples. The extreme deviation from the expected distribution of values is
apparent in the square-wave of the plot. The expected distribution should result in
a noisy, relatively evenly distributed set of byte values. A bias in the order of 10−5

is observed, with an almost evenly distributed bias among values that are deviated
above or below the normal. To be precise, 127 values are biased above the normal,
and 129 are biased below the normal.

Figure 10.2b refines the observations of the previous graph. Fourier approxi-
mation of the bias reveals that the distribution of byte values has a period (w) of
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Fig. 10.2 Analysis of DESFire EV1 bias [289]. (a) Mean bias of 100 1-MB samples. (b) Mean
Fourier approx. of 1MB samples. (c) Mask test results. (d) χ2 scores for 100 1-MB samples

−31.9918. This results in 8 oscillations throughout the 256 possible byte values,
with a shift across the normal, observed every 32 values (approximately). Statistical
analysis of the possible distribution of bits within these byte values shows that the
under-occurrence of a specific bit-sequence can result in this very particular form of
bias.

Figure 10.2c provides the results of a so-called mask test. The purpose of this test
is to XOR each byte of a sequence with an 8-bit sequence, ranging from 0000000
through all intervening values to 11111111. The sum of all sequences that resolve to
zero after the XOR operation records the occurrence of that bit-sequence throughout
a sample. This graph shows the composite of 100 1-MB sequences tested in this
manner. It is immediately apparent that there’s a significant deviation from the
normal for mask 00011000. For all cards, and for both 64 and 1MB samples, this
bias was observed. Following our responsible disclosure to NXP, it was suggested
that this bias may be caused by an incorrectly implemented whitening-function: a
function usually intended to remove bias from TRNG output.

Figure 10.2d shows the distribution of the χ2 statistic for 100 1-MB EV1
samples. The statistics are proportionally lower than those seen for the 64MB
samples (Table 10.5). This is because sample size has a direct effect on the
expression of bias within a sequence. Early experiments conducted by Hurley-
Smith et al. demonstrated that the bias of the DESFire EV1 could not be observed
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at sample sizes smaller than 7.5KB [288, 289]. This emphasizes the point made
in Sect. 3 regarding data collection. The amount of data collected needs to meet a
minimum size to reliably identify issues in the RNGs being tested. This minimum
threshold is test-specific, requiring that the highest minimum sample size is
identified by analysts prior to conducting an evaluation of an RNG. Furthermore,
these experiments showed that even well-respected, proven statistical test batteries
such as Dieharder and NIST SP800-22 were unable to identify the issue with the
DESFire EV1. It is clear that it is possible to design a TRNG to pass these tests,
but is it wise to rely on tests that can be designed for? Does designing to meet the
finite and narrow requirements of Dieharder and NIST SP800-22 actually provide
any guarantees of randomness? We argue that it does not.

10.4.2 Identifying Issues with Quantum Random Number
Generators

The EV1 experiments provided an introduction to issues in using well-established
statistical tests to identify non-randomness in TRNG. QRNGs are currently too
large for RFID card or IoT device implementations, but miniaturization of quantum
entropy sources is proceeding quickly, and proposals for IoT-scale QRNG have
already been published. However, there are several open problems with the current
generation of QRNGs and their evaluation.

Even when sample collection is not a problem, there can be issues. IDQ’s Quantis
range of QRNGs is based on an optical quantum source of entropy (a beam splitter).
Comscire produces a rival product, the PQ32MU, which uses quantum shot-noise as
its entropy source. Both companies provide multiple models of QRNG with varying
speeds, all with appropriate statistical test results associated with their devices.
As previously discussed, IDQ provides a relatively robust test report, though it is
limited to Diehard and NIST SP800-22 tests. Comscire uses few and small samples,
with a smaller number of tests, limiting the rigor of its test process significantly.
None of the devices tested as a part of this work were validated using the AIS-
31 methodology, nor were they certified (as there are no official certifications for
standalone RNGs).

Data collection is not an issue from these devices, the Quantis devices provide
data at a rate of 4 or 16Mb/s, whiles the PQ32MU has an output speed of 32Mb/s.
As a result, collecting large amounts of data is trivial. A key difference in these two
brands is that the Quantis generators do not implement on-board post-processing
to remove bias, whilst the PQ32MU is an all-in-one product with post-processing
performed on-device.

Table 10.6 shows the results for the EV1, Quantis generators and PQ32MU. Both
raw and post-processed Quantis output is shown. EV1 data is tested for 64MB
samples over 100 cards. Quantis and Comscire QRNGs are tested over 100 2.1GB
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Table 10.6 Dieharder, NIST and TestU01 results

Samples Dieharder NIST SP800-22 Alphabits Rabbit Small crush Crush

Device # passed passed passed passed passed passed

DESFire EV1 100 100 98 0 0 – –

Quantis 16M 100 100 100 54 60 93 47

Post 16M 100 100 100 95 87 91 82

Quantis 4M 100 100 100 3 7 91 3

Post 4M 100 100 100 91 82 93 86

Quantis USB 100 100 100 3 21 89 3

Post USB 100 100 100 90 81 97 80

Comscire
PQ32MU

100 100 100 91 86 93 84

samples collected from one of each type of device. Ideally, more devices would be
tested, but the cost was a limiting factor (the cheapest device, a 4M, costs e900).

All devices pass Dieharder, while all but 2 EV1’s pass the SP800-22 tests. The
TestU01 toolkit has been used, with 4 of its statistical test batteries used to evaluate
all tested devices, including the EV1. Due to the sample size requirements of the
Crush tests, EV1 data has not been tested for either Crush test. Immediately, the
EV1 shows critical issues, failing the Alphabits and Rabbit batteries. The average
failure rate is 1 of 4 tests for Alphabits, and 5 of 16 tests for Rabbit. This shows
how the simple addition of a new test battery can instantly reveal weaknesses that
the better-known batteries cannot identify.

Raw Quantis samples, especially those of the 4M and its USB variant, also
perform very poorly on Alphabits and Rabbit. They also perform very poorly in
Crush, but a significant number of samples pass the Small Crush tests. This could be
because the Small Crush battery has many tests in common with SP800-22, leading
to a correlation between the results. Post-processing cleans up many of these issues,
but not completely. Most notably, Alphabits, Rabbit and Crush test results improve
dramatically, with the most drastic change being the jump from 3 passed tests for
the 4M under Alphabits, to 91 passes. This shows that appropriate use of a QRNG is
yet another factor to consider: improper use of a device may not be identified by the
more well-known test batteries and incorrect configuration can be as damaging as
any other form of non-randomness. The Comscire PQ32MU performs well on most
tests but struggles with the Rabbit and Crush tests.

Table 10.7 shows the results of Ent for the QRNG. DESFire results are not shown
to avoid repetition. A summary of the 100 samples tested shows that Post-processed
Quantis data, and the PQ32MU, passes the χ2 and serial correlation tests with
no issues. All devices pass the other tests, hence their omission from this table.
However, the raw Quantis data fails the χ2 test dramatically. Furthermore, the 4M
and its USB variant perform quite poorly on the serial correlation test at the bit
level. This emphasizes the need to test sequences across multiple block sizes to
identify issues that may occur at lower or higher orders of output. Unlike the EV1,
raw Quantis data does not provide an easily identifiable or consistent bias across
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Table 10.7 ENT results

Bytes Bits

Samples χ2 Serial corr. χ2 Serial corr.

Device # passed passed passed passed

Quantis 16M 100 10 99 0 100

Post 16M 100 100 96 100 96

Quantis 4M 100 0 99 0 49

Post 4M 100 100 99 100 100

Quantis USB 100 0 92 0 81

Post USB 100 100 94 100 100

Comscire PQ32MU 100 100 99 100 100

samples. The bias appears to drift between samples, with the only constant being a
tendency to express a 10−6 bias above the normal for byte values 0–5. Even this is
not a representative trend, with only 38% of samples showing this particular trait.

Figure 10.3 shows the χ2 statistics for raw Quantis samples from all the 16M and
4M devices. The results for the Quantis USB are omitted, as the USB is effectively
a 4M in different packaging and provides similar results.

The 16M (a) fails the χ2 test for 90 of its samples. The mean statistic for the 16M
is approximately 350. This is above the acceptable maximum threshold for this test.
The 4M is significantly worse, with a mean statistic of 506. Unlike the 16M, the
4M shows no passes at all (the USB reports similar results). In fact, the minimum
statistic for the 4M was 407. This is significantly above the maximum threshold for
the χ2 test.

The experiments conducted over these QRNGs show that established tests do
not always identify issues that more recent (or just less well-known) tests highlight.
The TestU01 battery reinforces the results of the Ent test, by providing a wider
variety of more sophisticated tests that prove that there are issues beyond simple
deviation from the normal distribution of values at the byte and bit level. As TestU01
is designed to provide the tools to test TRNG, this battery would ideally be made
a mandatory recommendation for TRNG and QRNG testing. Dieharder and NIST
SP800-22 will remain in use, as they are effective at identifying egregious issues
with RNG output, but the extension of the minimum recommended number of tests
is very much needed at this time. Post-processed and raw data should be tested and
the results clearly marked to show users how the improper configuration of software
post-processing can be identified and resolved. One should also consider that if
IoT QRNGs are sought-after, how does one implement a post-processing algorithm
(which are known for their high memory requirements) in such a small package?
Resource limitations may prevent effective post-processing of QRNG output, the
consequences of which are made clear in the preceding work.
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Fig. 10.3 Distribution of χ2 scores for Quantis devices. (a) 16M. (b) 4M

10.5 Conclusion

There are many complex issues to consider when evaluating RNGs for use in
security systems. Device specifications, the use of off-device entropy pools, post-
processing, and output speed are all critical to the evaluation process. Each element
should be tested in isolation, but only the whole device may be certified, leading
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to issues when considering black-box design philosophy and resource-constrained
devices.

The DESFire EV1 has been found to output biased values from its TRNG, but this
does not necessarily mean that the RNG itself is at fault. Subsequent work with the
EV2 has found no issues with its RNG. Combined with conversations with NXP’s
engineers, this indicates that the issue may instead be in the whitening function
employed to remove bias from the raw TRNG output. The EV1 results highlight two
key issues; the role of black box design in complicating the evaluation process, and
the quality control challenges facing small-scale robust TRNGs. Quantis QRNGs
also require post-processing, as demonstrated by the exceptionally poor results
shown by raw data over a variety of statistical tests. Rigorous testing of RNG with
multiple input and processing dependencies should require results demonstrating
the performance of both raw and processed output of such devices. This will aid in
the identification of implementation errors.

Reliance on Dieharder and NIST SP800-22 cannot continue to the exclusion
of new tests, such as those employed by TestU01. There is a wealth of academic
literature on the subject of statistical tests of randomness and efforts must be made
to identify which of these will provide the next wave of reliable tests of randomness.
Finally, it is important to consider how tests may be evaded by manipulation of
RNG output; future work will focus on how some simple manipulations result in
predictable data that passes current statistical tests of randomness.
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