
Towards Vertically Scalable Spark
Applications

Luciano Baresi and Giovanni Quattrocchi(B)

Politecnico di Milano, Dipartimento di Elettronica, Informazione e Bioingegneria,
Piazza Leonardo Da Vinci 32, Milan, Italy

{luciano.baresi,giovanni.quattrocchi}@polimi.it

Abstract. The dynamic provisioning of virtual machines (VMs) sup-
ported by many cloud computing infrastructures eases the scalability of
software applications. Unfortunately, VMs are relatively slow to boot and
public cloud providers do not allow users to vary their resources (verti-
cal scalability) dynamically. To tackle both problems, a few years ago we
presented a solution that combines the management of VMs with the use
of containers specifically targeted to the efficient runtime management
of the resources provisioned to Web applications. This paper borrows
from this solution and addresses the problem of provisioning resources
to big data, Spark applications at runtime. Spark does not allow for
the runtime scalability of the resources associated with its executors,
but resources must be provisioned statically. To tackle this problem,
the paper describes a container-based version of Spark that supports
the dynamic resizing of the memory and CPU cores associated with the
different executors. The evaluation demonstrates the feasibility of the
approach and identifies the trade-offs involved.

Keywords: Containers · Big data · Spark · Resource allocation

1 Introduction

The virtualization and softwarization of computing resources fostered by cloud
computing has made the on-demand allocation/deallocation of computing means
extremely easy. One can smoothly provision virtual machines (VMs) dynamically
to cope with different workloads and meet stated qualities of service and/or cost
constraints [7]. Many approaches [10,15] use different techniques to foresee and
modify the number of allocated VMs properly and smartly, but unfortunately,
Mao et al. [11] demonstrate that a VM on a public cloud infrastructure takes
on average six minutes to boot. This is a too long delay when one thinks of the
dynamic provisioning of resources to modern applications: for example, if the

This work has been partially supported by the GAUSS national research project
(MIUR, PRIN 2015, Contract 2015KWREMX) and by project EEB (Italian Tech-
nology Cluster For Smart Communities, CTN01 00034 594053).

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 106–118, 2019.
https://doi.org/10.1007/978-3-030-10549-5_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_9&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_9

Towards Vertically Scalable Spark Applications 107

workload increases, users do not want to wait for six minutes before being able
to interact with the system properly. Instead of booting new VMs, one could
alternatively think of adding resources to running VMs, but this is not possible
since VMs usually come in fixed configurations and the resources associated with
them (vertical scalability) cannot be changed. To overcome these two problems,
that is, the latency of newly provisioned resources and the resizing of running
ones, we proposed a solution [4] that pairs VMs and containers [16] for the
fast and fine-grained allocation of resources to web applications. The idea is to
deploy containerized web applications in a cluster of VMs, where each container
is equipped with a lightweight control-theoretical planner to quickly (i.e., in a
few seconds) provision and scale (vertically) the resources associated with it.

Starting from these ideas, this paper addresses a different, but similar prob-
lem: the dynamic provisioning of resources for big data applications. These appli-
cations are batch applications executed on top of special-purpose frameworks,
which slice input data and carry out the computation on each slice by means of
parallel processes executed on a distributed cluster of (virtual) machines. Specif-
ically, we address Spark [19] applications, since Spark is the most widely used
framework for big data applications: it is more flexible than Hadoop [2] and can
support more complex computations. It uses a master-slave architecture, and
multiple distributed executors—Java processes dedicated to data processing—
are deployed onto the cluster. The response time of these applications is defined
as the time they take to process the entire set of inputs; resources are usually
estimated to meet deadlines, that is, thresholds on response times [18].

Spark does not allow one to specify deadlines and allocates resources (i.e.,
CPU cores and memory) to executors statically at the beginning of the exe-
cution; by default it always uses all available resources. This means that the
resources that are allocated to applications must be planned carefully since run-
time deviations are not allowed. The only dynamism managed by Spark refers to
switching off preallocated executors if they remain idle for a user-defined amount
of time, and on again if some tasks have to wait for too long (and idle executors
are available), respectively. In addition, the resources provisioned to executors
(e.g. CPU cores) cannot be changed. The scalability is only horizontal and based
on simple time-outs, and on the availability of preallocated executors.

In contrast, this paper discusses and evaluates the feasibility of adding
vertical scalability to Spark executors. It presents xSpark1, a container-based
extended version of Spark that allows for the fine-grained allocation of resources
(CPU cores and memory) to applications, and that also supports the vertical
scalability of executors (containers).

The rest of the paper is organized as follows. Section 2 surveys what industry
tools offer in terms of dynamic resource allocation and introduces some related
work. Section 3 motivates the need for vertical scalability and the use of con-
tainers as enabling technology. Section 4 describes the architecture of xSpark
and how it supports the dynamic allocation (vertical scalability) of both CPU

1 This paper extends [5] with an in-depth description of the technical details of xSpark
that enable the vertical scalability of resources.

108 L. Baresi and G. Quattrocchi

cores and memory. Section 5 presents the assessments we carried out and Sect. 6
concludes the paper.

2 Related Work

Spark only provides limited functionality to adjust the resources allocated
to applications. By default, and at each execution, Spark always uses all
the resources in the cluster. This means that when applications are run-
ning, and a new application is submitted for execution, it must wait since all
resources are already taken. Alternatively, at submission time, Spark offers three
parameters for allocating a smaller amount of resources to a specific appli-
cation, leaving resources available to other subsequent application. Parameter
total-executor-cores sets an upper bound to the total amount of CPU cores
that an application can use, while parameter num-executors sets the number of
executors. Therefore, the ratio between these two parameters gives the average
number of cores allocated to each executor. Finally, parameter executor-memory
sets the memory allocated to each executor.

The memory and cores allocated to executors cannot be changed
at runtime since the vertical scalability of executors is not sup-
ported by Spark. However, Spark offers a dynamic resource allocation
mode—governed by parameter spark.dynamicAllocation.enabled—to scale
the number of executors at runtime. At submission time, parameter
spark.dynamicAllocation.initialExecutors is used to set the initial
amount of executors (instead of parameter num-executors) and parameters
spark.dynamicAllocation.min|maxExecutors set the allowed range. To scale
the number of executors Spark uses a simple heuristic based on utilization: if an
executor remains idle for a predefined amount of time, it is decommissioned. If
idle executors exist and a task remains pending for too long, a new executor is
commissioned using a backlog algorithm: the first time Spark allocates an execu-
tor, if another request is triggered shortly (yet another parameter) the number
of allocated executors is doubled, and so on. These time-outs are set statically
and cannot vary at runtime.

As for additional resource management solutions, Spark can be paired with
external resource managers—such as Mesos [8] and YARN [17]. Mesos sends
resource offers (push-based scheduler) to its clients and manages both CPU cores
and memory, while YARN waits for resource requests (pull-based scheduling)
and only considers memory (each executor is bound to a single core). They both
support containers to launch executors, but they do not offer any form of vertical
scalability. Mesos also provides an optional fine-grained mode, where each task
is containerized, but the runtime overhead is heavy, and this is why the use of
this feature is deprecated in Spark 2.0.

xSpark offers two major improvements with respect to both Spark alone and
Spark equipped with Mesos or YARN. First, it supports dynamic resource pro-
visioning with respect to deadlines. This is not possible with existing industrial
tools that only scale resources according to the utilization of the system. Second,

Towards Vertically Scalable Spark Applications 109

it supports the vertical scalability of executors with respect to both CPU cores,
by means of containers, and memory, through the use of off-heap memory. This
allows one to be precise and fast when scaling resources and also to minimize
the overhead needed for creating/destroying executors. As for Mesos and YARN,
xSpark is complementary to them: it is built on top Spark alone and we plan to
extend our control capabilities to Mesos and YARN in the future.

Even if they do not target Spark specifically, it is also worth mention-
ing few works that exploit containers to provide the vertical scalability of
resources [3,14]. Lakew et al. [9] rely on Linux containers to build fast and
fine-grained controllers for the management of multiple resources. They exploit
vertical scalability to meet performance indicators while optimizing resources
for both interactive and non-interactive applications. Barna et al. [6] propose
a methodology to build autonomic systems for containerized multi-tier appli-
cations. They exploit layered queuing networks to create self-tuning controllers
for applications composed of heterogeneous components such as web services,
databases, and big data elements. These solutions could be used to manage the
resources allocated to a complete Spark instantiation, but they cannot manage
the resources allocated to the different applications since they have no visibility
of them. xSpark can do that since besides working on dynamic resource man-
agement, we have also changed the architecture and processing model behind
Spark to work at a lower granularity level.

3 Vertical Scalability with Containers

The advent of cloud computing infrastructures has significantly simplified the
runtime management of computing resources, and solutions from both indus-
try [1] and academia [13,15] have proliferated. These solutions use virtual
machines (VMs) to change the amount of CPU cores and memory allocated to
applications and fulfill set quality requirements. Public cloud providers however
only provision virtual machines with a fixed amount of memory and CPU cores.
VMs can simply be created or deleted, and thus only the horizontal scalability
of resources is supported. Vertical scalability, that is, the capability of modifying
the amount of resources associated with a VM while it is in operation, is limited
by the fact that users have no access to the hypervisor.

Another limitation of VM-based resource management is that it is too slow.
According to Mao et al. [11], cloud providers require some 6 min to launch a
new VM. Since new resources cannot be allocated faster than that, this delay
imposes stringent limitations on how frequently allocated resources can change,
and thus on how quickly these systems can meet user expectations.

These problems can be solved by adopting containers [12] as means to man-
age resources since they can be launched faster than VMs and can support
both horizontal and vertical scalability. Containers can be booted in few sec-
onds (depending on the application type) and scaled vertically in hundreds of
milliseconds [16]. Resource managers can then be as fast as their actuators and
adopt control periods that are less than a second: this is the case of the control-
theoretical solution presented in Sect. 4.

110 L. Baresi and G. Quattrocchi

In addition, VMs are usually dedicated to only one process at a time since
the simultaneous execution of independent application components cannot be
easily managed, and unexpected resource contention may arise. With containers
instead, a single machine can be used more efficiently to deploy multiple parts
of the same application—or of different applications—since each container is
provisioned individually and is isolated from the others.

Containers alone are not sufficient to making Spark executors scale vertically.
xSpark exploits Docker containers to achieve vertical scalability and embeds
then into Spark to scale the number of CPU cores allocated to executors at
runtime. However, memory allocation is limited by the Java Virtual Machine
(JVM), which sets a static upper bound to allocated memory at startup time,
and this value cannot be changed without restarting the virtual machine itself.
For this reason we extended Spark to allow for the dynamic resizing of off-heap
memory, as discussed in Sect. 4.3. xSpark exploits vertical scalability to control
the execution time of Spark applications in order to allocate resources efficiently
and fulfill user deadlines. A similar result could be achieved through horizontal
scalability, but with less efficiency since vertical scalability is faster and works
at a finer level.

4 xSpark

xSpark2 extends Spark and uses containers (i.e., Docker) to support a more flex-
ible and advanced management of resources. xSpark enriches command submit
with an additional parameter deadline to specify the required execution time.
Since the goal of xSpark is to minimize the use of resources without violating
deadlines, xSpark interprets this input as a constraint on execution: finishing
before the deadline would mean that fewer resources could have been used, while
violating it means that too few resources are provisioned (or are available).

This section describes xSpark atop virtual machines, but our tool can also
be deployed on bare-metal to favor performance over flexibility.

4.1 Hierarchical Architecture

Figure 1 shows the master/slave architecture of xSpark: white boxes represent
the existing components we modified, gray boxes are container-related compo-
nents, and dark-gray boxes correspond to new, control-related components.

The Master Node hosts a Stage Scheduler, a Task Scheduler, and a heuristic-
based Application Level Controller for each running application (Fig. 1 assumes
the existence of two applications). Spark logically splits applications into stages3,
a key entity for xSpark. In fact, xSpark has modified component Stage Scheduler
to intercept the beginning and end of each stage and uses the heuristic embedded
in Application Level Controller to compute an execution deadline for each stage.
2 The source code of xSpark is available at https://github.com/deib-polimi/xSpark.
3 A Spark stage is a set of pipelined operations that do not require shuffling data

among nodes.

https://github.com/deib-polimi/xSpark

Towards Vertically Scalable Spark Applications 111

Master Node

Application 1

Application Level Controller

Stage Scheduler

Task Scheduler

Application 2

Application Level Controller

Stage Scheduler

Task Scheduler

Memory
Controller

Docker

Worker Level Controller

Worker Node 1

Container

Container Level
Controller

Executor

Container

Container Level
Controller

Executor

Docker

Worker Level Controller

Worker Node N

Container

Container Level
Controller

Executor

Container

Container Level
Controller

Executor

Fig. 1. High-level architecture of xSpark.

The heuristic considers the remaining amount of time, with respect to the global
deadline set at application level, and some performance data collected through
a profiling phase. Since xSpark needs to know the internals of each stage, this
preliminary activity is used to create the actual execution flow (direct acyclic
graph) of each stage and some performance metrics (e.g., the duration of each
stage, number of input/output records).

After estimating execution deadlines, the actual execution of an application’s
stages start in the different worker nodes. Since stages can be composed of diverse
operations, we advocate that resource allocation should be controlled at stage
level (and not at application level). Therefore, xSpark executors are dedicated to
single stages, while Spark executors can execute the tasks of any stage. This way,
the resources (dynamically) provisioned to a given executor can only impact the
performance of the stage associated with it, and xSpark can even obtain a finer-
grained control of the execution of the different stages, and thus of the whole
application. This allows xSpark to control stages individually and to equally
distribute computation and data over the whole set of nodes.

As described in Sect. 4.2, executors are wrapped in containers and individu-
ally controlled by a control-theoretical planner (Container Level Controller).
The planner uses CPU quotas to provide computing resources to make the

112 L. Baresi and G. Quattrocchi

execution times of stages last as close to estimated deadlines as possible. Note
that the planners bound to the executors dedicated to the same stage do not
need to be synchronized since they are configured to fulfill the same deadline
and the workload (i.e., the tasks to be processed) is equally split among them.
The planners exploit a feedback loop that monitors the progress of the executors
(i.e., number of completed tasks over the total) and allocates processing power
(i.e., CPU quotas) accordingly.

Finally, resource contention within a Worker Node could occur because dif-
ferent executors bound to specific applications/stages are deployed onto the same
machine. For this reason, xSpark uses a Worker Level Controller that gathers
all the core allocation requests from the control-theoretical planners and, if their
sum is greater than available cores, scales them down according to different
configurable strategies, such as Earliest Deadline First or proportionally.

4.2 CPU Cores

Vertical scalability is the key feature provided by xSpark: it enables continu-
ous control over executing applications by managing allocated resources without
restarting/deallocating containers, thus reducing the associated overhead. While
memory is either sufficient, and any increase would produce no benefit, or insuf-
ficient, provisioned computing resources, given the high degree of parallelism
embodied in Spark applications, can significantly impact execution time: the
more CPU cores one allocates, the faster the application should execute.

Spark deploys executors onto Worker Nodes (virtual/physical machines) and
uses Java Virtual Machines to execute them. The allocation of CPU cores is static
and managed by a simple, internal, pool of threads. xSpark instead deploys each
executor in a container by using Docker to allow xSpark to dynamically change
the computing resources provisioned to an executor without interfering with the
other executors running on the same node.

Docker provides three ways to allocate CPU cores dynamically: reservations,
shares, and quotas. All these methods are extremely fast (few hundreds of mil-
liseconds [16]), but they heavily differ in terms of granularity and reliability.
Reservations allocate specific cores to containers. For example, given a machine
with 8 cores, container1 can be pinned to the first 5 cores, while container2 to
the remaining 3 cores and cannot use any of the cores allocated to container1 if
not used. CPU reservation is deterministic since each container can only use the
cores allotted to it while granularity is limited to full cores.

With shares, each container uses at least a number of cores that is pro-
portional to its shares but if there is no contention, and additional cores are
available, a single container can even exploit all available cores. For example,
if container1 has 70 shares and container2 30 shares, in case of resource con-
tention container2 uses some 70% of the cores of the machine while container1
just 30%. However, if container2 only needed 20% of available cores, container1
could use the remaining 80%. Thus, shares are not always deterministic, since
the actual number of used cores depends on both set shares and the number of

Towards Vertically Scalable Spark Applications 113

cores used by each container. The solution is extremely fine-grained since it can
allocate fractions of cores.

Quotas provide the most powerful way of provisioning cores to containers
and guarantees both determinism and appropriate granularity. Each container
is associated with a period and a quota, where the latter represents the percentage
of CPU time allocated to the container within the period. Setting a quota larger
than the period means that the container should use more than one core at a
time, but the sum of all quotas must always be less than set period times the
number of available cores. For example, given a single-core CPU and a period of
100 ms, if container1 is given a quota of 30 ms and container2 a quota of 70ms,
then 70% of the CPU time is reserved for container2 and 30% for container1.
This mechanism is thus deterministic and very fine-grained.

xSpark associates each executor (container) with a control-theoretical plan-
ner that computes the amount of CPU cores needed at each control period. Since
the faster, finer-grained, and more deterministic actuation capabilities are, the
more precise these planners can be, xSpark uses quotas as allocation mechanism
and associates all containers with the same period.

4.3 Memory

One of the main problems when executing a Spark job is how to determine the
amount of memory to allocate to each executor. Spark allows one to specify this
value statically by using parameter spark.executor.memory, which changes the
size of the heap memory of all executors. When the heap memory of an executor
gets saturated, the process crashes and the JVM is restarted.

When executing multiple applications, if their number is known, one can
simply equally partition available memory to the applications, that is, h = M

|A| ,
where A is the set of running applications, h is the amount of heap memory
allocated to an application a ∈ A, and M is the total memory available. Unfor-
tunately, the number of applications to execute and when to execute them are
often not known a priori, and thus the amount of memory associated with each
executor inevitably impacts the maximum number of applications that can be
run in parallel. This were not a problem if the heap memory could be scalable
vertically, but unfortunately JVM’s do not allow one to resize it at runtime: a
given configuration can only be changed by restarting the JVM. Note that Spark
postpones the launch of an application if requested memory cannot be provided.

To solve this problem, xSpark uses off-heap memory to add flexibility and
be able to change memory boundaries dynamically. Although on-heap memory
offers better performance, Spark can use off-heap memory to both support exe-
cution and store data. Objects stored in off-heap memory are managed directly
by the operating system, are not part of the process heap, and are not garbage
collected. As said, accessing off-heap data is slightly slower than on-heap data,
but it is faster than reading and writing from/to disk (see Sect. 5).

Since Spark does not provide any means to resize the memory used by off-
heap objects at runtime, xSpark offers a Memory Controller, which is deployed
on the Master Node. Each executor is associated with a fixed quantity of on-heap

114 L. Baresi and G. Quattrocchi

memory plus a quota of off-heap memory that can then be adjusted at runtime.
This quota is decremented when a new application is submitted for execution
and is incremented when an application terminates.

5 Evaluation

This section describes the experiments we conducted to evaluate the solutions we
conceived for the dynamic allocation of both CPU cores and off-heap memory.
The assessment is based on the following three questions: (Q1) is the vertical
scalability of cores appropriate for controlling the response time of Spark appli-
cations? (Q2) what can we achieve by vertically scaling resources? (Q3) how does
the use of off-heap memory impact the performance of xSpark when compared
against the use of on-heap memory?

5.1 Vertical Scalability of CPUs

To answer Q1 we used two applications taken from the SparkPerf4 benchmark
suite: sort-by-key and aggr-by-key. These applications perform simple aggrega-
tion and sorting operations over a randomly generated dataset. We executed
them on a single AWS EC2 m4.4xlarge VMs with 8 CPUs5 and 64 GB of mem-
ory. We executed each application with 8 different configurations, and repeated
each experiment three times, for a total of 24 executions. We started by allocating
1 core to each application. Then, we randomly changed the number of allocated
cores every second by using a uniform distribution in the range between 1 and 3
to get an expected average value of 2 cores. As for the other experiments, we kept
changing the number of allocated cores every second, and we kept increasing the
expected value from 2 to 8 cores.

Figure 2 shows the results of our experiments; the blue dotted line renders
the duration of the execution and refers to the left-hand y-axis, while the red
crossed line corresponds to the speedup (over one core) and refers to the right-
hand y-axis. The charts witness that vertically scaling the number of CPU cores
assigned to an executor strongly impacts the response time of Spark applications
with a close to linear speed-up.

To answer Q2 we studied how xSpark exploits vertical scalability to con-
trol the execution time of applications. To do that we tried to control the
two aforementioned applications and a more complex one called PageRank, a
graph-based algorithm that was taken from another benchmark suite called
SparkBench6. We executed the three applications with different deadlines and
datasets and we obtained an error as low as 1%, where the error was computed as
(deadline− actualDuration)/deadline. An error equals to 0 means that xSpark
was able to allocate the minimum amount of CPU cores and fulfill the deadline.

4 Available at https://github.com/databricks/spark-perf.
5 8 cores without hyperthreading or 16 virtual cores if enabled.
6 Available at https://github.com/CODAIT/spark-bench.

https://github.com/databricks/spark-perf
https://github.com/CODAIT/spark-bench

Towards Vertically Scalable Spark Applications 115

2 4 6 8

10

20

30

Core [#]

D
ur
at
io
n
[s
]

0

2

4

Sp
ee
dU

p
[x
]

(a) sort-by-key

2 4 6 8

20

40

60

80

Core [#]

D
ur
at
io
n
[s
]

0

2

4

6

Sp
ee
dU

p
[x
]

(b) aggr-by-key

Fig. 2. CPU allocation over application duration (dots represent execution times while
crosses refer to speedups).

To better visualize how xSpark works Fig. 3 shows the details of a controlled
executor while processing PageRank. Note that during its life-cycle an execu-
tor can execute different stages in a row (in this case 9 stages). In this chart,
the black and gray lines, which refer to the left-hand y-axis, show the actual
stage completion percentage (i.e., number of tasks completed over the total) and
the imposed one, that is the set-point of the control theoretical planners. The
blue line, which refers to the right-hand y-axis, shows the core allocated to the
executor. The E-labeled green vertical lines represent stage ends (actual stage
durations), while the red dashed vertical lines represent stage deadlines (the
last one correspond to the application deadline). The fast and fine-grained ver-
tical scalability provided by containers allows xSpark to make all the executors
(closely) follow the prescribed progress rates for each stage and thus terminate
the execution very close to the foreseen deadline (Table 1).

Fig. 3. Controlling PageRank.

116 L. Baresi and G. Quattrocchi

Table 1. Off-heap impact.

App On-heap Off-heap CPUTime Delay

aggr-by-key 100% 0% 5166 -

50% 50% 5502 6%

10% 90% 6289 21%

PageRank 100% 0% 2013 -

50% 50% 2051 2%

10% 90% 2150 7%

5.2 Vertical Scalability of Off-Heap Memory

To answer Q3 we compared the performance of aggr-by-key and PageRank when
only using on-heap memory or on-heap and off-heap memory. To carry out these
experiments we used Standard D14 v2 VMs provided by Microsoft Azure, each
of them had 16 CPUs, 112 GB of memory. The applications were executed with
three distributions of on-heap and off-heap memory with fixed core allocation: all
on-heap (100/0), balanced on-heap and off-heap (50/50) and almost all off-heap
(10/90). To evaluate the differences among the different memory configurations,
we rely on metric CpuTime, that is, the execution time times the number of used
cores: needless to say, the higher this value is, the worse it is. Moreover, aggr-by-
key was configured to use off-heap memory only for processing, while PageRank
was instructed to use off-heap memory for both processing and storing data.

In the case of aggr-by-key, when decreasing the on-heap memory allocated
to executors, up to 90%, CpuTime increased by 21% (from 5166 to 6289). This
significant difference is caused by disk swapping since cached datasets were per-
sisted onto disk. In contrast, when running PageRank, which used off-heap mem-
ory also for storing data, the impact of disk swapping was dramatically reduced
(CpuTime only increases by 7%). This is in many cases a negligible performance
reduction given that the use of off-heap memory allows xSpark to vertically scale
the memory allocated to executors and foster the parallelism among applications.

6 Conclusions

This paper introduces xSpark, our extension to Spark that supports the vertical
scalability of the resources allocated to executors. xSpark exploits containers to
provide the dynamic, fast, and fine-grained allocation of cores to containers, and
off-heap memory to allow for resizing the memory associated with executors.
Our preliminary assessment shows that xSpark can control the execution time
of Spark applications precisely and that the use of off-heap memory has limited
impact on the execution time of applications.

Towards Vertically Scalable Spark Applications 117

References

1. Amazon EC2 Autoscaling. https://aws.amazon.com/autoscaling/
2. Apache Hadoop (2017). http://hadoop.apache.org
3. Al-Dhuraibi, Y., Paraiso, F., Djarallah, N., Merle, P.: Autonomic vertical elastic-

ity of Docker containers with ELASTICDOCKER. In: IEEE 10th International
Conference on Cloud Computing (CLOUD), pp. 472–479 (2017)

4. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: A discrete-time feedback con-
troller for containerized cloud applications. In: Proceedings of the 24th ACM Inter-
national Symposium on Foundations of Software Engineering, pp. 217–228. ACM
(2016)

5. Baresi, L., Guinea, S., Leva, A., Quattrocchi, G.: Fine-grained Dynamic Resource
Allocation for Big-Data Applications. Technical report (2018). http://hdl.handle.
net/11311/1057275

6. Barna, C., Khazaei, H., Fokaefs, M., Litoiu, M.: Delivering elastic containerized
cloud applications to enable DevOps. In: Proceedings of the 12th International
Symposium on Software Engineering for Adaptive and Self-Managing Systems,
SEAMS 2017, pp. 65–75. IEEE Press (2017)

7. Dustdar, S., Guo, Y., Satzger, B., Truong, H.L.: Principles of elastic processes.
IEEE Internet Comput. 15, 66–71 (2011)

8. Hindman, B., et al.: A platform for fine-grained resource sharing in the data center.
In: Proceedings of the 8th USENIX Conference on Networked Systems Design and
Implementation, NSDI 2011, pp. 295–308. USENIX (2011)

9. Lakew, E.B., Papadopoulos, A.V., Maggio, M., Klein, C., Elmroth, E.: KPI-
agnostic control for fine-grained vertical elasticity. In: 17th IEEE/ACM Interna-
tional Symposium on Cluster, Cloud and Grid Computing, pp. 589–598. IEEE
(2017)

10. Liu, J., Shen, H., Narman, H.S.: CCRP: customized cooperative resource provi-
sioning for high resource utilization in clouds. In: Proceedings of the 3rd IEEE
International Conference on Big Data (Big Data), pp. 243–252 (2016)

11. Mao, M., Humphrey, M.: A Performance study on the VM startup time in the
cloud. In: Proceedings of the IEEE 5th International Conference on Cloud Com-
puting, pp. 423–430. IEEE (2012)

12. Merkel, D.: Docker: lightweight linux containers for consistent development and
deployment. Linux J. (2014)

13. Nikravesh, A.Y., Ajila, S.A., Lung, C.H.: Towards an autonomic auto-scaling pre-
diction system for cloud resource provisioning. In: Proceedings of the International
Symposium on Software Engineering for Adaptive and Self-Managing Systems, pp.
35–45. IEEE Press (2015)

14. Rao, J., Bu, X., Xu, C.Z., Wang, K.: A distributed self-learning approach for elastic
provisioning of virtualized cloud resources. In: IEEE 19th International Symposium
on Modeling, Analysis & Simulation of Computer and Telecommunication Systems
(MASCOTS), pp. 45–54. IEEE (2011)

15. Seracini, F., Menarini, M., Krueger, I., Baresi, L., Guinea, S., Quattrocchi, G.: A
comprehensive resource management solution for web-based systems. In: Proceed-
ings of the 11th International Conference on Autonomic Computing (2014)

16. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based
operating system virtualization: a scalable, high-performance alternative to hyper-
visors. In: Proceedings of the 2nd ACM SIGOPS/EuroSys European Conference
on Computer Systems, vol. 41, pp. 275–287. ACM (2007)

https://aws.amazon.com/autoscaling/
http://hadoop.apache.org
http://hdl.handle.net/11311/1057275
http://hdl.handle.net/11311/1057275

118 L. Baresi and G. Quattrocchi

17. Vavilapalli, V.K., et al.: Apache Hadoop yarn: yet another resource negotiator. In:
Proceedings of the 4th annual Symposium on Cloud Computing. ACM (2013)

18. Verma, A., Cherkasova, L., Kumar, V.S., Campbell, R.H.: Deadline-based workload
management for MapReduce environments: pieces of the performance puzzle. In:
NOMS, pp. 900–905. IEEE (2012)

19. Zaharia, M., Chowdhury, M., Franklin, M.J., Shenker, S., Stoica, I.: Spark: cluster
computing with working sets. In: Proceedings of the 2nd Conference on Hot Topics
in Cloud Computing, HotCloud 2010. USENIX (2010)

	Towards Vertically Scalable Spark Applications
	1 Introduction
	2 Related Work
	3 Vertical Scalability with Containers
	4 xSpark
	4.1 Hierarchical Architecture
	4.2 CPU Cores
	4.3 Memory

	5 Evaluation
	5.1 Vertical Scalability of CPUs
	5.2 Vertical Scalability of Off-Heap Memory

	6 Conclusions
	References

