
Refactoring Loops with Nested IFs
for SIMD Extensions Without Masked

Instructions

Huihui Sun1,2(B) , Sergei Gorlatch1, and Rongcai Zhao2

1 University of Münster, Münster, Germany
{huihuisun,gorlatch}@uni-muenster.de

2 National Digital Switching System Engineering and Technological
Research Center, Zhengzhou, China

Abstract. Most CPUs in heterogeneous systems are now equipped with
SIMD (Single Instruction Multiple Data) extensions that operate on
short vectors in parallel to enable high performance. Refactoring pro-
grams for such systems relies on vectorization, i.e., transforming into a
form with SIMD-instructions. We improve the state of the art in refactor-
ing loops with nested IF-statements that are notoriously difficult to vec-
torize. For IF-statements whose conditions are independent of the loop
variable, we improve the classical loop unswitching method, such that it
can tackle nested IFs. For IF-statements whose conditions change with
loop iterations, we develop a novel IF-select transformation method: (1)
it can work with arbitrarily nested IFs, and (2) while previous methods
rely on either masked instructions or hardware support for predicated
execution, our method works for SIMD extensions without such opera-
tions (as found, e.g., in IBM Power8 and ARM Cortex-A8). Our experi-
mental evaluation for the SPEC CPU2006 benchmark suite is conducted
on an SW26010 processor used in the Sunway TaihuLight supercomputer
(#2 in the TOP500 list); it demonstrates the performance advantages of
our implemented approach over the vectorizer of the Open64 compiler.

Keywords: SIMD extensions · Nested IF-statements
Loop vectorization · Loop unswitching · IF-select transformation

1 Motivation and Related Work

Most modern processors are equipped with SIMD (Single Instruction Multiple
Data) extensions that operate on short vectors in parallel to enable high per-
formance. To use this performance potential, programs must be refactored to a
form with SIMD instructions; this is traditionally called vectorization. Manual
vectorization via hand-written instrinsics is tedious, error-prone and unportable.
Therefore, automatic vectorization is an indispensable part of most modern com-
pilers, such as the commercial compiler ICC [11], as well as open-source compilers
Open64 [3], GCC [6], and LLVM [14].
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 769–781, 2019.
https://doi.org/10.1007/978-3-030-10549-5_60

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_60&domain=pdf
http://orcid.org/0000-0001-5027-9749
https://doi.org/10.1007/978-3-030-10549-5_60


770 H. Sun et al.

There are three classic vectorization approaches: (1) loop vectorization [18]
combines multiple occurrences of a scalar operation across consecutive loop iter-
ations into one SIMD instruction, (2) basic block or SLP (Superword Level
Parallelism) vectorization [13] transforms a group of isomorphic operations into
one SIMD instruction, and (3) WFV (Whole Function Vectorization) [12] con-
verts multiple instances of a kernel into SIMD instructions. These approaches
are restricted: in particular, IF-statements lead to the control flow divergence
that makes vectorization difficult.

Several methods were suggested to overcome this restriction, but they work
only in special cases. The loop unswitching method [19] requires that the IF-
condition remains the same across loop iterations. The IF conversion method
[2] targets vector computers with explicit hardware support for predicated execu-
tion, where instructions from both paths of the branch are executed speculatively,
and each instruction is then associated with a dedicated predicated register that
determines whether this instruction should modify processor state. In this paper,
we develop vectorization methods for processors with SIMD extensions that do
not have explicit hardware support for predicated execution. Shin et al. [16]
extend the classic SLP method to work in the presence of IF-statements. Our
approach is similar to [16], except that we extend loop vectorization to work in
the presence of arbitrarily nested IF-statements; we discuss further differences
below. In comparison with the WFV method [12], we vectorize loops rather
than functions in data-parallel languages (like CUDA or OpenCL). The state-
of-the-art compilers such as LLVM depend on masked instructions to vector-
ize IF-statements, and need to fall back on IF-cascades on architectures with-
out masked instructions, which makes automatic vectorization futile on such
architectures. In our recent work [8], we extend the WFV vectorizer for SIMD
extensions without masked instructions. Also Smith et al. [17] describe using
masked vector instructions for vectorization, while we target architectures with-
out masked instructions.

Summarizing, we aim at improving the state-of-the-art methods of refactor-
ing by vectorization, that currently cannot generate efficient SIMD code for loops
with arbitrarily nested IF-statements without hardware support for predicated
execution or masked instructions. We cover two cases depending on whether
the IF-condition changes across the loop iterations: (1) for loop-independent
IF-statements, we extend the loop unswitching method to arbitrarily nested
IF-statements; (2) for loop-dependent IF-statements, we develop a novel IF-
select transformation method which works for loops with arbitrarily nested IF-
statements on SIMD extensions without hardware support for predicated exe-
cution and masked instructions. We integrate our approach into the Open64
compiler [3] and evaluate it on an SW26010 processor [7] with a 256-bit SIMD
extension as used in the Sunway TaihuLight supercomputer (#2 in the TOP500
list [20]). Experiments on a set of benchmarks from SPEC CPU2006 [9] with
loops containing IF-statements confirm the efficiency of our approach.

In the remainder of the paper, Sect. 2 introduces the background on refac-
toring via vectorization and our target architecture model. Section 3 presents



Refactoring Loops with Nested IFs Without Masked Instructions 771

our vectorization approach for loops with nested IF-statements. Experimental
results are presented in Sect. 4, and Sect. 5 concludes the paper.

2 Background: SIMD Extensions and Vectorization

We target modern heterogeneous systems that comprise CPUs with SIMD exten-
sions, but without masked instructions, such as IBM Power8 [10], ARM Cortex-
A8 [4], and SW26010 [7]. While the existing frameworks like FastFlow [1] and
REPARA [5] can distribute workload among different cores using manual refac-
toring based on parallel patterns, we aim at automated refactoring within one
core using vectorization. We use the SW26010 processor as our example: each
core of it employs a 256-bit SIMD extension that works on 256 bits in parallel:
it can be one long int (256-bit) operation, or 8 integer operations, or 4 floating
point operations. Without loss of generality, we work in this paper with 64-bit
floating point values, i.e., 4 operations can be executed simultaneously on such
values.

Figure 1 illustrates a simple example of refactoring via vectorization: Fig. 1(a)
shows a loop with regular computations, so it is straightforwardly vectorizable.
Figure 1(b) shows the vectorization result using SIMD intrinsics, i.e., C-style
functions providing access to SIMD instructions. For simplicity, we call these
intrinsics instructions. A SIMD extension executes a loop iteration in Fig. 1(b)
in parallel as follows: load the operands from memory to vectors, add the two
vectors, and store the result vector into memory.

Fig. 1. (a) An easily vectorizable loop; (b) The loop after vectorization

Table 1 shows the SIMD instructions used in this paper, with the names as
used in the SW26010 processor. We only list the instructions for double preci-
sion floating point parameters; the vector type doublev4 means 4 packed 64-bit
double elements.

An important feature of our target architecture model is that we do not
assume the existence of dedicated predicate registers, while many previous
approaches to vectorization (e.g., [2]) rely on these registers and the correspond-
ing predicated execution modus. Such registers can be found, e.g., in conventional
vector processors, but not in modern CPUs with SIMD extensions. We also do
not require from our target SIMD extensions to provide masked instructions



772 H. Sun et al.

Table 1. Specific SIMD instructions used in this paper

Instruction Operation Input Output Functional description

simd load Load doublev4 va, double *addr void Load 4 double elements into

vector va from contiguous

memory starting from *addr

simd store Store doublev4 va, double *addr void Store 4 elements of vector

va into contiguous memory

starting from *addr

simd vaddd Addition doublev4 va, vb doublev4 Add 4 elements of va with 4

elements of vb element-wise,

return the result

simd vsubd Subtraction doublev4 va, vb doublev4 Subtract 4 elements of va

from 4 elements of vb

element-wise, return the

result

simd vseleq Select doublev4 va, vb, vc doublev4 Test the value of va

element-wise: if it equals 0,

then return the element of

vb, otherwise return the

element of vc

simd vfcmplt Comparison doublev4 va, vb doublev4 Compare the value of va and

vb element-wise; if va< vb,

then the element of vc is

assigned 1.0, otherwise 0

that are present, e.g., in the Intel AVX extension and used in some vectoriza-
tion methods [17]. Summarizing, we aim at covering a broader class of target
architectures than most of previous approaches.

3 Vectorization of Loops with IF-statements

Figure 2 shows the overall structure of our vectorization approach. For clarity,
we assume that there is only a single, probably nested, IF-statement in the loop.
For multiple IF-statements, we process them ordinally.

The first step in Fig. 2, SIMD preanalysis, checks whether vectorization can
be applied to the loop legally. We mainly rely on the traditional four criteria of
legal vectorization: (1) there are no dependence cycles between the statements
in the loop body; (2) the loop is countable [15], i.e., the number of iterations of
the loop is known before entering the loop body; (3) there is only one exit from
the loop; (4) the loop is the innermost loop.
Note that the IF-statement may be nested, such that either the THEN or ELSE
block or both have at least one IF-statement. Each IF-statement in a candidate
loop is put into one of two categories:

– a loop-independent IF-statement, if its condition remains the same across loop
iterations;

– a loop-dependent IF-statement, if its condition changes with loop iterations.



Refactoring Loops with Nested IFs Without Masked Instructions 773

Loop with an IF-statement

SIMD preanalysis (loop)

Loop-independent?

Loop unswitching IF-select transformation

IF-statement left
(when nested)?

IF-statement left
(when nested)?

SIMD instructions generation

Vectorized loop

no

yes

no

yesyes

no

Fig. 2. Overview of our vectorization approach for a loop with a single, possibly nested
IF-statement

According to these two cases, we apply two vectorization methods in Fig. 2:

– If the IF-statement is loop-independent, we apply our improved loop unswitch-
ing method (described in Sect. 3.1) to move the condition testing of the IF-
statement outside of the loop. If the IF-statement is nested, we first tackle
the outermost IF-statement, then tackle the inner IF-statement in the THEN
or ELSE block and so on, until there is no IF-statement left, or until we
encounter a loop-dependent IF-statement.

– If the IF-statement is loop-dependent, we apply our novel IF-select transfor-
mation (described in Sect. 3.2) that converts control dependences (IF) into
data dependences (select). If the IF-statement is nested, we first tackle the
innermost IF-statement in the corresponding THEN or ELSE block, then
tackle the outer IF-statement and so on, until there is no IF-statement left.

The output of our method is the loop without IF-statements, for which equiv-
alent SIMD instructions can be generated straightforwardly like in Fig. 1. The
following two subsections describe the two core methods (the highlighted parts
in Fig. 2) in detail.



774 H. Sun et al.

3.1 Vectorizing Loop-Independent IFs: Loop Unswitching

The loop unswitching method, originally proposed in [19], is applied to a loop
with a loop-independent IF-statement: the idea is to move the condition testing
of the IF-statement outside of the loop; the original loop is duplicated, and a
copy of it is placed inside of both THEN and ELSE blocks of the resulting
IF-statement. Note that, besides enabling vectorization, loop unswitching also
optimizes the program, because the testing of the IF-condition is performed only
once outside of the loop, rather than repetitively in each loop iteration.

Our modification of the original loop unswitching method [19] allows it to be
applied to arbitrarily nested IF-statements within a loop if all of them are loop-
independent: we first apply loop unswitching to the outermost IF-statement,
and then we apply loop unswitching iteratively to the both copies of the loop
with respect to their outermost IF-statements, and so on, see Fig. 2. However,
repetitive loop unswitching may lead to an exponential increase of code size,
thus hindering the compiler to do other optimizations. We empirically impose a
limit of 4 passes of this transformation for nested IF-statements, which is found
to be a good solution via experimental evaluation.

3.2 Vectorizing Loop-Dependent IFs: IF-select Transformation

As described above, the classical loop unswitching method is only applicable to
loop-independent IF-statements. For a loop-dependent IF-statement, we follow
the idea of [16] to transform the IF-statement into select statements. However,
our approach proceeds very differently from [16], where the original IF conversion
[2] is applied to transform a program with IF-statements into an equivalent
program with predicated statements, which are then transformed into select
statements. This transformation relies on the PHG (Predicate Hierarchy Graph)
representing the nesting relations among predicates. Our approach generates
select statements directly, without generating predicated statements: we also
avoid building and analyzing the PHG.

The idea of our approach is that we generate select statements by match-
ing the statements in the THEN block with the statements in the ELSE block
and combining each pair of matched statements into a select statement. We
say that statements are matched if they define the same variable. For exam-
ple, in the statement if(cond){dst=val1;} else{dst=val2;}, the statements
in the THEN and ELSE blocks both define dst, so they are matched, and we
can combine them into one select statement dst=select(cond,val1,val2). In
contrast, if there are no matched statements for the current statement in the
THEN or the ELSE block, then we assume that there is a fictitious statement
dst=dst to match with the current statement, and we combine the original
statement with the fictitious statement into one select statement. For exam-
ple, in the statement if(cond){dst=val1;}, there is no ELSE part and thus
no matched statement, therefore, for this single statement we generate the
select statement dst=select(cond,val1,dst). We denote the former case that
generates a select statement for two matched statements as Rule 1, and the



Refactoring Loops with Nested IFs Without Masked Instructions 775

latter case that generates a select statement for a single unmatched statement as
Rule 2.

Algorithm 1 shows the pseudocode of our IF-select transformation method
applied to an IF-statement in a loop. We first create a new block sel wn to store
the newly generated select statements (line 2). Then we sequentially traverse
the statements in the THEN and ELSE blocks (line 6): we initialize the flag
matched as FALSE (line 7) at the beginning of each traversal pass, and then
we try to match the statements in the THEN and ELSE blocks and generate
corresponding select statements according to Rule 1 and Rule 2 (line 8–44).
Eventually, if sel wn is not empty (line 45), we replace the original IF-statement
with sel wn (line 46), otherwise, we leave the IF-statement unchanged.

We describe in the following how we match statements and generate select
statements, especially when there are flow dependences in the block. We begin
with traversing the ELSE block from the current statement and looking for a
matching statement (line 10–14) for the current statement in the THEN block.
If there is no matching statement (Case 1), then we generate a select statement
according to Rule 2 (line 16) and we turn to the next statement in the THEN
block (line 17). If we find a matching statement that is the current statement in
the ELSE block (Case 2), then we combine these two statements and generate a
select statement according to Rule 1 (line 20), and we turn to the next statements
in the THEN and ELSE blocks (line 21–22).

Otherwise, if the matching statement is not the current statement in the
ELSE block (Case 3), then we reset flag matched to FALSE (line 24), and then
we turn to looking for a matching statement in the THEN block (line 26–30) for
the current statement in the ELSE block. If there is no matching statement in
the THEN block (line 31), then we generate a select statement according to Rule
2 (line 32), and we turn to the next statement in the ELSE block (line 33). If a
matching statement for the current statement is found, then it means that the
order of these two statements is different in the THEN and ELSE blocks: e.g.,
dst1 is defined before dst2 in the THEN block and after dst2 in the ELSE block.
In this case, we check whether there is a flow dependence between the memory
accesses in these two statements (line 35). If no flow dependence is found from
then stmt to then iter, then we change the order of these two statements in
the THEN block by moving then stmt after then iter. Likewise, if no flow
dependence is found from else stmt to else iter, then we change the order of
these two statements in the ELSE block by moving else stmt after else iter.
Otherwise, we retain the IF-statement unchanged, ignore all select statements
generated before, and return (line 41). After detecting flow dependences and
reordering statements, we generate select statements according to Rule 1 (line
36) and turn to the next statements in the THEN and ELSE blocks (line 37–
38). Note that case 3 enables us to generate select statements even when there
is a flow dependence between the statements in the THEN or ELSE block. If
we would simply add all matched statements to sel wn and perform an analysis
for detecting a cyclic dependence afterward, we may end up with inconsistent
semantics by ignoring flow dependences.



776 H. Sun et al.

Algorithm 1. IF-select Transformation
1 Function IF-selectTransformation(IF)
2 build a new block sel wn ; // store the generated select statements
3 get the Array Dependence Graph as ADG;
4 then stmt=get first(IF.then); // initiate the current statement in the THEN block
5 else stmt=get first(IF.else); // initiate the current statement in the ELSE block
6 while then stmt!=NULL | else stmt!=NULL do
7 BOOL matched = FALSE;
8 if then stmt != NULL then
9 else iter=else stmt;

10 while else iter!=NULL & matched ==FALSE do
11 if else iter is matched with then stmt then
12 matched = TRUE ; // find the matched else iter
13 else
14 else iter=get next(else iter);

15 if matched==FALSE then // Case 1
16 generate select statement (Rule 2) and insert it into sel wn;
17 then stmt=get next(then stmt);

18 else
19 if else iter == else stmt then // Case 2
20 generate select statements (Rule 1) and insert it into sel wn;
21 then stmt=get next(then stmt);
22 else stmt=get next(else stmt);

23 else // Case 3
24 matched = FALSE;
25 then iter=then stmt;
26 while then iter!=NULL & matched ==FALSE do
27 if then iter is matched with else stmt then
28 matched = TRUE ; // find the matched then iter
29 else
30 then iter=get next(then iter);

31 if matched==FALSE then
32 generate select statement (Rule 2) and insert it into sel wn;
33 else stmt=get next(else stmt);

34 else
35 if Forward Motion(then stmt, then iter, ADG) |

Forward Motion(else stmt, else iter, ADG) then
36 generate select statements (Rule 1) and insert it into sel wn;
37 then stmt=get next(then stmt);
38 else stmt=get next(else stmt);

39 else
40 sel wn = NULL;
41 return;

42 else if else stmt != NULL then // Case 4
43 generate select statement (Rule 2) and insert it into sel wn;
44 else stmt=get next(else stmt);

45 if sel wn != NULL then
46 replace IF with sel wn;

If we are done with all statements in the THEN block and there are still
statements in the ELSE block (Case 4), then for the current statement in the
ELSE block we generate a select statement according to Rule 2 (line 43), and we
turn to the next statement in the ELSE block (line 44), until we are also done
with all statements in the ELSE block.

We further extend our IF-select transformation method (Algorithm1) to han-
dle nested loop-dependent IF-statements: we tackle the IF-statements starting
from the innermost one and moving to the outermost, see Fig. 2.



Refactoring Loops with Nested IFs Without Masked Instructions 777

Fig. 3. (a) A loop with a nested loop-dependent IF-statement; (b) Apply IF-select
transformation to the innermost IF-statement; (c) Apply IF-select transformation to
the outermost IF-statement; (d) Vectorized code with SIMD instructions

Figure 3(a) illustrates how we vectorize a nested loop-dependent IF-
statement. According to Algorithm 1, we first transform the innermost IF-
statement to a select statement (Rule 1), with the result in Fig. 3(b). Then we
transform the outermost IF-statement to a select statement (Rule 2), with the
result in Fig. 3(c). Finally, we generate SIMD instructions as shown in Fig. 3(d).

4 Experimental Evaluation and Results

We integrated our presented vectorization approach for loops with nested IF-
statements into the Open64 compiler [3] by adding to it our improved methods of
loop unswitching (Sect. 3.1) and IF-select transformation (Sect. 3.2). The SIMD
preanalysis and the generation of SIMD instructions shown in Fig. 2 have been
slightly adapted in order to exploit our proposed vectorization methods.

Table 2. Benchmark kernels with IF-statements from SPEC CPU2006

Program Kernel Kernel runtime (%) Application category IF-stmt type

429.mcf primal bea mpp 49.95 Combinatorial optimization Nested

456.hmmer P7Viterbi 99.53 Search gene sequence database Nested

464.h264ref SetupFastFullPelSearch 40.93 Video compression Nested

454.calculix e c3d 69.12 Structural mechanics Nested

482.sphinx3 vector gautbl eval logs3 38.67 Speech recognition Single

458.sjeng std eval 15.11 Pattern recognition Nested

462.libquantum quantum toffoli 63.41 Physics and quantum computing Nested



778 H. Sun et al.

We conduct our experiments on the programs with IF-statements from the
SPEC CPU2006 benchmark suite [9], listed in Table 2. Out of 29 programs in
SPEC CPU2006, the 7 programs in the table contain IF-statements in their most
time-consuming loops; 6 of these programs have nested IF-statements within
loops. Our experimental platform is an SW26010 processor with a 256-bit dedi-
cated SIMD extension, running under Linux Redhat Enterprise 5.

429
.m

cf

456
.hm

mer

464
.h2

64r
ef

454
.ca

lcu
lix

482
.sp

hin
x3

458
.sje

ng

462
.lib

qu
ant

um mean
0

0.5

1

1.5

2

2.5

Sp
ee
du

p

Open64 Vectorization
Our Approach

Fig. 4. Kernel speedups: our approach compared with the Open64 vectorization

For the seven benchmarks listed in Table 2, both kernel and whole-program
speedups are presented. We compare two vectorization approaches: the Open64
compiler vectorization (performing loop unswitching and IF conversion) and our
approach. All programs are compiled with the same flags: -O3, -LNO:simd=1.
The execution time of a kernel or program is measured as the average of 20 runs.
The results are within a few percent over each run. The speedups are calculated
as compared with the execution on the same SW26010 processor, but without
vectorization, i.e., when the SIMD extension is not used.

Figure 4 shows the kernel speedups. The mean kernel speedup achieved by
our approach is 1.43x compared to the non-vectorization baseline and 1.25x
compared to the Open64 vectorization. Our approach outperforms Open64 vec-
torization for 4 out of 7 programs and matches it for 3 remaining programs. We
attribute the performance gains as follows. For 454.calculix, our loop unswitching
method is applied twice to the two-level nested loop-independent IF-statement.
For 456.hmmer, there is a two-level nested IF-statement: firstly, our loop
unswitching method is applied to the outermost loop-independent IF-statement,
and then our IF-select transformation is applied to the innermost loop-dependent



Refactoring Loops with Nested IFs Without Masked Instructions 779

IF-statement, the same is done for 464.h264ref. For 462.libquantum, our IF-
select transformation is applied to the two-level nested loop-dependent IF-
statement. Our approach achieves a speedup similar to the Open64 vectorizer for
482.sphinx3, because its IF-statement is not nested. The remaining 2 programs
which show no improvement are 429.mcf and 458.sjeng: they are not vectorized.
For 429.mcf, its IF-statement contains pointers where dependence cycles are con-
servatively assumed and, therefore, the surrounding loop is excluded from vector-
ization. For 458.sjeng, there is a three-level nested loop-dependent IF-statement,
however, the dependence cycles between the indirected arrays exclude the loop
from vectorization in the SIMD preanalysis phase.

429
.m

cf

456
.hm

mer

464
.h2

64r
ef

454
.ca

lcu
lix

482
.sp

hin
x3

458
.sje

ng

462
.lib

qu
ant

um mean
0

0.5

1

1.5

2

Sp
ee
du

p

Open64 Vectorization
Our Approach

Fig. 5. Whole-program speedups: our approach compared with the Open64 vectoriza-
tion

Figure 5 shows the whole-program speedups. The mean whole-program
speedup achieved by our approach is 1.26x compared to the non-vectorization
baseline and 1.11x compared to the Open64 vectorization. In most cases, the
achieved whole-program speedups are consistent with the cumulative speedups
of the most-time consuming kernels.

5 Conclusions

In this paper, we present an approach to refactoring loops with nested IF-
statements by vectorizing them. Our new contributions to the state of the art
in program vectorization are as follows:

– for loop-independent IF-statements, our modified loop unswitching method
extends previous work to the case of arbitrarily nested IF-statements;



780 H. Sun et al.

– for loop-dependent IF-statements, we develop a novel IF-select transforma-
tion method for targeting arbitrarily nested IF-statements and for SIMD
extensions without predicated execution and masked instructions.

We integrate our approach into the Open64 compiler and we experimentally
confirm its advantages using SPEC CPU2006 benchmarks on the SW26010 pro-
cessor used in the Sunway TaihuLight supercomputer (#2 in the TOP500 list).

References

1. Aldinucci, M., Danelutto, M., Kilpatrick, P., Meneghin, M., Torquati, M.: Acceler-
ating code on multi-cores with FastFlow. In: Proceedings of the 17th International
Conference on Parallel Processing (Euro-Par), pp. 170–181 (2011). https://doi.
org/10.1007/978-3-642-23397-5 17

2. Allen, J.R., Kennedy, K., Porterfield, C., et al.: Conversion of control dependence to
data dependence. In: Proceedings of the Symposium on Principles of Programming
Languages (POPL), Austin, Texas, USA, pp. 177–189 (1983). https://doi.org/10.
1145/567067.567085

3. AMD: Using the x86 Open64 Compiler Suite (2012). For x86 Open64 version 4.5.2
4. ARM. https://developer.arm.com/products/processors/cortex-a/cortex-a8.

Accessed 24 Sept 2018
5. Danelutto, M., Garcia, J.D., Sanchez, L.M., Sotomayor, R., Torquati, M.: Introduc-

ing parallelism by using REPARA C++11 attributes. In: 24th Euromicro Interna-
tional Conference on Parallel, Distributed, and Network-Based Processing (PDP),
pp. 354–358 (2016). https://doi.org/10.1109/PDP.2016.115

6. Free Software Foundation: Using the GNU Compiler Collection (GCC). https://
gcc.gnu.org/onlinedocs/gcc/. Accessed 24 Sept 2018

7. Fu, H., Liao, J., Yang, J., et al.: The Sunway TaihuLight supercomputer: system
and applications. Sci. China Inf. Sci. 59, 1–16 (2016)

8. Haidl, M., Moll, S., Klein, L., Sun, H., Hack, S., Gorlatch, S.: PACXXv2 + RV: an
LLVM-based portable high-performance programming model. In: Proceedings of
the Fourth Workshop on the LLVM Compiler Infrastructure in HPC, pp. 7:1–7:12
(2017). https://doi.org/10.1145/3148173.3148185

9. Henning, J.L.: SPEC CPU2006 benchmark descriptions. ACM SIGARCH Comput.
Arch. News 34, 1–17 (2006)

10. IBM. https://www.ibm.com/systems/power/hardware/power8/. Accessed 24 Sept
2018

11. Intel: Intel C++ Compiler Developer Guide and Reference (2017). Version 18.0
12. Karrenberg, R., Hack, S.: Whole-function vectorization. In: Proceedings of the

International Symposium on Code Generation and Optimization (CGO), Cha-
monix, France, pp. 141–150 (2011). https://doi.org/10.1109/CGO.2011.5764682

13. Larsen, S., Amarasinghe, S.P.: Exploiting superword level parallelism with multi-
media instruction sets. In: Proceedings of the Conference on Programming Lan-
guage Design and Implementation (PLDI), Vancouver, Britith Columbia, Canada,
pp. 145–156 (2000). https://doi.org/10.1145/358438.349320

14. Lattner, C., Adve, V.S.: LLVM: a compilation framework for lifelong program
analysis and transformation. In: Proceedings of the International Symposium on
Code Generation and Optimization (CGO), San Jose, CA, USA, pp. 75–88 (2004)

https://doi.org/10.1007/978-3-642-23397-5_17
https://doi.org/10.1007/978-3-642-23397-5_17
https://doi.org/10.1145/567067.567085
https://doi.org/10.1145/567067.567085
https://developer.arm.com/products/processors/cortex-a/cortex-a8
https://doi.org/10.1109/PDP.2016.115
https://gcc.gnu.org/onlinedocs/gcc/
https://gcc.gnu.org/onlinedocs/gcc/
https://doi.org/10.1145/3148173.3148185
https://www.ibm.com/systems/power/hardware/power8/
https://doi.org/10.1109/CGO.2011.5764682
https://doi.org/10.1145/358438.349320


Refactoring Loops with Nested IFs Without Masked Instructions 781

15. Naishlos, D.: Autovectorization in GCC. In: Proceedings of the GCC Developers
Summit, Ottawa, Ontario, Canada, pp. 105–118 (2004)

16. Shin, J., Hall, M.W., Chame, J.: Superword-level parallelism in the presence of
control flow. In: Proceedings of the International Symposium on Code Generation
and Optimization (CGO), San Jose, CA, USA, pp. 165–175 (2005)

17. Smith, J.E., Faanes, G., Sugumar, R.A.: Vector instruction set support for condi-
tional operations. In: Proceedings of the International Symposium on Computer
Architecture (ISCA), Vancouver, BC, Canada, pp. 260–269 (2000)

18. Sreraman, N., Govindarajan, R.: A vectorizing compiler for multimedia extensions.
Int. J. Parallel Program. 28, 363–400 (2000)

19. Thomas, J., Allen, F., Cocke, J.: A Catalogue of Optimizing Transformations.
Prentice-Hall, Englewood Cliffs (1971)

20. TOP500. https://www.top500.org/lists/2018/06/. Accessed 24 Sept 2018

https://www.top500.org/lists/2018/06/

	Refactoring Loops with Nested IFs for SIMD Extensions Without Masked Instructions
	1 Motivation and Related Work
	2 Background: SIMD Extensions and Vectorization
	3 Vectorization of Loops with IF-statements
	3.1 Vectorizing Loop-Independent IFs: Loop Unswitching
	3.2 Vectorizing Loop-Dependent IFs: IF-select Transformation

	4 Experimental Evaluation and Results
	5 Conclusions
	References




