A Resource Allocation Framework with
Qualitative and Quantitative SLA Classes

Tarek Menouer! ™) Christophe Cérin', Walid Saad2, and Xuanhua Shi®

1 Université Paris 13, Sorbonne Paris Cité, Paris, France

{tarek.menouer, christophe.cerin,walid.saad}@lipn.univ-parisi3.fr

2 ENSIT, LATICE Laboratory, University of Tunis, Tunis, Tunisia
3 Huazhong University of Science and Technology, Wuhan, China
xhshi@hust.edu.cn

Abstract. This paper presents a new resource allocation framework
based on SLA (Service Level Agreements) classes for cloud computing
environments. Our framework is proposed in the context of containers
with two qualitative and two quantitative SLAs classes to meet the needs
of users. The two qualitative classes represent the satisfaction time crite-
rion, and the reputation criterion. Moreover, the two quantitative classes
represent the criterion over the number of resources that must be allo-
cated to execute a container and the redundancy (number of replicas)
criterion. The novelty of our work is based on the possibility to adapt,
dynamically, the scheduling and the resources allocation of containers
according to the different qualitative and quantitative SLA classes and
the activities peaks of the nodes in the cloud. This dynamic adapta-
tion allows our framework a flexibility for efficient global scheduling of
all submitted containers and for efficient management, on the fly, of
the resources allocation. The key idea is to make the specification on
resources demand less rigid and to ask the system to decide on the pre-
cise number of resources to allocate to a container. Our framework is
implemented in C++ and it is evaluated using Docker containers inside
the Grid’5000 testbed. Experimental results show that our framework
gives expected results for our scenario and provides with good perfor-
mance regarding the balance between objectives.

Keywords: Scheduling and resource management
Optimization - Performance measurement and modelling
New economic model - Cloud computing

Containers to support high performance computing

and industrial workloads

1 Introduction

®

Check for
updates

Nowadays, different forms of cloud computational resources exist such as virtual
machines (VMs), containers, or bare-metal resources, having each their own
characteristics. Container technology is relatively new in production systems

© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 69-81, 2019.
https://doi.org/10.1007/978-3-030-10549-5_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_6&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_6

70 T. Menouer et al.

but it is not a new concept. Container is a light-weight OS-level virtualization
technique that allows to run an application and its dependencies in a resource-
isolated process.

This paper presents a new opportunistic scheduling and resource allocation
system based on an economic model related to different classes for SLAs (Service
Level Agreements). The objective is to address the problems of companies that
manage a private infrastructure of machines i.e. a cloud platform, and would like
to optimize the scheduling of several containers submitted online by users. Each
container is executed using a set of computing resources.

To specify the user desired SLAs classes, we propose to modelled each class
by 3 services. This choice is motivated by our experience with the Fonds Unique
Interministériel (FUI) Wolphin project [6]. It is based on the observation that
hosting solutions do not allow manufacturers or cloud providers to offer to their
users a fair or accurate invoice, i.e. a precise invoice with respect to the waiting
time, the nodes reputation, consumption of resources and the number of repli-
cas. The AlterWay company, coordinator of the Wolphin project, noticed that
the project must respond to the following usages with regard to the deployed
services: (i) Premium service is designed to users who want to get a ‘high quality’
service; (ii) Advanced service is designed to users who want to get an ‘average
quality’ service; and (iii) Best effort service is designed to users who want to get
a ‘low/less quality’ service.

In this work, we decompose the scheduling and allocation problems into 4
steps, namely selection of a container in a queue, selection of candidate nodes,
computation of resources and allocation on a node. One can view the scheduler
has a program that repeats forever these 4 steps. The third step is new, compared
to the existing state-of-art research because, to the best of our knowledge, none
of the existing cloud scheduler computes, dynamically, the number of resources
allocated to a container. This is the first contribution of the paper. The user do
not request for a fixed number of resources. The second contribution is related
to the new economic model sustained by the 4 SLA classes regrouped in 2 qual-
itative and 2 quantitative SLA classes. The third contribution of the paper is
the experiments that we conduct with Docker containers. We have implemented
a new scheduler, based on the Docker API, for the creation of containers and
we execute traces representative from the High Performance Computing (HPC)
world and traces representative of Web hosting companies.

The organization of the paper is as follows. Section 2 presents some related
works. Section 3 describes our framework architecture. Section4 presents our
qualitative and quantitative SLA classes. Section 5 describes how the SLA classes
are used by our framework. Section 6 introduces exhaustive emulation that allows
the validation of our proposed framework. A last, a conclusion and some future
works are given in Sect. 7.

2 Related Work

In the literature, all problems of resources allocation or resources management
refer to the same class of scheduling problems. They consist generally in associ-

A Resource Allocation Framework 71

ating a user’s request to one or several computing cores. Most of these problems
are NP-hard [13].

In the context of containers scheduling on cloud computing, there exists
several studies, as those presented in [10,14,16]. However, to the best of our
knowledge, all frameworks schedule containers according to a fixed configuration
in term of computing resources. From an industrial point of view, we may cite,
as examples, the schedulers inside Google Kubernetes [16], Docker Swarm [10]
and Apache Mesos [14].

Google Kubernetes [16] is a scheduler framework which represents an orches-
tration system for containers based on pods concept. Pods are a group of one
or more containers. They are always co-located and co-scheduled and run in
a shared context. Moreover, they will be run on the same physical or virtual
machine. The principle of Kubernetes scheduling can be summarized in two
steps. First, filter all machines to remove machines that do not meet certain
requirements of the pod. Second, classify the remaining machines using priori-
ties to find the best fit to execute a pod.

Docker Swarm [10] is an important container scheduler framework developed
by Docker. Docker is the technology used by the FUI Wolphin project [6] which
is the support of our work. The Swarm manager is responsible for scheduling the
containers on the agents or nodes. Swarm also has two steps to finally selecting
the node that will execute the container. First, it uses filters to select suitable
nodes to execute the container. Then, it uses, according to a ranking strategy,
the most suitable one. Actually, Swarm has three ranking strategies: (i) Spread
strategy which executes a container on the node having the least number of
containers, (ii) Bin packing strategy, in contrast with spread, chooses the node
with the most packed containers on it, and (iii) Random strategy which chooses
a node randomly.

The field of Virtual Machines (VMs) scheduling may also serve as a reference
for containers scheduling. Various approximation approaches are applied in the
work of Tang et al. [12]. Authors propose an algorithm that can produce high-
quality solutions for hard placement problems with thousands of machines and
thousands of VMs within 30 seconds. This approximation algorithm strives to
maximize the total satisfied application demand, to minimize the number of
application starts and stops, and to balance the load across machines.

Targeting the energy efficiency and SLA compliance, Borgetto et al. [2]
present an integrated management framework for governing Cloud Computing
infrastructures based on three management actions, namely, VM migration and
reconfiguration, and power management on physical machines. By incorporating
an autonomic management loop, optimized using a wide variety of heuristics
ranging from rules over random methods, the authors demonstrated that the
proposed approach can save energy up to 61.6% while keeping SLA violations
acceptably low.

In contrast to these related and above-mentioned studies, our proposed
framework combines scheduling and allocation strategies with qualitative and
quantitative SLA classes. The SLA classes are proposed to answer the needs of

72 T. Menouer et al.

different users. The benefit of our framework consists to use the different SLA
classes to: (i) select the first container that must be executed; (ii) decide the
cloud node that must execute the selected container; (iii) compute dynamically
the number of resources allocated to the considered container and (iv) decide the
number of replicas for a container and choose nodes which execute the considered
container and it’s redundancy replicas.

A preliminary work has been published in [9]. In this paper, we consider the
following improvements: (i) we consider 4 SLA classes instead of 2 SLA classes to
have an economic model with several classes; (ii) the general scheduling schema
is composed of 4 steps instead of 3 to satisfied all the SLA classes; and (iii)
experiments are emulation on Grid’5000 testbed, with Docker containers, instead
of simulations. In other words, this work introduces a more general and realistic
framework compared to [9].

3 Architecture

The goal of our framework is to give answers to the problem stated as follows:
in cloud computing environment, how to use a set of qualitative and quantitative
SLA classes to optimize the global scheduling of containers submitted online by
users?

New
Container Containers scheduling and resources

allocation

‘ Qualitative and Quantitative SLA Classes ‘ 1

l Cloud infrastructure
Containers' queue
2 n

Fig. 1. Framework’s architecture

Figure 1 depicts the architecture of our framework. Each time a new container
is submitted online, the user must firstly select its services in the qualitative and
quantitative SLA classes. Then, the new submitted container is inserted in the
containers’ queue. After that, our framework, schedules and allocates resources
to each container according to its configuration in term of SLA classes. Finally,
the submitted container is executed in the most appropriate cloud node.

4 Qualitative and Quantitative SLA Classes

As said before, our framework is based on SLA classes to configure each new
submitted container. Our SLA classes are regrouped in two qualitative and two

A Resource Allocation Framework 73

quantitative classes. Each class is proposed with 3 services: Premium, Advanced
and Best effort.

The two qualitative classes address: (i) the satisfaction time criterion, that
means, the user waiting time before the execution of the user container; and
(ii) the reputation criterion, that means the node choice of the user to execute
his container. Moreover, the two quantitative classes address: (i) the number of
resources criterion, that means the number of resources must be allocated to
execute a container; and (ii) the redundancy criterion which set the number of
time that a container is executed to ensure fault tolerance.

In our context, to satisfy the user needs according to its SLAs classes, we
propose to represent each service by one priority value as following: (i) Premium
service: priority value = 3; (ii) Advanced service: priority value = 2; and (iii) Best
effort service: priority value = 1. As we have 4 SLA classes (2 qualitative and
2 quantitative), each container is represented by 4 priorities values, each value
represent the assignment of the service in one SLA class. For the first qualitative
SLA class (satisfaction time), the modeling of our 3 services is motivated by the
fact that users are regrouped in 3 categories:

— Premium service: It is designed for users who wish to find a solution as soon
as possible without considering the price of the operation,

— Advanced service: It is designed for users that have a limited financial budget
but still wish to have a solution in the smallest reasonable execution time,

— Best effort service: It is designed to users who have no time constraints, but
want to pay for the minimum possible price.

For the second qualitative SLA class (reputation), our modeling based on 3
services is motivated by the fact that nodes are different according to the cloud
infrastructure. Generally the differences between nodes is based on reputation
criterion as: (i) security of sites; (ii) reliability of hardware; and (iii) reliability
of network. In this context, users are also regrouped in 3 categories:

— Premium service: It is designed for users which execute their containers in
nodes with high reputation;

— Advanced service: It is designed for users which execute their containers in
nodes with an average reputation;

— Best effort service: It is designed to users who have no constraints about the
reputation of the cloud nodes. The goal is to has a low cost price.

For the first quantitative SLA class (number of resources), the modeling of
our 3 services is motivated by the fact that the need of resources for each user
is different. Generally users are regrouped in 3 categories:

— Premium service: It is designed to users with long service that needs many
computing cores.

— Advanced service: It is designed to users with short service that need some
computing cores.

— Best effort service: It is designed to users with micro service that do not need
many computing cores. Its service life is less than the frequency of metrics’
collection.

74 T. Menouer et al.

For the second quantitative SLA class (redundancy replicas), the modeling
of our 3 services is motivated by the fact that users are regrouped also in 3
categories according of the number of redundancy replicas of containers:

— Premium service: It is designed for users who execute their containers with a
big number of redundancy replicas in different nodes to be sure that at the
end of the execution, they get a solution;

— Advanced service: It is designed for users who execute their containers with
average number of redundancy replicas in different nodes;

— Best effort service: It is designed to users who execute their containers without
constraint about the number of replicas.

5 Scheduling and Resources Allocation Based on SLA
Classes

As many other scheduling system proposed in the literature, we sketch to use
a containers’ queue to store all submitted containers. To schedule and allocate
resources to containers, our framework goes through four phases according to
the qualitative and quantitative SLA classes:

1. Container scheduling: It is based on a combination between qualitative and
quantitative classes. To select the first container which must be executed
we propose to use the PROMETHEE II (Preference Ranking Organization
METHod for Enrichment Fvaluations) algorithm;

2. Container reputation: It is based on the qualitative reputation class, to select
a set of nodes that can execute the container and its redundancy replicas;

3. Container allocation: It is based on the quantitative number of resources class,
to set dynamically the number of resources must be allocated to the selected
container;

4. Container ‘redundancy replicas’: It is based on the quantitative ‘redundancy
replicas’ class, to set the number of replicas for a container. This phase is
also used to assign a container and its replicas to cloud nodes using the bin
packing heuristic.

5.1 Container Scheduling

To select the first container which must be executed we propose to use, in this
paper and for convenience, the PROMETHEE II algorithm [11] because it is a
multi-criteria decision algorithm. It is also possible to use for example a CPLEX
solver [4] in order to solve the decision problem, or any other techniques. In
our context, if the selected container (c,) can not be executed because of a lack
of resources for example, the container ¢, wait in the container’s queue and
a new container is selected by the PROMETHEE II algorithm. Remind that
PROMETHEE II is an algorithm which permits the building of an outranking
between different alternatives [11]. It is used in this step because it is known to
provide with a ‘good’ compromise between qualitative and quantitative criteria

A Resource Allocation Framework 75

and it is mathematically well founded. Indeed, the PROMETHEE II has been
used with success to solve many problems [1]. It is based on a comparison, pair by
pair, of possible decisions (containers) along the qualitative criteria (satisfaction
time and reputation) and the quantitative criteria (number of resources and
redundancy replicas). More details about the use of PROMETHEE IT algorithm
in our context is presented in [9]. PROMETHEE II algorithm has a complexity
of O(g.nlog(n)) [3] (where q represents the number of criteria and n the number
of possible decisions (alternatives)).

5.2 Container Reputation

This step is used by our framework to select nodes that must execute a container
and its copies according to the container service. Indeed, our framework classifies
statically all nodes which form the cloud infrastructure in 3 categories: (i) High
reputation nodes; (ii) Average reputation nodes; and (iii) Low reputation nodes.

Then, each service in the qualitative reputation class uses nodes category,
as following: (i) Premium service uses the high reputation nodes category; (ii)
Advanced service uses the average reputation nodes category; and (iii) Best effort
service uses the low reputation nodes category.

5.3 Container Allocation

Our framework uses the quantitative number of resources class to set, for each
container, the number of resources. In this step, we propose to use the same idea
as the introductory work presented previously in [9], which is applied for any kind
of nodes in the cloud (heterogeneous and not heterogeneous nodes). The principle
is to set, for each container, a range on resources demand instead of specifying a
fixed quantity of resources. It means that each service in the quantitative number
of resources class has a number of resources bounded between the min and max
parameters. The bound of cores for each service is proposed to be sure that each
container, with low service in the number of resources class, cannot be executed
with more cores than a container with a high service in the number of resources
class.

To compute the bound of cores, we propose first to set N as the number
of resources of the smallest machine of the infrastructure. N is set in this way
to be sure that in any situation, the container is executed on one cloud node.
After setting IV, each service in the SLA quantitative number of resources class
calculates the min and max number of resources. As we have 3 services, we
propose to manage 3 intervals with the same distance as follows:

— Best effort class : Min number of resources = 1; and Max number of resources

_ 1
=3 x N,

— Advanced class : Min number of resources = Max number of resources of the
Best effort service + 1; and Max number of resources = % X N,
— Premium class : Min number of resources = Max number of resources of the

Advanced service + 1; and Max number of resources = N.

76 T. Menouer et al.

After bounding the number of resources for each service in the quantitative
number of resources class, we use a function that set, dynamically, the number
of resources for a container (c,) at time ¢ using: (i) bounds cores (min and max
cores) in each service; (ii) number of containers saved in the containers’ queue
at time ¢ with the same reputation service as the container c,; and (iii) number
of free cores available in all the candidates nodes that can execute the container
c; at time t.

Let r; be the number of resources that must be allocated to container ¢; with
quantitative number of resources priority p;. We suppose that the containers’
queue has n containers (c1,ca, - ,¢,) with the same reputation service as ¢;.
Lest set (p1,p2, - , pn) the quantitative number of resources priorities associated
to the previous n containers saved in the queue and wc the number of waiting
cores in all candidates nodes that can execute ¢; (with the same reputation
service as ¢;). Then r; is computed as presented in the formula 1.

ik we
ry= 200 (1)

The formula 1 computes, at each time ¢, a fair partitioning of all waiting
cores between containers according to their quantitative number of resources
services. Next, the system checks if r; > Max cores (M aZ ores) of its quantitative
number of resources service, then r; = MaZcores, else if 7, < (Mincores) of its
quantitative number of resources service, r; = MiNcores-

For example, let us consider an infrastructure composed of 3 nodes with the
Premium service in the reputation class, and 9 waiting cores in node;, 6 waiting
cores in nodes and 6 waiting cores in nodes. The total number of waiting cores
is 21. Let us also use the following three containers which have Premium service
in the reputation class and have the following configuration:

— Container c¢y: Premium service on the quantitative number of resources class
(priority = 3), Min cores = 7 and Max cores = 9;

— Container co: Advanced service on the quantitative number of resources class
(priority = 2), Min cores = 4 and Max cores = 6;

— Container c3: Best effort service on the quantitative number of resources class
(priority = 1), Min cores = 1 and Max cores = 3.

The number of resources is set as following:

— Container ¢; : r; = 31*221 = 10. As 10 > 9 (max cores for Premium service),

we set 71 = 9. Then, the number of waiting cores will be equal to (9-9)+6-+6

= 12. Now, in the queue, only 2 containers are saved: co and cs.
— Container ¢y : 19 = 221112 = 8. As 8 > 6 (max cores for Advanced service), we
set 7o = 6. Then, the number of waiting cores will be equal to 0+ (6-6)+6=6.

Now, in the queue there is only the container cs.

— Container c3 : r3 = 1—’1‘6 = 6.

A Resource Allocation Framework 77

5.4 Container Replicas

In our framework each container and its replicas are executed in different nodes of
the same reputation category nodes. That means, we cannot execute a container
and it’s redundancy replicas in the same cloud node. To compute the number of
redundancy replicas for each container, our framework sets an empirical value for
each service in the quantitative redundancy replicas class. The unique constraint
is that the highest service has the biggest value for the number of replicas. For
example, we may have the following setting:

— Premium service, our framework sets 3 redundancy replicas for each container;

— Advanced service, our framework sets 2 redundancy replicas for each con-
tainer;

— Best effort service, our framework sets 1 redundancy replica for each container.

We propose to add in our framework the redundancy replicas class to manage
some fault tolerance issues. For example, if one cloud node (node;) is stopped
for different reasons, all containers who are executing on node, are also stopped.
In this case, if the user chooses a high service in the redundancy replicas class,
he will be granted that another copy of his container is running in another node.
In reality, the usual practical assumption is that there is very low likelihood that
all nodes will stop at the same time.

In our system, we guarantee that each container or its redundancy replicas are
executed in fifferent nodes. To assign a container to a cloud node, our framework
applies the well known bin packing principle which is a combinatorial NP-hard
problem [5]. The principle of the bin packing heuristic consists, for each new
container ¢;, to assign it to the node n; which has the less available free resources.
This means that we select the node (not yet visited) that has the smallest number
of idle cores and that can execute the container c;.

The goal of using this heuristic is to minimize the number of active nodes to
reduce the cost of exploiting the infrastructure.

5.5 Complexity Analysis

Based on above mentioned arguments, the overall time complexity of our app-
roach is the complexity of the 4 steps: O(¢.nlog(n)), NP-hard problem, O(n)
and O(n) respectively and for n being the node number of the architecture.

6 Experimental Evaluation

In this section, we introduce emulation result of our framework to check if
it meets our expectations. For the emulation, we have used the Docker con-
tainer technology inside the Grid5000 platform [7], an experimental large-scale
testbed for distributed computing in France. For our experimental evaluation,
we reserved an infrastructure composed of 480 computing cores distributed in
15 nodes (Intel Xeon CPU). The 15 nodes are split as following: (i) 5 nodes form

78 T. Menouer et al.

high reputation category; (ii) 5 nodes form average reputation category; and (iii)
5 nodes form low reputation category.

In this experimental evaluation, each container is submitted by one of the
following three users, each user has a particular services in the SLA classes:

— Premium user: Premium service for all qualitative and quantitative SLA
classes;

— Advanced user: Advanced service for all qualitative and quantitative SLA
classes;

— Best effort user: Best effort service for all qualitative and quantitative SLA
classes.

Each container runs a unique simple parallel application which load comput-
ing cores. The number of cores occupied by each container is set automatically
by our framework as presented in Subsect. 5.3. However, each container has also
a Sequential Life Time (SLT) set when the container is submitted and it is equal
to 5min. Then, according to the number of cores allocated for each container
(N), the Parallel Life Time (PLT) which represent the real executing time of
the container is computed as being PLT = SLTT

Moreover, in this series of emulation, we introduce the performance of our
framework according to the submitting containers type. In this context, we pro-
pose two types of experiments: (i) containers submitted at the same time; and
(ii) containers submitted online. The first one stresses the behavior of our frame-

work. The second one represents a “normal” operating mode.

® Premium User ® Advanced User Best effort User ® Premium User ™ Advanced User © Best effort User

3 7 11 15 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 3 7 11 15 19 23 27 31 35 39 43 47 51 55 50 63 67 71 75 79 83 87
1 65 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Execution order of containers Execution order of containers.
Fig. 2. Submission of 90 Docker con- Fig. 3. Submission of 90 Docker con-
tainers at the same time tainer online with a fixed frequency

6.1 Containers Submitted at the Same Time

Figure 2 shows the order of execution of 90 containers submitted at the same
time by 3 users, each user submits 30 containers. As a result, it is clear that
our framework starts by the execution, firstly, of containers submitted by the
Premium user, then containers submitted by the Advanced user. Finally, our
framework executes containers submitted by the Best effort user. This result
confirms that our framework respects the priorities of containers. We note also

A Resource Allocation Framework 79

that when our framework cannot execute a container which has a high service
priority, as the container submitted by the Premium user, for lack of resources,
our framework executes another container, for a user who has a lower service
request in order to optimize the global scheduling of all containers. The goal is
not to stop the scheduling process when a container is not executed and to wait.

6.2 Containers Submitted Online

Figure 3 shows the order of execution of 90 containers submitted online with a
fixed frequency. Each 3s 3 containers are submitted by 3 different users. That
means, each 3s, each user submits one container. Figure4 shows the order of
execution of 90 containers submitted according to the Google Cluster Data
traces [15] patterns. The Google traces information (May 2011), are related to
the submission frequency time of requests on cluster of about 12.5k machines. In
our case, the 90 containers are submitted using the same submission frequency
time as the first 90 requests submitted in Google traces. The 90 containers are
distributed as follows: (i) 2 containers submitted by Premium user and (ii) 88
containers submitted by Advanced user. In a complementary way, Fig.5 shows
the order of execution of 90 containers submitted according to the real-world
trace files of an international company called Prezi [17]. These traces represent
the submission frequency time of the web oriented applications. In our case, the
90 containers are submitted using the same submission frequency time as the
first 90 web oriented applications submitted in Prezi traces. The 90 containers
are distributed as follows: (i) 10 containers submitted by Premium user, (ii)
13 containers submitted by Advanced user and (iii) 67 containers submitted by
Best effort user. According to Figs. 3, 4 and 5, we note that there is an overlap
between the execution of containers. This expected overlap is due to the fact
that containers are submitted online by different users.

6.3 Comparison Between the Average Number of Cores Allocated
for Each User

To the best of our knowledge, there is no framework which configures dynami-
cally the number of cores that must be allocated to each container. This explains
that it is impossible to compare the performance obtained using our framework
with another state-of-art framework. However, in Table1 we shows a compari-
son between the average number of cores assigned to each user. As a result, we
note that our framework assigns, for each submission type, more cores to the
user with highest services. We note also that the user with the low service gets
always the smallest number of cores.

80 T. Menouer et al.

® Premium User ® Advanced User Best effort User ® Premium User ® Advanced User ' Best effort User

3 7 1115 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87 3 7 1115 19 23 27 31 35 39 43 47 51 55 59 63 67 71 75 79 83 87
1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89 1 5 9 13 17 21 25 29 33 37 41 45 49 53 57 61 65 69 73 77 81 85 89

Execution order of containers Execution order of containers
Fig. 4. Submission of 90 Docker con- Fig. 5. Submission of 90 Docker
tainers according to Google traces container according to Prezi traces
frequency frequency

Table 1. Comparison between the average number of cores allocated for each user

Submitting type Average number of cores allocated for each user

Premium user | Advanced user | Best effort user

Submission at the same 27.1 15.26 6.16
time

Submission online with a 27.63 15.26 5.33
fixed frequency

Submission online 32 13.7 -
according to Google traces

Submission online 30.4 17.15 3.98

according to Prezi traces

7 Conclusion

We have presented, in this paper, a new framework adapted for cloud comput-
ing environments in the context of containers technologies. The novelty of our
framework relies on SLA classes to optimize the global scheduling and the allo-
cation of resources for containers. OQur solution proposes to users two qualitative
and two quantitative SLAs classes with three services for each class (Premium,
Advanced and Best effort). In our framework, the number of resources are com-
puted, dynamically, according to the quantitative number of resources class.

As a first perspective, we propose to compute the number of resources by
taking into consideration the submitted container history. It is challenging to
efficiently decide when and how to reconfigure the cloud in order to dynamically
adapt to the changes. Such a challenge has been identified as a MAPE-K (Mon-
itoring, Analysis, Planning, Execution, and Knowledge) control loop by IBM,
deeply investigated in [8], resulting in the concept of autonomic computing that
could be used in our case.

We may also wonder if the approach is flexible enough in the context of
multiple cloud providers. This question poses the problem of the adoption of our
economic model. We also propose, as a perspective, to add to our framework
a consolidation heuristic which allows to set dynamically the number of active

A Resource Allocation Framework 81

cloud nodes in the infrastructure. This means that, according to the global load
of nodes, the framework decides the number of active nodes to reduce the energy
consumption.

Acknowledgements. This work is funded by the French Fonds Unique Ministériel
(FUI) Wolphin Project. We thank Grid5000 team for their help to use the testbed.

References

10.

11.

12.

13.

14.
15.
16.
17.

. Behzadian, M., Kazemzadeh, R., Albadvi, A., Aghdasi, M.: Promethee: a compre-

hensive literature review on methodologies and applications. Eur. J. Oper. Res.
200(1), 198-215 (2010)

Borgetto, D., Maurer, M., Costa, G.D., Pierson, J., Brandic, I.: Energy-efficient and
SLA-aware management of IaaS clouds. In: International Conference on Energy-
Efficient Computing and Networking, e-Energy 2012, Madrid, Spain, p. 25 (2012)
Calders, T., Assche, D.V.: Promethee is not quadratic: an o(qnlog(n)) algorithm.
Omega 76, 6369 (2018)

IBM CPLEX solver: https://www.ibm.com/products/ilog-cplex-optimization-
studio

Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory
of NP-Completeness. W. H. Freeman & Co., New York (1979)

Fui-22 wolphin project: https://lipn.univ-paris13.fr/~menouer/wolphin.html
Grid5000: https://www.grid5000.fr/

Huebscher, M.C., McCann, J.A.: A survey of autonomic computing—degrees, mod-
els, and applications. ACM Comput. Surv. 40(3), 7:1-7:28 (2008)

Menouer, T., Cerin, C.: Scheduling and resource management allocation system
combined with an economic model. In: IEEE International Symposium on Parallel
and Distributed Processing with Applications (IEEE ISPA) Guangzhou, China
(2017)

Peinl, R., Holzschuher, F., Pfitzer, F.: Docker cluster management for the cloud-
survey results and own solution. J. Grid Comput. 14(2), 265-282 (2016)
Deshmukh, S.C.: Preference ranking organization method of enrichment evaluation
(promethee). Int. J. Eng. Sci. Invent. 2, 28-34 (2013)

Tang, C., Steinder, M., Spreitzer, M., Pacifici, G.: A scalable application placement
controller for enterprise data centers. In: Proceedings of the 16th International
Conference on World Wide Web, Banff, Alberta, Canada, pp. 331-340, May 2007
Ullman, J.: NP-complete scheduling problems. J. Comput. Syst. Sci. 10(3), 384—
393 (1975)

The apache software foundation. mesos, apache. http://mesos.apache.org/
Google cluster data traces. https://github.com/google/cluster-data/

Kubernetes scheduler. https://kubernetes.io/

Prezi real-world traces. http://prezi.com/scale/

https://www.ibm.com/products/ilog-cplex-optimization-studio
https://www.ibm.com/products/ilog-cplex-optimization-studio
https://lipn.univ-paris13.fr/~menouer/wolphin.html
https://www.grid5000.fr/
http://mesos.apache.org/
https://github.com/google/cluster-data/
https://kubernetes.io/
http://prezi.com/scale/

	A Resource Allocation Framework with Qualitative and Quantitative SLA Classes
	1 Introduction
	2 Related Work
	3 Architecture
	4 Qualitative and Quantitative SLA Classes
	5 Scheduling and Resources Allocation Based on SLA Classes
	5.1 Container Scheduling
	5.2 Container Reputation
	5.3 Container Allocation
	5.4 Container Replicas
	5.5 Complexity Analysis

	6 Experimental Evaluation
	6.1 Containers Submitted at the Same Time
	6.2 Containers Submitted Online
	6.3 Comparison Between the Average Number of Cores Allocated for Each User

	7 Conclusion
	References

