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Abstract. In this work a previously published bioinformatics pipeline
was reimplemented across various computational platforms, and the per-
formances of its steps evaluated. The tested environments were: (I) dedi-
cated bioinformatics-specific server (II) low-power single node (III) HPC
single node (IV) virtual machine. The pipeline was tested on a use case
of the analysis of a single patient to assess single-use performances, using
the same configuration of the pipeline to be able to perform meaningful
comparison and search the optimal environment/hybrid system configu-
ration for biomedical analysis. Performances were evaluated in terms of
execution wall time, memory usage and energy consumption per patient.
Our results show that, albeit slower, low power single nodes are compa-
rable with other environments for most of the steps, but with an energy
consumption two to four times lower. These results indicate that these
environments are viable candidates for bioinformatics clusters where long
term efficiency is a factor.
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1 Introduction

Biomedical data are growing both in size and breath of possible uses. Of spe-
cial importance are the so called biomedical big data, blanket term describing
data generated from several machines and used to describe the health state of a
person:

1. Next generation sequencing NGS. NGS technology. RNA-seq: experi-
mental procedure, challenges and opportunities in statistical data analysis.
ChIP-Seq: experimental procedure and statistical data analysis.
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2. Proteomics and Metabolomics. LC/MS technology, challenges in data
processing. Biological pathways.

3. Biomedical imaging. Imaging techniques, acquisition methods and data
structures/characteristics for different imaging modalities.

4. Statistical Analysis of Imaging Data. Data processing techniques, study
designs, analysis strategies, research questions and goals. Radiomics.

5. Brain Networks and Imaging Genetics. The importance of brain net-
works in differentiating between healthy and mentally ill subjects, methods on
how to estimate the brain network which may or may not rely on additional
clinical, demographic and genetic information.

6. Molecular genetics and population genetics. Biological backgrounds for
statistical genetics, concepts from population genetics that are most relevant
to association analysis.

7. Genetic association studies. Tests for association, challenges especially in
the context of genome-wide association studies (GWAS), including how to
correct for population stratification and multiple testing.

These datasets are known to contain vast amount of information, especially
when connected together to enhance the power of the biological modeling [2,7].

Genetic information is important in studying cancer, as frequently the pro-
cess is kickstarted from a small subset of mutations in the genetic code of the
cell [5]. These mutations can, via genomic instability, generate a wide variety of
mutations in the cancerous cells, often different not only from case to case, but
even inside a single case. To address this problem and to find interesting treat-
ment target, identifying the original mutations is necessary, and this requires an
in depth analysis of the genome of both healthy and tumoral tissues, possibly
across several subjects.

With the increasing demand of resources from ever-growing datasets, it is
not favorable to focus on single server execution, and is better to distribute the
computation over cluster of less powerful nodes. The computational pipeline also
has to manage a high number of subjects, and several steps of the analyses are
not trivial to be done in a highly parallel way. Thus, the importance of system
statistics management as the efficiency usage of available resources are crucial to
reach a compromise between computational execution time and energy cost. For
these reasons our main focus is on the performance evaluation of a single sub-
ject without using all the available resources, as these could be more efficiently
allocated to concurrently execute several subjects at the same time. Due to the
nature of the employed algorithms, not all steps can exploit the available cores
in a highly efficient way: some scales sublinearly with the number of cores, some
have resource access bottleneck. Other tools are simply not implemented with
parallelism in mind, often because they are the result of the effort of small teams
that prefer to focus their attention on the scientific development side rather than
the computational one.

Moreover in order to obtain an optimal execution of bioinformatics pipelines,
each analysis step might need very different resources. This means that any sub-
optimal component of a server could act as a bottleneck, requiring bleeding edge
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technology if all the steps are to be performed on a single machine. Hybrid sys-
tems could be a possible solution to these issues, but designing them requires
detailed information about how to partition the different steps of the pipeline.
This work explores the different behavior of a recent pipeline on different com-
puting environments as a starting point for this partition.

1.1 GATK-LODn Pipeline

This pipeline has been developed in 2016 by Valle et al. [9], and codifies a
new approach aimed to Single Nucleotype Polimorphism (SNP) identification in
tumors from Whole Exome Sequencing data (WES). WES is a type of “next
generation sequencing” data [1,8,11], focused on the part of the genome that
actually codifies proteins (the exome). Albeit known that non-transcriptional
parts of the genome can affect the dynamic of gene expression, the majority of
cancers inducing mutations are known to be on the exome, thus WES data allow
to focus the computational effort on the most interesting part of the genome.
Being the exome in human approximately 1% of the total genome, this approach
helps significantly in reducing the number of false positives detected by the
pipeline. The different sizes of next generation sequencing dataset are shown in
Table 1.

The GATK-LODn pipeline is designed to combine results of two different
SNP-calling softwares, GATK [6] and MuTect [4]. These two softwares employ
different statistical approaches for the SNP calling: GATK examines the healthy
tissue and the cancerous tissue independently, and identifies the suspect SNPs by
comparing them; Mutect compares healthy and cancerous tissues at the same
time and has a more strict threshold of selection. In identifying more SNPs,
GATK has a higher true positive calling than Mutect, but also an higher number
of false positives. On the other end Mutect has few false positives, but often does
not recognize known SNPs. The two programs also call different set of SNPs,
even when the set size is similar. The pipeline therefore uses a combination of
the two sets of chosen SNPs to select a single one, averaging the strictness of
Mutect with the recognition of known variants of GATK.

The pipeline workflow includes a series of common steps in bioinformatics
analysis and in the common bioinformatics pipelines. It includes also a sufficient
representative sample of tools for the performances statistical analysis. In this
way the results extracted from the single steps analysis could be easily general-
ized to other standard bioinformatics pipelines.

1.2 System Resources Management

As mentioned earlier, a bioinformatics pipeline consists of various steps that
could be independent or sequential from each other. Each step could need more
or less resources (e.g. memory and threads). So the optimal pipeline execution
is closely related to the amount of available resources. The number of samples
(patients) to process can penalize performances. There are two main optimiza-
tion strategies: the first is to improve the efficiency of a single run on a single
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Table 1. Typical dataset size for a single patient of different types of next generation
sequencing. BAM file size refers to the size of the binary file containing the reads from
the machine.

Coverage No. of reads Read length BAM file size NGS size

Whole genome 37.7x 975,000,000 115 82 GB 104 GB

Whole genome 38.4x 3,200,000,000 36 138 GB 193 GB

Exome 40x 110,000,000 75 5.7 GB 7.1 GB

patient and the second is to employ massive parallelization on various samples.
In both cases we have to know the necessary resources of the pipeline (and in
a fine grain the resources of each step) and the optimal concurrency strategy
to be applied to our workflow (see Fig. 1). In the analyses we want to highlight
limits and efficiencies of the most common computational environments used in
big data analytics, without any optimization strategy of the codes or systems.

We also focused on a single patient analysis, the base case study to design a
possible parallelization strategy. This is especially relevant for the multi-sample
parallelization, that is the most promising of the two optimization strategies, as
it does not rely on specific implementations of the softwares employed in the
pipeline.

Fig. 1. Examples of concurrency workflow of two processes. The first case (a) represents
a simple (naive) sequential workflow; the second (b) highlights a brute force paralleliza-
tion; the third (c) is the case of a perfect match between the available resources and
the requested resources. Often brute force parallelization of pipelines done as in the
image b ends up overlapping the most computationally intensive steps. Measuring the
minimum viable requirements for the execution allow to better allocate resources as
seen in the image c.

2 Materials and Methods

The pipeline was implemented on 5 computational environments: 1 server grade
machine (Xeon E52640), 1 HPC node (Xeon E52683), 2 low power machines
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(Xeon D and Pentium J) and one virtual machine built on an AMD Opteron
hypervisor. The characteristics of each node are presented in Table 2.

The server-grade node is a typical node used for bioinformatics computation,
and as such features hundreds of GB of memory with multiple cores per moth-
erboard: for these reasons we chose it as reference machine and the following
results are expressed in relation to it.

The two low-power machines are designed to have a good cost-to-performance
ratio, especially for the running cost1. These machines have been proven to be
a viable solution for high performance computations [3]. Their low starting and
running cost mean that a cluster of these machines would be more accessible for
research groups looking forward to increase their computational power.

The last node is a virtual machine, designed to be operated in a cloud envi-
ronment.

The monitoring tool used is Telegraf, which is an agent written in Go for col-
lecting, processing, aggregating, and writing metrics. Each section of the pipeline
sends messages to the Telegraf daemon independently.

Regardless of the number of cores of each machine we restrict the number
of cores used to only two to compare the statistics: this restriction certainly
penalize the environment with multiple cores but with a view of maximizing

Table 2. Characteristics of the tested computational environments. Electrical costs
are estimated as 0.25 e/kWh; CPU frequencies are reported in GHz; TDP: Thermal
Design Power, an estimation indicator of maximum amount of heat generated by a
computer chip when a “real application” runs.

Class Server grade machines Low power machines Virtual machine

CPU Intel Xeon Intel Xeon Intel Pentium Intel Xeon AMD Opteron

Version E5-2683v3 E5-2640v2 J4205 D-1540 6386 SE

Microarchitecture Haswell Ivy Bridge EP Apollo Lake Broadwell Piledriver

Launch date Q3’14 Q3’13 Q4’16 Q1’15 Q3’12

Lithography 22 nm 22 nm 14 nm 14 nm 32 nm

Cores/threads 14/28 8/16 4/4 8/16 16

Base/Max Freq 2.00/3.00 2.00/2.50 1.50/2.60 2.00/2.60 2.80/3.50

L2 Cache 35 MB 20 MB 2 MB 12 MB 16 MB

TDP 120 W 95 W 10 W 45 W 115 W

Total CPUs 2 2 1 1 1

Total cores/threads 28/56 16/32 4/4 8/16 16

Total Memory 256 GB 252 GB 8 GB 32 GB 60 GB

System power 240 + 60 W 190 + 60 W 10 + 2 W 45 + 10 W 115 + 10 W

Electrical costs 650 e/year 550 e/year 26 e/year 120 e/year 273e /year

System price 4000–6000 e 3000–5000 e 100–130 e 900–1200 e 2000-3000e

1 Running cost is evaluated as the energy consumption that the node requires per
subject, assuming that the consumption scales linearly with the number of cores
used in the individual step.
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the parallelizations and minimize the energy cost it is the playground to com-
pare all the available environments. Another restriction is applied to the chosen
architectures: since available low-power machines provides only x86-architectures
also the other environments are forced to work in x86 to allow the statistics
comparison.

2.1 Dedicated Bioinformatics Server

The reference node for the tests is one of the servers employed for bioinformatics
analyses by the authors. This is a single node with 252 GB memory, 125 TB
storage and 2 CPU E5-2640v2, with 16 cores each.

This machine was designed to be able to sustain most commonly performed
bioinformatics pipelines, using high volume memory and storage.

2.2 HPC Cluster Hardware Configuration

The HPC cluster is composed by 27 Infiniband interconnected worker nodes,
which provide 640 core (Hyperthreaded, E5-2640 cpu), 48 HT cores X5650, 48
HT cores E5-2620, 168 HT cores E5-2683v3, 15 GPUs (8 Tesla K40, 7 Tesla K20,
2 x (4GRID K1)), 2 MICs (2 x Xeon Phi 5100).

A dedicated storage has been setup for the cluster. Storage is accessible by
all the nodes through the GPFS file system. In particular the setup includes
2 disks servers, 60 TB of shared disk space, 4 TB for shared home directories.
Disks servers are equipped with dual 10 Gb/s Ethernet.

Worker nodes are connected each other via Infiniband (QDR) and are
equipped with 1 Gb Ethernet interfaces for storage and network traffic. Home,
data and softwares directories are located on a dedicated GPFS file system and
shared between all the cluster nodes. The LSF batch system (version 9.1.3) is
used to manage job submission to the cluster nodes. The execution environment
is shared with a number of other users, therefore in order to measure resource
usage, it has been necessary to monitor our jobs from within.

2.3 The Low-power Cluster

The nodes of the cluster are located in a I.N.F.N. facility located in Bologna
(Italy) and are based on the current state-of-the-art low-power processors tech-
nology. Low power processors are gaining interest in many scientific applicative
fields. Designed for the embedded, mobile or consumer market, they are progres-
sively reducing the performance gap with server grade environments, with the
added values of keeping a competitive edge on the bill of material and electrical
energy costs.

In particular, low power Systems-on-Chip (SoCs) are designed to meet the
best computing performance with the lowest power consumption. The SoCs
superior performance/consumption ratio is driven by the growing demands for
energy-saving boards in mobile and embedded industries. Indeed, the primary
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design goal for SoCs has been low power consumption because of their use in
battery-powered devices or rugged industrial embedded devices. On the con-
trary, the current server grade CPUs were designed to meet high performance
demand required by data center power-hungry clients. Moving away from their
embedded and consumer worlds, SoCs are becoming a valid alternative environ-
ment for scientific applications without sacrificing too much the performances of
server grade CPUs.

The low-power cluster is equipped with nodes based on ARMv7, ARMv8 and
x86 low-power environments and is currently used for scientific benchmarks and
real-time application tests. Nevertheless, in this work we have only considered
x86-based low-power environments because they do not require porting compil-
ing issues and because on the basis of our experience other low-power archi-
tectures (i.e. ARM based) are equivalent to x86 low-power platform in term of
CPU performance. GPU-enhanced applications can result in a different scenario
between ARM and x86 platforms, however, the software pipeline in this work
were developed for CPU only.

We chose the following two x86 low-power architectures because they are
deployed in different fields of applications: the extremely low-power Intel Pen-
tium J Series (Apollo Lake code name) and the high-performance low-power
Intel Xeon D Family (Broadwell code name). We would stress the fact that the
Intel Xeon D Family is on the edge of the low-power boundary definition, as
shown in the last two rows at the bottom of the Table 2 with the thermal design
power (TDP) and median Bill Of Material (BOM) of each platform, but we
chose it because it is a natural glue between the low-power platforms and the
server-grade platforms.

2.4 Virtual Machine

The virtual machine used in our tests is made available by the project
Cloud@CNAF with 16 VCPUs, 60 GB RAM and an attached persistent stor-
age volume of 1 TB. A small list of the benefits from an end-user point of
view is: lower computer costs; flexibility and scalability; virtually unlimited
storage capacity; increased data reliability; easier group collaboration; device
independent.

The Cloud@CNAF IaaS (Infrastructure as a Service) is based on OpenStack,
a free and open-source cloud-computing software platform and it has all the ser-
vices deployed using a High-Availability (HA) setup or in a clustered manner
(for ex. using a Percona XtraDB MySQL clustering solution for the deployment
of the DBs). It is able to satisfy diversified users needs of compute and storage
resources, having available, up to now, 66 hypervisors, with a total of approx-
imately 1400 CPUs, 4 TB of memory and more than 70 TB of storage. The
hypervisors range from SuperMicro nodes with 2 × 8 Core AMD Opteron Pro-
cessor 6320, 64 GB of memory to 2 × 12 AMD Opteron Processor 6238, 80 GB of
memory, connected to a PowerVault MD3660i through a GPFS cluster, acting as
backend for the cloud VMs ephemeral storage and the persistent, block-storage
one.
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2.5 Pipeline Steps

The pipeline steps that have been examined are a subset of all the possible steps:
we only focus on those whose computational requirements are higher and thus
require the most computational power. These steps are:

1. mapping: takes all the reads of the subjects and maps them on the reference
genome;

2. sort: sorts the sequences based on the alignment, to improve the reconstruc-
tion steps;

3. markduplicates: checks for read duplicates (that could be imperfections in
the experimental procedures and would skew the results);

4. buildbamindex: indexes the dataset for faster sorting;
5. indexrealigner: realigns the created data index to the reference genome;
6. BQSR: base quality score recalibration of the reads, to improve SNPs detec-

tion;
7. haplotypecaller: determines the SNPs of the subject;
8. hardfilter: removes the least significant SNPs.

The following statistics were evaluated:

1. memory per function: estimate percentage of the total memory available
to the node used for each individual step of the pipeline;

2. energy consumption: estimated as the time taken by the step, multiplied
by the number of cores used in the step and the power consumption per
core (TDP divided by the available cores). As mentioned before this normal-
ization unavoidably penalize the multi-core machines but give us a term of
comparison between the different environment;

3. elapsed time: wall time of each step.

The pipeline was tested on the patient data from the 1000 genome project
with access code NA12878, sample SRR1611178. It is referred as a Gold Standard
reference dataset [10]. It is generated with an Illumina HiSeq2000 platform,
SeqCap EZ Human Exome Lib v3.0 library and have a 80x coverage. As Gold
Standard reference it is commonly used as benchmark of new algorithm and for
our purpose can be used as valid prototype of genome.

3 Results

Memory occupation is one of the major drawbacks of the bioinformatics
pipelines, and one of the greater limits to the possibility of parallel computation
of multiple subjects at the same time. As it can be seen in Fig. 2, the memory
occupation is comprised between 10% and 30% on all the nodes. This is due
to the default behavior of the GATK libraries to reserve a fixed percentage of
the total memory of the node. The authors could not find any solution to pre-
vent this behavior from happening. As it can be noticed, in the node with the
greatest amount of total memory (both Xeon E5 and the virtual machine) the
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Fig. 2. Memory used for each step of the pipeline. Due to the GATK memory alloca-
tion strategy, all steps use a baseline amount of memory proportional to the available
memory. Smaller nodes, like the low power ones, require more memory as the baseline
allocated memory is not sufficient to perform the calculation.

requested memory is approximately stable, as is always sufficient for the required
task. The memory allocation is less stable in the nodes with a limited memory
(Xeon D and Pentium J), as GATK might requires more memory than what
initially allocated to perform the calculation. The exception to this behavior is
the “mapping” step, that uses a fixed amount of memory independently from the
available one (between 5 and 7 GB). This is due to the necessity of loading the
whole human reference genome (version hg19GRCh37) to align each individual
read to it. All the other steps do not require the human reference genome but can
work on the individual reads, allowing greater flexibility in memory allocation.

Fig. 3. Time elapsed per step of the pipeline, and total elapsed time. In the sorting
step, Pentium J is 20 times slower than the reference, probably due to the limited cache
size.
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As can be seen in Figs. 3 and 4, this increase of memory consumption does
not correspond to a proportional improvement of the time elapsed in the com-
putation.

The elapsed time for each step and for the whole pipeline can be seen in
Fig. 3. It can be seen that there is a non consistent trend in the behavior of
the different environments. Aside from the most extreme low power machine,
the pentium J, the elapsed times are on average higher for the low power and
slightly higher for the cloud node, but the time for the individual rule can vary.
In the sorting step, Pentium J is 20 times slower than the reference. This is
probably due to the limited cache and memory size of the pentium J, that are
both important factors determining the execution time of a sorting algorithm
and are both at least four to six times smaller than the other machines. The
HPC machine, the Xeon E52683, is consistently faster than the reference node.

The energy consumption per step can be seen in Fig. 4. The low power
machines are consistently less than half the baseline consumption. Even con-
sidering the peak of consumption due to the long time required to perform the
sorting, the most efficient low power machine, the pentium J, consumes 40%
of the reference, and the Xeon D consumes 60% of the reference. The HPC
machine, the Xeon E52683, have consumption close to the low power nodes, bal-
ancing out the higher energy consumption with a faster execution speed. The
virtual machine has the highest consumption despite the fact that the execution
time of the whole pipeline is comparable to the reference due to the high TDP
compared to its execution time.

Fig. 4. Energy consumption per pipeline step and on the whole pipeline. Energy con-
sumption is estimated as the time taken by the step, multiplied by the number of cores
used in the step and the power consumption per core (TDP divided by the available
cores).
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4 Discussion and Conclusions

Bioinformatic pipelines are one of the most important uses of biomedical big data
and, at the same time, one of the hardest to optimize, both for their extreme
requisites and the constant change of the specification, both in input-output
data format and program API.

This makes the task of pipeline optimization a daunting one, especially for
the final target of the results; physicians and biologists could lack the techni-
cal expertise (and time) required to optimize each new version of the various
softwares of the pipelines. Moreover, in a verified pipeline updating the software
included without a long and detailed crossvalidation with the previous one is
often considered a bad practice: this means that often these pipelines are run-
ning with underperforming versions of each software.

Clinical use of these pipelines is growing, in particular with the rise of the
concept of “personalized medicine”, where the therapy plan is designed on the
specific genotype and phenotype of the individual patient rather than on the
characteristic of the overall population. This would increase the precision of the
therapy and thus increase its efficacy, while cutting considerably the trial and
error process required to identify promising target of therapy. This requires the
pipelines to be evaluated in real time, for multiple subjects at the same time
(and potentially with multiple samples per subject). To perform this task no
single node is powerful enough, and thus it is necessary to use clusters. This
brings the need to evaluate which is the most cost and time efficient node that
can be employed.

In the cost assessment there are several factors that need to be considered
aside of the initial setup cost, namely cost for running the server and opportunity
cost for obsolescence. Scaled on medium sized facilities, such the one that could
be required for a hospital, this cost could quickly overcome the setup cost. This
cost does also include not only the direct power consumption of the nodes, but
also the required power for air conditioning to maintain them in the working
temperature range. Opportunity costs are more complex, but do represent the
loss of possibility of using the most advanced technologies due to the cost of the
individual node of the cluster. Higher end nodes require a significant investment,
and thus can not be replaced often.

With this perspective in mind, we surmise that energy efficient nodes present
an interesting opportunity for the implementation of these pipelines. As shown in
this work, these nodes have a low cost per subject, paired with a low setup cost.
This makes them an interesting alternative to traditional nodes as a workhorse
node for a cluster, as a greater number of cores can be bought and maintained
for the same cost.

Given the high variability of the performances in the various steps, in par-
ticular with the sorting and mapping steps, it might be more efficient to employ
a hybrid environment, where few high power nodes are used for specific tasks,
while the bulk of the computation is done by the energy efficient nodes. This is
true even for those steps that can be massively parallelized, such as the map-
ping, as they benefit mainly from a high number of processors rather than few
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powerful ones. In this work we focused only on CPUs computation, but another
possibility could be an hybrid-parallelization approach in which the use of a sin-
gle GPU accelerator can improve the parallelization of the slower steps. Each
pipeline workflow requires its own analyses and tuning to reach the best per-
formances and the right parallelization strategy based on the use which it is
intended but a low energy node approach is emerging as a good alternative to
the more expensive and common solutions.
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