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Abstract. Iterative compilation focused on specialized phase orders
(i.e., custom selections of compiler passes and orderings for each pro-
gram or function) can significantly improve the performance of compiled
code. However, phase ordering specialization typically needs to deal with
large solution space. A previous approach, evaluated by targeting an x86
CPU, mitigates this issue by first using a training phase on reference
codes to produce a small set of high-quality reusable phase orders. This
approach then uses these phase orders to compile new codes, without any
code analysis. In this paper, we evaluate the viability of using this app-
roach to optimize the GPU execution performance of OpenCL kernels. In
addition, we propose and evaluate the use of a heuristic to further reduce
the number of evaluated phase orders, by comparing the speedups of the
resulting binaries with those of the training phase for each phase order.
This information is used to predict which untested phase order is most
likely to produce good results (e.g., highest speedup). We performed our
measurements using the PolyBench/GPU OpenCL benchmark suite on
an NVIDIA Pascal GPU. Without heuristics, we can achieve a geomean
execution speedup of 1.64×, using cross-validation, with 5 non-standard
phase orders. With the heuristic, we can achieve the same speedup with
only 3 non-standard phase orders. This is close to the geomean speedup
achieved in our iterative compilation experiments exploring thousands
of phase orders. Given the significant reduction in exploration time and
other advantages of this approach, we believe that it is suitable for a
wide range of compiler users concerned with performance.

Keywords: GPU · Phase ordering · Optimization

1 Introduction

Compilers optimize a function/program by applying a set of analysis and trans-
formation operations over a representation of its source code (see, e.g., [2]). Those
operations are implemented in compiler passes, each typically implementing a
well delimited operation with a specific purpose, such as unrolling loops.

The set of compiler passes considered, and the order in which they are exe-
cuted, can have a measurable impact in the quality of the final solution, for one
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or more given metrics of interest in the context of software compilation target-
ing Central Processing Units (CPUs) [16] and hardware compilation targeting
Field-Programmable Gate Arrays (FPGAs) [10]. On Graphics Processing Units
(GPUs), using this technique can also yield considerable improvements (e.g.,
up to 5× when targeting a NVIDIA Pascal-based GPU [15]).

The problem of finding orders of compiler passes (also called compiler
sequences or phase orders) that result in better optimization (e.g., vs –O3) of
a given function/program, for a given target and objective metric, is known as
the phase ordering problem. The number of compiler passes available in current
compilers is high and increasing (e.g., LLVM 3.3 has 157 passes, LLVM 3.9 has
245 passes). In LLVM, compiler phase ordering is accessible through passing
ordered lists of flags to the LLVM Optimizer command-line tool (opt). Although
the user interface is simple, the amount of available compiler passes results in
a too large number of combinations to try manually. Moreover, compiler passes
can have complex interactions (positive or negative) with other passes depending
on when in the compilation process they are executed and depending on static
and/or dynamic features of the function/program being compiled. Due to these
factors, phase ordering is generally considered a difficult problem.

GPUs are widely used in a number of heterogeneous systems, such as smart-
phones, personal computers and supercomputers. Therefore, the performance of
these systems strongly depends on how effectively GPUs are used. Purini and
Jain [16] previously developed an approach for fast phase ordering, and evaluated
it on CPUs. They found that their approach produced binaries that were com-
parable to slower state-of-the-art alternatives. In this paper, we evaluate their
kind of approach in the context of OpenCL kernel compilation for GPUs. Going
one step further, we propose and experiment with the use of a simple heuristic
to make the approach more effective in generating suitable compiled code.

The rest of the paper is organized as follows. Section 2 provides background,
including the description of aspects we believe to be important for an approach
to address in order for it to suit a large number of compiler users concerned
with optimization. Section 3 presents a selection of work in the field of Design
Space Exploration (DSE) of compiler phase ordering, including the DSE app-
roach that we augment with an heuristic. The heuristic we propose and evaluate
in this paper is described in Sect. 4. Section 5 describes our experimental setup,
including the target GPU and the OpenCL kernels used in our experiments. The
experimental results are presented in Sect. 6. Finally, concluding remarks about
the work presented in this paper are presented in Sect. 7.

2 Background and Motivation

This section presents what we believe are the important qualities a phase order-
ing specialization approach must have in order for it to suit a large number of
compiler users and use cases.
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2.1 Concerns Related with Phase Ordering

Given how difficult it can be to manually derive effective compiler phase orders,
multiple automatic approaches have been proposed (see, e.g., [10,15,16]). Most
approaches presented in the state-of-the-art, given a new program/function,
generate new (i.e., previously untested) sequences for evaluation. Using these
sequences without strenuous validation can result in a number of unwanted sce-
narios. These include the premature halting of the compiler execution, broken
compiled code, or even the generation of compiled code that is functionally dif-
ferent than it should, which is arguably the worst possible outcome as it can be
difficult to detect. Moreover, a number of the approaches suffer from an unac-
ceptably high DSE overhead and/or they sacrifice too much in terms of the
quality of the solutions.

Assuring Functional Correctness. It is known that even production compil-
ers have bugs. Eide and Regehr evaluated thirteen production-quality C compil-
ers and, for each, were able to find cases where incorrect code to access volatile
variables was generated [9]. Iterative approaches for automatic phase ordering,
such as the ones based on genetic algorithms or simulated annealing, typically
rely on the generation and evaluation of a large number of compiler sequences
(e.g., hundreds, thousands) during DSE to achieve considerable improvements
in the compiled code in relation to an already optimized baseline (e.g., produced
using the most aggressive optimization level). The number of sequences that can
be generated by these iterative approaches is very large, so naturally most of
them were not previously validated by the compiler writers, and expecting them
to be exhaustively tested is not realistic. Therefore, compiler bugs are often
exposed by these iterative methods. When custom compiler pass sequences are
used, there is an high risk of side effects caused by bugs in any given compiler
pass not previously detected by the battery of tests performed by the compiler
developers. Even the validation of individual compiler passes is often incomplete.
Zhao et al. [20] were able to create a formally verified version of the mem2reg
pass, though they needed to rewrite the pass to do so and write 50, 000 lines
of proof scripts and infrastructure. However, despite this significant effort, the
formally verified pass was less optimized than the original non-verified pass.

Balancing Exploration Overhead and Solution Quality. DSE on top of
standard compilation can add a considerable overhead. This is aggravated in
cases where more than one execution per compiled version is required in order
to cover multiple execution flows, which might be required for a more thorough
validation of the generated compiled code. Exploration overhead might be signifi-
cant for most compiler users, to be further aggravated if the execution time of the
function/program is considerable (e.g., a function/program that even compiled
with GCC/Clang –O3 takes 1 h to execute). In some cases, certain techniques
can be used to reduce execution time of a function/program while still main-
taining it representative of the original function/program (e.g., reduce number



Fast Heuristic-Based GPU Compiler Sequence Specialization 497

of iterations of an outer loop) in a way that the same set of compiler knobs found
for the code version modified in preparation for DSE can be used on the origi-
nal version with comparable improvements. However, these techniques might not
be straightforward to implement automatically. Either way, independently of the
execution time for a given function/program, performing fewer compilations and
executing the compiled code fewer times is preferable.

2.2 What Can Make an Approach Suitable to Most Compiler
Users?

A considerable number of DSE approaches from the state-of-art are not suitable
to most compiler users because of they require non-trivial validation by the
final compiler user side and/or they require a large number of iterations to
considerably improve most codes.

Figure 1 presents the different roles that actors in an approach of such type
can take. To significantly lessen the requirement of validating (at the final user
side) the functional correctness of the code compiled with the use of custom
phase orders, we can evaluate only compiler sequences that have been previ-
ously demonstrated to work well on a set of representative functions/programs.
Considerable efficiency (regarding number of compilations/evaluations) can be
achieved by selecting a small, yet highly representative, set of these sequences.
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Fig. 1. Roles in a type of approach that uses predefined custom phase orders.

3 Related Work

To the best of our knowledge, Cooper et al. [8] were the first to propose iterative
compilation as a means to find phase orders to improve the quality of the com-
piled code with respect to a given metric. They used iterative compilation in the
form of a Genetic Algorithm (GA) as a way to minimize the footprint of compiled
code. Cooper et al. [7] explore compiler optimization phase ordering testing dif-
ferent randomized search algorithms based on genetic algorithms, hill climbers
and randomized sampling. Almagor et al. [3] rely on GAs, hill climbers, and
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greedy constructive algorithms to explore compiler phase ordering at program-
level to a simulated SPARC processor. Nobre [13] presents results for the use of
a approach that relies in simulated annealing to specialize compiler sequences in
the context of software and hardware compilation. More recently, Nobre et al. [14]
presented an approach based on sampling over a graph representing transitions
between compiler passes, targeting the LEON3 microarchitecture.

Agakov et al. [1] present a methodology to reduce the number of evaluations
of the program being compiled with iterative approaches. Models are gener-
ated taking into account program features and the shapes of compiler sequence
spaces generated from iteratively evaluating a reference set of programs. These
models are used to focus the iterative exploration for a new program, target-
ing the TI C6713 and AMD Au1500 embedded processors. Kulkarni and Cava-
zos [11] proposed an approach that formulates the phase ordering challenge as a
Markov process where the current state of a function being optimized conforms
to the Markov property (i.e., the current state must have all the information
to decide what to do next). Instead of suggesting complete compiler sequences,
these authors use a neural network to propose the next compiler pass based on
current code features. Sher et al. [19] describe a compilation system that relies
on evolutionary neural networks for phase ordering. Neural networks constructed
with reinforcement learning output a set of probabilities of use for each compiler
pass, which is then sampled to generate compiler sequences based on the input
program/function features. Martins et al. [12] propose the use of a clustering
method to reduce the exploration space in the context of compiler pass phase
order exploration. Amir et al. [5] present an approach for compiler phase order-
ing that relies on predictive modeling, using dynamic features to suggest the
next compiler phase to execute to maximize execution performance given the
current status; and more recently, they presented MICOMP, an approach that
performs phase ordering of the compiler passes in the sequences represented by
LLVM optimization levels using sub-sequences and machine learning to predict
the speedup of using combinations of subsequences [4].

Purini and Jain [16] presented and evaluated a type of approach that devises
an universal set of compiler sequences that covers the program space of a refer-
ence set of programs. Given a new program, all and only sequences from that pre-
defined set of sequences are evaluated. The authors demonstrated, using LLVM
3.3 to target a computer with an X86 CPU, that sets of compiler sequences
that perform well on a set of reference functions can also be suitable to compile
other functions to the same target. Purini and Jain demonstrated that these sets
can be quite small (e.g., 10 in what they call the Best-10 approach), while still
being able to achieve considerable binary execution performance improvements.
Comparing with other DSE approaches, this type of approach results in fast
evaluation at the user/programmer-side as the set of representative sequences
is small. This makes it feasible to perform an exhaustive offline validation, in
a manner similar to that of the standard optimization levels (e.g., –O3). This
is important because validation at the user-side would normally be expensive,
involving the comparison the outputs of the compiled functions/programs with
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sets of expected outputs for representative inputs, and even that might be insuf-
ficient as it may not cover all binary program paths.

The type of approach presented by Purini and Jain has a training phase,
performed offline by the phase order developers; and an online phase, performed
when a new program is compiled. In the training phase, other DSE methods
are used to produce a large number of phase orders and corresponding metric
improvements, of which a small set (K sequences) is selected.

In the online phase, only the sequences from the K set are evaluated. The
validation of these sequences can be performed offline.

Purini and Jain presented multiple approaches to obtain the representative
set of sequences, of which we opted to use the following:

1. Select the sequence that improves more kernels;
2. Select the sequence that combined with all previously selected sequences,

maximizes the number of improved kernels. Use geomean as a tiebreaker;
3. Repeat 2. until K sequences (K = 10, in their paper) were selected.

4 Our Approach

Purini and Jain’s approach [16] consists of generating a set of K sequences for
each platform/compiler, and then using those sequences to compile any new
programs/functions. However, if a user prefers to test fewer than K sequences,
it is still possible to do so, by using the following algorithm:

1. Evaluate Seq. 1 (i.e., the first sequence extracted offline);
2. Evaluate the next sequence (i.e., by extraction order);
3. Repeat 2. until all K sequences were evaluated, the number of evaluations

or time the user is willing to wait for is achieved, or the compiled code is
sufficiently improved over baseline.

In this approach, the order of evaluation of the compiler sequences is always
the same because, when the K set is constructed, each new sequence added is
the one that best complements the sequences already obtained, so testing them
in-order tends to yield better results, on average. We extend upon this type of
approach by proposing the use of an heuristic to make the order of evaluation
of the compiler sequences of the K set tuned to the code being compiled based
on the impact of the previously evaluated sequences. This still circumvents the
need to perform feature engineering and to classify code based on static and/or
dynamic features. The only feature is the metric that one wants phase ordering
to improve (e.g., performance). To the best of our knowledge, we are the first to
evaluate this type of phase ordering approach.

4.1 Proposed Heuristic

Given a new code to compile, the end-user of the type of approach presented
in [16] might not want to evaluate all K sequences. If less than K sequences are
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to be evaluated at the end-user side, then selecting which of those sequences to
evaluate is important. We will refer to the sequences from the K set that are to
be evaluated for a given new code as the T set (where 1 ≤ T ≤ K).

If no information about a given new code being compiled is taken into
account, then giving preference to the evaluation of sequences added first to
the K set during the training phase seems to be a good (though as we will
see below, not optimal) approach. For instance, if the end-user only wants to
evaluate 3 custom compiler phase orders, then Seqs. 1 to 3 would be evaluated
in-order. In this scenario, the order in which the sequences from the T set are to
be evaluated is not important, given all are evaluated. However, order of eval-
uation can be important in a scenario where it is not known from start at the
user side how many custom compiler phase orders are to be evaluated. In the
later case, first evaluating sequences from the T set with lower index likely yields
better results.

Other than all K sequences having been evaluated (i.e., T = K), other
possible stopping conditions for the process of evaluating sequences from the
K set (from lower index to higher index) can be, for instance, reaching a given
improvement over baseline or a maximum compilation/evaluation overhead.

It is important to note that, when evaluating less than K sequences, it is not
always the best choice to evaluate the subsequent custom sequences form the
K set that have lower index. The best subset of sequences from the K set to
evaluate depends on the particular code being compiled.

We propose and evaluate an heuristic, that we formulated in order to allow
achieving comparable improvements over baseline while requiring evaluating
fewer custom phase orders from a given K set. Given information about the
specific code being compiled, the end-result of using the heuristic is the evalu-
ation of a particular sub-selection of the K sequences. Notice that an heuristic
that is not suitable can result in losing efficiency over evaluating the sequences
with lower index from the K set. The first compiler phase order is always evalu-
ated, as it is by far the phase order that is most generic and other phase orders
are selected to be part of K for their ability to improve upon the sequences with
lower index.

The heuristic selects the next sequence from the K set to evaluate based on
the impact of the custom sequence from the K set previously evaluated. The
heuristic replaces point 2 of the process that selects the next sequence from the
K set to evaluate (see Sect. 4). Instead of evaluating sequences by the order they
were extracted from the initial set of pairs of sequences and fitness values, the
algorithm chooses the sequence that is predicted to be the most likely to result
in the highest speedup. It compares the result (e.g., speedup) of the last tested
sequence with that of each training program to find which one had the closest
result and verifies which of the untested K sequences produced the best results
for that program.
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4.2 Example

Consider the hypothetical example of Table 1, with K = 4 sequences. When
compiling a code, the approach would first compile and measure the impact of
using Seq. 1. Suppose that the speedup for this sequence is 5.5×. This means
that the training code that is most similar to this case is CODE3, so the next
sequence to test is Seq. 4 (as it has the highest speedup for CODE3 out of the 3
sequences that have not yet been tested).

Table 1. Hypothetical example of speedups for a set of sequences on a set of reference
programs/functions.

Ref. code Seq. 1 Seq. 2 Seq. 3 Seq. 4 Seq. 5

CODE1 2× 1× 2× 3× 0.2×
CODE2 4× 2× 0.1× 0.4× 0.1×
CODE3 6× 0.1× 0.1× 6× 1.2×

5 Experimental Setup

We used a workstation with an Intel Xeon E5-1650 v4 CPU, running at 3.6 GHz
(4.0 GHz Turbo) and 64 GB of Quad-channel ECC DDR4 at 2133 MHz. For the
experiments we relied on Ubuntu 16.04 64-bit with the NVIDIA CUDA 8.0
toolchain (released in Sept. 28, 2016) and the NVIDIA 378.13 Linux Display
Driver (released in Feb. 14, 2017).

The GPU is an EVGA NVIDIA GeForce GTX 1070 graphics card (08G-P4-
6276-KR) with a 1607/1797 MHz base/boost graphics clock (NVIDIA GP104
GPU) and 8 GB of 256 bit GDDR5 memory.

The kernel mode driver is set to keep the GPU initialized at all instances and
the preferred performance mode is set to maximum performance to reduce the
occurrence of extreme GPU and memory frequency variation during execution of
the GPU kernels. All execution time metrics reported in this paper correspond
to the average over 30 executions.

5.1 Kernels

In this paper we use the PolyBench/GPU benchmark suite [17] kernels. We
selected this particular benchmark as it is freely available and thus contributes
to making the results presented in this paper reproducible.

PolyBench/GPU is a collection of 15 kernels implemented for GPUs using
CUDA, OpenCL, and HMPP; including convolution kernels (2DCONV, 3DCONV),
linear algebra (2MM, 3MM, ATAX, BICG, GEMM, GESUMMV, GRAMSCH, MVT, SYR2K,
SYRK), data-mining (CORR, COVAR), and stencil computations (FDTD-2D). We use
the default datasets so that reproducibility of our results is more straightforward.



502 R. Nobre et al.

5.2 Compilation and Execution Flow with Specialized Phase
Ordering

We use Clang compiler’s OpenCL frontend with the libclc library to generate
an LLVM IR representation of a given input OpenCL kernel. Then, we use the
LLVM Optimizer tool (opt) to optimize the IR using a specific optimization
strategy represented by a compiler phase order, and we link this optimized IR
with the libclc OpenCL functions for our target using llvm-link. Finally,
using Clang, we generate the PTX representation of the kernel from the bytecode
resulting from the previous step, using the nvptx64-nvidia-nvcl target.

For specialized phase ordering, we use offline compilation, i.e., we compile
the source code to PTX using Clang/LLVM and pass the resulting PTX code
to the clCreateProgramWithBinary function.

5.3 Data Used for Devising a Small Set of Sequences

The OpenCL kernels from each of the benchmarks have been compiled/tested
with a set of 10, 000 randomly generated compiler phase orders (the same set
was used with all OpenCL codes) in the context of the work presented by Nobre
et al. [15]. The data resulting from this strenuous evaluation is the input to the
phase order extraction method used in the training phase. Only sequences that
produce code that passes validation may be selected for the K set.

Each phase order is composed of 256 LLVM pass instances (can include
repeated calls to the same pass) and the LLVM passes to consider for these
sequences were selected from a list with all LLVM 3.9 passes except the ones
that resulted in compilation and/or execution problems when used individually
to compile the PolyBench/GPU OpenCL kernels.

6 Experimental Results

This section presents the results for the experiments performed to evaluate the
efficiency of the proposed heuristic.

The evaluation of the approach was performed using 2-fold cross-validation.
Randomly distributing the 15 PolyBench [17] kernels between two non-
intersecting groups resulted in a group with 2DCONV, 2MM, 3MM, COVAR, GEMM,
MVT and SYRK; and another with 3DCONV, ATAX, BICG, CORR, FDTD-2D, GESUMMV,
GRAMSCHM, and SYR2K. The geometric mean metrics reported in this section con-
sider the speedups obtained on all 15 codes.

The baseline used to calculate the speedups obtained when compiling the
OpenCL codes using custom phase orders is the execution time of OpenCL
versions generated by offline compilation using Clang/LLVM with -O3.

Note that the speedups reported in this paper with the use of custom phase
orders would not be considerably higher or smaller if using other optimization
levels or online compilation as baseline, because all standard optimization levels
appear to be very similar for these kernels (see Nobre et al. [15]).
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Fig. 2. Speedup achieved on tested kernels as a function of the number of evaluated
sequences (T). Each line (K − T) represents a number of excluded sequences.

6.1 Impact of the Heuristic

Figure 2 depicts the speedups over baseline, considering different values (from 0
to 6) for the number of sequences excluded from evaluation, and different values
for T (number of custom sequences from the K set that are evaluated).

As seen in Fig. 2, the ideal number of excluded sequences (K − T ) is between
3 and 5. If too few sequences are excluded, then this method is not substantially
different from Purini’s approach (particularly when K − T = 0). If too many
sequences are excluded, then for the same number of tested sequences (T ), that
means the compiler sequence selector must select from a higher number of avail-
able sequences of K. Since each additional generated sequence tends to be worse
than all previous ones, that means that higher values of K imply worse average
sequence quality.

For between 3 and 5 excluded sequences, a speedup of 1.638× is achieved with
the evaluation of only 3 custom compiler sequences. Not relying on the heuristic
(K − T = 0) required 5 evaluations to achieve compiled code with similar
performance (1.633×). The ratio of improvement in efficiency with the use of
the heuristic increases if considering even fewer evaluations. For the spectrum of
values for the number of excluded sequences, evaluating only 2 custom compiler
sequences results in compiled code that is similar in terms of performance with
the compiled code obtained when relying on 4 evaluations without the heuristic.

Performing more that 3 evaluations (5 if not using the heuristic) does not
result in significantly performance improvements of the compiled code. The
geomean speedup obtained considering the use of the best individually found
compiler sequence (per OpenCL code) from the 10,000 compiler sequences eval-
uated during the training phase is 1.653× (calculated using the same baseline,
Clang/LLVM with –O3), making even the geomean speedup obtained with only
3 evaluations 0.99% of the former.

6.2 Generated GPU Code with Phase Ordering vs. Baseline

The performance increase with the use of phase ordering can be attributed
to the use of different unroll factors, different memory loads (single combined
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instruction vs. multiple instructions) and moving memory stores out of a loop.
A more detailed analysis can be found in Nobre et al. [15].

7 Conclusions

This paper presented and evaluated in the context of improving the performance
of code targeting a NVIDIA Pascal GPU, a heuristic-based extension to a pre-
vious approach evaluated in the context of specialized phase orders for CPUs.
This type of approach has characteristics that make it potentially more suitable
to a larger number of users and use-cases: fast and efficient exploration at the
final user side and possibility of pre-validating all the sequences used by the final
users. The proposed heuristic helps making evaluation at the user-side faster.

When considering very low numbers of compilations/evaluations, relying on
the heuristic to accelerate iterative compilation resulted in achieving compiled
GPU code of comparable binary execution performance while requiring signif-
icantly fewer compilations/executions. For instance, 2 evaluations of custom
phase orders using the heuristic achieves performance similar to 4 evaluations
without the heuristic, and 3 evaluations with the heuristic is comparable to 5
evaluations without the heuristic. Moreover, performing only the evaluation of
3 custom compiler sequences results in achieving a geometric mean speedup of
1.64×, while using the best sequence individually found for each code results in
a performance improvement of 1.65×.

We are currently evaluating the impact of a number of modifications to the
heuristic presented in this paper, such as considering features other than the
speedups obtained with the use of a single compiler sequence (the previously
evaluated sequence) when computing the distance metric, and using other dis-
tance metrics. Ongoing work also includes evaluating the approach with other
GPUs, including GPUs from other vendors (e.g., AMD). In addition, we plan to
evaluate with OpenCL kernels from other benchmarks with versions targeting
GPUs, such as Rodinia [6] and SNU NPB Suite [18].

We believe that the use of the proposed heuristic can make optimization
through specialization of compiler sequences accessible to an even larger number
of compiler users.
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