
Multi-tenant Pub/Sub Processing
for Real-Time Data Streams

Álvaro Villalba1,2(B) and David Carrera1,2(B)

1 Technical University of Catalonia (UPC), Barcelona, Spain
2 Barcelona Supercomputing Center (BSC), Barcelona, Spain

{alvaro.villalba,david.carrera}@bsc.es

Abstract. Devices and sensors generate streams of data across a diver-
sity of locations and protocols. That data usually reaches a central plat-
form that is used to store and process the streams. Processing can be done
in real time, with transformations and enrichment happening on-the-fly,
but it can also happen after data is stored and organized in repositories.
In the former case, stream processing technologies are required to oper-
ate on the data; in the latter batch analytics and queries are of common
use.

This paper introduces a runtime to dynamically construct data
stream processing topologies based on user-supplied code. These dynamic
topologies are built on-the-fly using a data subscription model defined by
the applications that consume data. Each user-defined processing unit
is called a Service Object. Every Service Object consumes input data
streams and may produce output streams that others can consume. The
subscription-based programing model enables multiple users to deploy
their own data-processing services. The runtime does the dynamic for-
warding of data and execution of Service Objects from different users.
Data streams can originate in real-world devices or they can be the out-
puts of Service Objects.

The runtime leverages Apache STORM for parallel data processing,
that combined with dynamic user-code injection provides multi-tenant
stream processing topologies. In this work we describe the runtime, its
features and implementation details, as well as we include a performance
evaluation of some of its core components.

Keywords: Big Data · Analytics · Stream processing
Real-time data processing · Programming models
Internet of Things · IoT

1 Introduction

In the last years, Big Data and Internet of Things (IoT) platforms are clearly
converging in terms of technologies, problems and approaches. IoT ecosystems
generate a vast amount of data that needs to be stored and processed, becoming
a Big Data problem. Devices and sensors generate streams of data across a

c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 251–262, 2019.
https://doi.org/10.1007/978-3-030-10549-5_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_20&domain=pdf
https://doi.org/10.1007/978-3-030-10549-5_20


252 Á. Villalba and D. Carrera

diversity of locations and protocols that in the end reach a central platform
that is used to store and process it. Processing can be done in real time, with
transformations and enrichment happening on-the-fly, but it can also happen
after data is stored and organized in repositories.

This situation implies an increasing demand for advanced data streams man-
agement and processing platforms. Such platforms require multiple protocols
support for extended connectivity with the objects. But also need to exhibit
uniform internal data organization and advanced data processing capabilities to
fulfill the demands of the application and services that consume these streams
of data.

To provide answer to this growing demand, ServIoTicy1 is a state-of-the-art
platform for hosting real-time data stream workloads in the Cloud. It provides
multi-tenant data stream processing capabilities, a REST API, data analytics,
advanced queries and multi-protocol support in a combination of advanced data-
centric services. The main focus of ServIoTicy is to provide a rich set of features
to store and process data through its REST API, allowing objects, services
and humans to access the information produced by the devices connected to
the platform. ServIoTicy allows for a real time processing of device-generated
data, and enables for simple creation of data transformation pipelines using
user generated logic. Unlike traditional service composition approaches, usually
focused on addressing the problems of functional composition of existing services,
one of the goals of the ServIoTicy is to focus on data processing scalability. Other
components that can be connected to ServIoTicy provide added capabilities to
automatically create compositions of high-level services using existing tools [13].

The core of the ServIoTicy runtime relies on a novel programming model
that allows users to dynamically construct data stream processing topologies
based on user-supplied code. These topologies are built on-the-fly according to a
data subscription model defined by the applications that consume data. Once a
stream subscriber finishes its work, it is freed from the platform until it is needed
again. Each user-defined processing unit is called a Service Object (SO). Every
Service Object consumes input data streams and may produce output streams
that others can consume. Data streams can originate in real-world devices or
they can be outputs of Service Objects deployed in the platform.

Advanced streaming and analytics platforms such as ServIoTicy are com-
plex pieces of software that integrate a large set of components under the hood.
They hide their complexity behind simple REST APIs and multi-protocol chan-
nels. ServIoTicy leverages Apache STORM runtime for parallel data processing,
auto-scaling and operation placement, that combined with dynamic user-code
injection provides multi-tenant stream processing topologies.

This paper provides insights on the performance properties of ServIoTicy as
an starting point for the construction of advanced cloud provisioning strategies
and algorithms. The work presented here focuses on the processing topologies
built in ServIoTicy, although some details about other platform components are
also provided.

1 servioticy.com.

http://www.servioticy.com


Multi-tenant Pub/Sub Processing for Real-Time Data Streams 253

The source code of ServIoTicy is freely available as an open source project2

in GitHub. The platform is also available for single node testing as a vagrant
box, downloadable from a github repository3.

The main contributions of this paper are:

– A technique for user-code injection on a data stream processing runtime that
allows for multi-tenant stream processing on-the-fly. This runtime is the core
of the ServIoTicy platform.

– An insight on the performance of the code-injection technique, including
response time end-to-end in a processing pipeline and across stages.

The next sections of the paper are organized as follows: Sect. 2 introduces a
set of abstractions defined in ServIoTicy for managing data associated to objects;
Sect. 3 describes in detail the stream processing runtime of ServIoTicy; Sect. 4
presents the evaluation methodology and the experiment included in the paper;
Finally, Sect. 5 goes through the related work and Sect. 6 provides some conclu-
sions and future lines of work.

2 Abstractions Used in ServIoTicy

Several abstractions are used in ServIoTicy to embrace the different entities
involved in the existence of IoT ecosystems.

– Web Object: Web Objects are physical objects sitting on the edge of ServI-
oTicy and capable of keeping for example HTTP-based bi-directional commu-
nications, such that the object will be able to both send data to the platform
and receive activation requests and notifications.

– Service Object: Service Objects are standard internal ServIoTicy representa-
tions of Web Objects. This entity serves mainly for data management pur-
poses and has a well-defined and closed API. That API is needed in order to
streamline and standardize internal access to Service Objects, which can in
turn represent a variety of very different Web Objects providing very different
capabilities.

– Sensor Update: Sensor Updates are the unit of data sent by a Web Object
to its Service Object. It contains the different synchronously sensed values
and a timestamp that is maintained all over the pipelines. A subscription or
a query to a Service Object will get the data in this format.

3 Data Processing Pipelines

Service Objects store their associated data in abstractions called streams. The
unit of data that can be observed for one stream is called a Sensor Update (SU).
Applications can subscribe to or query data associated to any stream. Streams
can be of two different types:
2 https://github.com/servioticy.
3 https://github.com/servioticy/servioticy-vagrant.

https://github.com/servioticy
https://github.com/servioticy/servioticy-vagrant


254 Á. Villalba and D. Carrera

– Simple data streams store data generated in the physical world by a sensing
device, assuming that a device with N sensors will generate N streams of
data that will be grouped in a Service Object abstraction that represents the
device.

– Composite data streams represent transformations (aggregate, merge, filter
or join, among other possibilities) performed on other data sources (either by
devices located in the physical world or by Service Objects existing in the
ServIoTicy platform). They can be thought about as a virtual (non-physical)
sensor of the SO.

From an API perspective there is no difference between a simple stream and
a composite stream, as they both support queries and subscriptions. Therefore,
the inputs of composite stream can be streams or other composite streams. These
chained transformations of SUs are called Data Processing Pipelines.

3.1 Data Structures
The structure of a Sensor Update that corresponds to a given stream is basi-
cally composed of a series of Channels associated to the dimensions of the data
represented by the stream (e.g. a geo-location stream may contain two chan-
nels representing the latitude and the longitude correspondingly), and a times-
tamp reported by the data source as the time at which the Sensor Update was
generated.

The composite stream structure is similar to the structure of a SU. It contains
channels, and each channel contains a so-called ‘current-value’ field that repre-
sents the output value that the composite stream will emit after ingesting a new
SU, assuming that the output is not filtered. In a SO document, the content of a
‘current-value’ field is a string with a JavaScript variable assignment using any
mix of basic operator and functions from the Math object, String object, Array
object, as well as shorthand conditional expressions (a = b ? true: false). The
result of the assignment to ‘current-value’ will always be numeric, a Boolean,
a string or an array of the previous types. It will be stored and emitted to its
subscribers.

3.2 Stages of the Processing Pipeline
Once a SU reaches a composite stream as one of its inputs, it goes through a
number of stages in order to transform it into a new output SU. This process of
ingesting a SU and processing it until a new SU is produced can be summarized
as the following set of stages:

1. Subscriber dispatching: A sensor update gets into the processing pipeline,
along with its origin information. This stage looks for the subscribers of its
origin and if they are composite streams, they are requested and sent to the
next stage with the SU.

2. Data Fetching: The composite stream may need access to the data stored by
other streams that are inputs involved in the data transformation. In each
stage, the sources needed by the stream are queried and their data made
available for the rest of the stages, altogether with the original SU. References
to fields on the Sensor Updates are made using JSONPaths.



Multi-tenant Pub/Sub Processing for Real-Time Data Streams 255

3. Transformation & filtering: Data transformation is performed by taking all
the SUs extracted from all the data sources, and operating on their associated
data using JavaScript algebraic operations and its Math object functions,
String object operations, Array object operations, and boolean operations,
to finally obtain a single value for the new SU to emit. Also, before and after
the transformation SUs are discarded if a defined filter assertion is false, and
no further stages would follow.

4. Store, trigger actions and emit: Finally, the generated SU gets stored and
emitted to the stream subscribers. Additionally, in this final stage, actions to
be sent back to SOs are triggered. Such actions will end up being sensor actu-
ations that will be driven through the WOs that embed the actual physical
objects.

In ServIoTicy, basic physical object actuation is driven through SOs. When
a SO gets an action invoked through the SO actions API, the action is initiated
on the corresponding WO, that will act as a proxy for the physical actuator. If
a user needs to be able to manually request the execution of a composite action
(involving multiple SOs), it is necessary to create a SO that includes the desired
action and references to the individual SOs representing each of the physical
objects to be actuated, so that the composite action can be properly triggered.

3.3 Design Principles
The data processing pipelines introduced in this work are intended to be scalable
in accordance with other works found in the literature [15]. In particular, the
key design principles considered for the data processing pipelines were:

– Event-driven: A new SU calculation is triggered in a stream when it receives
a SU.

– Lock-free: A stream that needs of several different SUs to generate a new one
will not lock until all of them are received. It makes use of the received SU,
and queries the last SUs from the other needed streams.

– Real-time data processing oriented: Each new SU is processed individually
without waiting for a batch.

The approach followed by ServIoTicy is an asynchronous model for which
only one of the sources needs to issue a sensor update to trigger the processing
of the composite stream. It enforces a high rate of updates and avoids locking
the generation of new updates because one sensor is idle. This situation would
lock an entire pipeline.

3.4 Time, Data Consistency and Efficiency
A composite stream can take as inputs the most recent SU from any stream
declared in the platform, either from its own Service Object or from any other
Service Object. In the context of a particular data stream, that receives SUs as
inputs and stores data associated to its outputs in the platform, some restrictions
need to be in place to keep chronological consistency of the data being produced
by a given composite stream.



256 Á. Villalba and D. Carrera

More formally, let S be a composite stream that takes as inputs the SUs
generated by N streams. Let suti

i be the most recent SU associated to the ith

stream that is a data source for S, where 0 ≤ i < N , and let be ti the associated
timestamp to suti

i . Also, let suts
s be the most recent SU associated to the stream

S. Notice that it is possible that ∃i such that i = s if S consumes its own
previously generated data to produce new outputs.

Then we can define SU t
s,in = {sut0

0 , sut1
1 , . . . , su

tn−1
n−1 } as the set of N inputs

that S will use to produce one new output SU t
s,out with timestamp t. This output

will be defined as a function SU t
s,out = f(SU t

s,in) that is user-defined.
Given these definitions, ServIoTicy needs to guarantee that the function f is

calculated (and an output SU t
s,out emitted) only once for the same set of input

values, and that at least one of the SUs in SU t
s,in needs to be updated (with

a more recent timestamp) to trigger the computation again. Furthermore, it is
necessary that the set SU t

s,in satisfies that ∃suti
i ∈ SU t

s,in such that ti > t to
initiate the computation of f to emit SU t

s,out.
This restriction can be enforced by checking all the elements of SU t

s,in every-
time that an element of the set is updated. But this approach can result in
performing large amounts of costful operations just to decide that the condi-
tions were not satisfied and that no new output needs to be emitted.

To mitigate this problem, ServIoTicy relaxes the previously stated restriction
to the form tj > t where 0 ≤ j < N and su

tj
j is the actual element in SU t

s,in

that triggered the computation. This relaxation is possible because if an element
exist in the set other than the one triggering the computation that has a more
recent timestamp than t, then this it is very unlikely that this element has
been computed before in time, because then t would have to be as recent as its
timestamp. Otherwise, if the element with more recent timestamp has not yet
triggered the computation, then it means that the SU has been stored for the
source stream and it must be awaiting in a queue its time to be processed, and
therefore it will trigger the computation soon.

3.5 Execution Trees of the Data Processing Pipelines
The structure of a pipeline created using the ServIoTicy subscription model is
by definition a directed graph. In practice, though, it behaves more like a set of
trees. The reasoning behind this statement is discussed in this section.

When an update reaches a stream, if it is newer than the last generated
update, the computation will be triggered. But if the received update is as new as
the last generated update, the computation will be discarded. Consider a stream
that has several inputs and they originally come from the exact same entry
stream to the pipeline (source). When one of the inputs receives an update, at
some point all the other inputs will receive an update with the same timestamp
and the subsequent computations will always be discarded. Only the first update
to reach the stream will trigger the computation.

From this reasoning it can be deduced that the set of paths of the triggered
computations from a single source will always end up looking like a tree. For
example Fig. 1(a) represents the graph of a valid pipeline. The computations
that would be generated from the subscriptions d→c and h→e are discarded for



Multi-tenant Pub/Sub Processing for Real-Time Data Streams 257

the explained reasons. Therefore the execution graphs look like in Fig. 1(b), and
updates from d to c and from h to e will only be queried.

(a) Pipeline digraph (b) Execution trees

Fig. 1. Relation between a pipeline and its execution trees

Another interesting property of a pipeline is the novelty of its generated data,
and it is useful for evaluating the quality of a stream. A stream generates novel
data when it has an input with a source that no other input of the same stream
has. The further a stream is in a path from the last new source addition, the less
novel its generated SUs are. For example in Fig. 1(a), c, g, h and e are 1 level
more novel than f and d. See that e gets data sourced on b from two inputs,
but theres also another input sourced on a. On the other hand f and d are one
vertex away from the most novel source. At the levels of data novelty of this
example, getting data from f or d is not a problem. The problem comes when
the distance from the most novel stream is too far away will always take too
much time to process an SU that will not add much value to what it is already
evaluated, and will generate several discarded computations which will end up
being time consumed without a result. Novel data means faster dispatch, less
noise in the pipeline and more added value on the data.

3.6 Runtime Implementation and User-Code Injection
The software that dispatches the incoming SUs and executes the pipelines runs
on STORM. STORM topologies are static, but the pipelines can easily change
over time, add connections between them, and have arbitrary sizes. For this rea-
son the STORM topology in ServIoTicy runs the stages described in Sect. 3.2,
common to all the pipelines to be processed. On the subscribers dispatch stage,
the target streams are requested, with the code to be executed in them (pre-
viously deployed by the owner of the Service Object using the REST API). In
the different execution stages (filters and transformation), the JavasScript code
related to it is executed on a JavaScript engine. The JavaScript engine used is
Rhino.

4 Evaluation

This section presents a performance evaluation of the implementation of the
ServIoTicy Data Pipelines.



258 Á. Villalba and D. Carrera

4.1 Evaluation Methodology and Infrastructure

In the experiment we explored the performance of several randomly-generated
topologies. We present here the average results for all of them and the specific
results of one illustrative case. A number of SUs were submitted to the topologies,
and we measured the time it took for each SU to be propagated to all the streams
that were subscribed directly or indirectly to the SU.

To drive the evaluation we developed a tool to automate the generation and
deployment of randomly generated Data Processing Pipelines. The tool provides
several control knobs to customize the properties of the topologies being gen-
erated. The most relevant controls are the number of streams, the number of
composite streams, the number of operands per stream and how the operands
are distributed between the streams.

The tests were run on two sets of nodes: one set for running the client emu-
lators and one set for running the servers of the system under test. The ‘server’
set was composed of 16 two-way 4-core Xeon L5630 @2.13 GHz Linux boxes, for
a total of 8 cores per node and 16 hardware threads because hyperthreading was
enabled. Each ‘server’ machine was enabled with 24 GB of RAM. The ‘client’ set
was composed of 2 two-way 6-core Xeon E5-2620 0 @2.00 GHz Linux boxes, for
a total of 12 cores per node and 24 hardware threads because hyperthreading
was enabled. Each ‘server’ machine was enabled with 64 GB of RAM. All nodes
were connected using GbE links to a non blocking 48port Cisco 3750-X switch.
The ServIoTicy data processing runtime was deployed on 2 server machines, and
1 client machine was used to generate the SUs. The REST API used the other
nodes to host its components. For the data processing pipelines we used Apache
STORM v0.9.2-incubating, Kafka v0.8.2.2 and ZooKeeper v3.4.5.

(a) Graph (b) Input stage latencies (c) Output stage latencies

Fig. 2. Topology number 3 and its related experiments results

4.2 Experiment

For this experiment, we generated six different testing topologies for ingesting
data produced by a Service Object. The characteristics of these topologies are
summarized in Table 1. They can be grouped based on their size (small, medium
or large), and we randomly produced 2 samples of each complexity level. Based



Multi-tenant Pub/Sub Processing for Real-Time Data Streams 259

Fig. 3. Stage latency by degree

on our experience, topologies 1 and 2 emulate two realistically sized situations.
Topologies 3 and 4 are large cases. Finally, topologies 5 and 6 are extreme cases.
A graphical representation of topology number 3 is shown in Fig. 2(a). In this
figure, dark nodes indicate a high out-degree and big nodes represent high in-
degree. The in and out degree related properties are also very relevant for this
experiment, as they have a big impact on the metrics taken.

Table 1. Pseudo-random topologies

Type Small Medium Big

Id 1 2 3 4 5 6

Max in-degree 9 8 14 16 29 24

Mean in-degree 1.42 1.94 3.54 3.51 5.28 6.18

In-degree std. dev 2.22 2.63 4.36 5.05 7.43 7.38

Max out-degree 4 7 15 15 25 28

Mean out-degree 1.42 1.94 3.54 3.51 5.28 6.18

Out-degree std. dev 1.07 2.14 4.59 4.44 7.71 9.48

Edges 30 37 149 151 423 458

Nodes 21 19 42 43 80 74

Sources 11 9 17 18 30 24

Sinks 4 7 15 15 25 28

Density 0.14 0.21 0.17 0.16 0.13 0.16

Connectivity 1 1 1 1 1 1

Edge-connectivity 1 1 1 1 1 1

For each data source, 10 Sensor Updates were sent to the platform in
sequence: a new update was generated only after the previous pipeline compu-
tation was finished. During the topology execution, two metrics were measured
for each stream. The first metric is the execution time to perform all the data
queries required to complete the processing, named the input stage. This metric



260 Á. Villalba and D. Carrera

measures the effect of using several inputs to generate a new update. The second
metric is the time difference between the instant at which a new update is emit-
ted and the time at which all subscribers have received it: this metric measures
how the topology processing time is affected by the number of subscribers at
each stage of the processing pipeline. This is named in this section as the output
stage.

Other stages were also measured, such as the injected code processing time
or the time an update remained unaccessed in Kafka. The function to generate a
new update was always a summation of the inputs, and so had complexity O(n),
being n the in-degree. However, these measures resulted on negligible times and
have not been included in the discussion.

Figures 2(b) and (c) show all the latencies measured for topology number 3.
Each dot in the plot represents one execution of a topology node with a given in-
or out-degree that corresponds to the value in the X-axis. The average latency
for each degree is also drawn in both charts as a solid line. As it can be observed,
latency grows linearly with the degree level as some sequential operations are
required for each operation. Although the communication is made asynchronous,
the stages need to be closed before jumping to the next step for the topology,
and therefore it is necessary to wait for all on-the-fly operations to complete at
some point, what results in a waiting time that is proportional to the number of
initiated operations and therefore the degree of the stage.

Finally, Fig. 3 shows the average latency on the input and output stages for
every related degree, across all six topologies. As it can be observed, the latency
of both the input and output stages grow linearly, but in a higher pace in the
output stage. While the in-degree latencies look almost the same to Figs. 2(b),
the out degree grows faster. The reason for this worse performance is that this
Figure reports average values that are affected by the higher latencies of the
bigger topologies. Therefore, the time of the output stage not only depends on
the out-degree, but also on the total size of the topology. And in particular, the
topology length is the most important factor that affects the performance of the
topologies. The larger the topology is, the more operations are run in parallel
in the topology and therefore the largest the response times of the components,
resulting in a slightly higher latency to complete the processing of an update.

5 Related Work

In the last years several stream processing platforms have emerged, being Apache
Storm [2] the most popular and it is used in this contribution as a platform run-
time. Storm is a distributed, reliable, and fault-tolerant stream processing sys-
tem, which was open sourced by Twitter after acquiring BackType and now dis-
tributed by the Apache Software foundation. ZeroMQ or Netty are the messaging
interfaces between the computation units. In the last versions multi-tenancy was
added in terms of several tenants deploying isolated topologies. This topologies
are always in memory whether are being used or not, and there is not data
subscription between tenants. Also open-source and distributed by the Apache
Software Foundation are Apache Samza [10] and Apache Flink [1] and Apache



Multi-tenant Pub/Sub Processing for Real-Time Data Streams 261

S4 [12]. Apache Samza uses Kafka for the whole messaging between the compu-
tation units and YARN for resource management. Apache Flink is a streaming
dataflow engine that provides data distribution, communication, and fault tol-
erance for distributed computations over data streams. It has two APIs, one for
data streams and another for data sets or batch processing. Flink also bundles
libraries for domain-specific use cases like complex event processing and machine
learning. Apache S4 is an already deprecated project started by Yahoo with a
very similar topology based philosophy to Storm and an architecture resem-
bling the Actors model. Microsoft Research developed a proprietary solution for
complex event processing called StreamInsight [7]. It also leverages a program-
ing model for temporal data streams, operator algebra and continuous queries.
Other relevant foundations on stream processing in real-time from Microsoft
come the CEDR [9] project. It is centered in the problem of keeping time con-
sistency on event streaming. Other well known research related projects on data
streams are Aurora [6] and its forks Medusa [8] and Borealis [5]. None of this
projects are maintained anymore. From the perspective of data stream sharing,
StreamGlobe [11] offers a Grid Computing solution using a P2P approach. It
consist then in stream sharing between machines but not multi-tenancy.

Data Centric view of the IoT is not something new for ServIoTicy as it
was widely covered in the survey presented in [14]. What ServIoTicy uniquely
provides is an open source solution that challenges the features of commercial
solutions such as Xively [4] and Evrythng [3], while extending their capabilities
with the ability to inject user-defined code into its stream processing runtime.

6 Conclusions

In this paper we have introduced a multi-tenant data stream processing mecha-
nism on top of Apache STORM that enables the tenants to share data streams
between them. STORM provides auto-scaling capabilities that make it partic-
ularly suitable for cloud deployments. The ServIoTicy runtime allows for users
to deploy custom service codes inside Service Objects in the form of composite
streams, and subscribe those streams to multiple sources of data (either outside
the platform on real-world devices or in other streams defined in the ServIoTicy
platform by other users). The user-code will be automatically injected in the
STORM topology and executed when a unit of data is generated from a source to
which the composite stream is subscribed. The runtime is designed to be highly
scalable, following a lock-free model that combines operations triggered by new
data being generated inside or outside the platform, with queries performed
over historic data logged for existing Service Objects. The design imposes some
restrictions mainly related to the timestamps of the updates being processed,
and some optimizations are applied to improve the scalability of the platform. A
basic evaluation of the runtime is included in this work, showing how acceptable
response times of less that 100 ms can be delivered by basic composite streams,
and that for most realistic pipelines can be processed in the range of less than a
second. The work presented in this paper is, to our knowledge, the first multi-
tenant IoT data processing platform for the Cloud.



262 Á. Villalba and D. Carrera

Acknowledgments. This work is partially supported by the European Research
Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish
Ministry of Economy, Industry and Competitivity (TIN2015-65316-P) and the Gener-
alitat de Catalunya (2014-SGR-1051).

References

1. Apache Flink official website. http://flink.apache.org
2. Apache Storm official website. http://storm.apache.org
3. evrythng official website. evrythng.com
4. Xively official website. xively.com
5. Abadi, D.J., et al.: The design of the borealis stream processing engine. In: CIDR,

vol. 5, pp. 277–289 (2005)
6. Abadi, D.J., et al.: Aurora: a new model and architecture for data stream man-

agement. VLDB J. Int. J. Very Large Data Bases 12(2), 120–139 (2003)
7. Ali, M., Chandramouli, B., Goldstein, J., Schindlauer, R.: The extensibility frame-

work in Microsoft StreamInsight. In: 2011 IEEE 27th International Conference on
Data Engineering (ICDE), pp. 1242–1253. IEEE (2011)

8. Balazinska, M., Balakrishnan, H., Stonebraker, M.: Load management and high
availability in the medusa distributed stream processing system. In: Proceedings
of the 2004 ACM SIGMOD International Conference on Management of Data, pp.
929–930. ACM (2004)

9. Barga, R.S., Goldstein, J., Ali, M., Hong, M.: Consistent streaming through time:
a vision for event stream processing. arXiv preprint cs/0612115 (2006)

10. Kleppmann, M., Kreps, J.: Kafka, Samza and the unix philosophy of distributed
data

11. Kuntschke, R., Stegmaier, B., Kemper, A., Reiser, A.: StreamGlobe: processing
and sharing data streams in grid-based P2P infrastructures. In: Proceedings of the
31st International Conference on Very Large Data Bases, pp. 1259–1262. VLDB
Endowment (2005)

12. Neumeyer, L., Robbins, B., Nair, A., Kesari, A.: S4: distributed stream comput-
ing platform. In: 2010 IEEE International Conference on Data Mining Workshops
(ICDMW), pp. 170–177. IEEE (2010)

13. Pedrinaci, C., Liu, D., Maleshkova, M., Lambert, D., Kopecky, J., Domingue, J.:
iServe: a linked services publishing platform. In: The 7th Extended Semantic Web
Ontology Repositories and Editors for the Semantic Web Workshop, vol. 596, June
2010. http://oro.open.ac.uk/23093/

14. Qin, Y., Sheng, Q.Z., Falkner, N.J.G., Dustdar, S., Wang, H., Vasilakos, A.V.:
When things matter: a data-centric view of the internet of things. CoRR
abs/1407.2704 (2014). http://arxiv.org/abs/1407.2704

15. Stonebraker, M., Çetintemel, U., Zdonik, S.: The 8 requirements of real-time stream
processing. ACM SIGMOD Rec. 34(4), 42–47 (2005)

http://flink.apache.org
http://storm.apache.org
https://evrythng.com
https://xively.com
http://oro.open.ac.uk/23093/
http://arxiv.org/abs/1407.2704

	Multi-tenant Pub/Sub Processing for Real-Time Data Streams
	1 Introduction
	2 Abstractions Used in ServIoTicy
	3 Data Processing Pipelines
	3.1 Data Structures
	3.2 Stages of the Processing Pipeline
	3.3 Design Principles
	3.4 Time, Data Consistency and Efficiency
	3.5 Execution Trees of the Data Processing Pipelines
	3.6 Runtime Implementation and User-Code Injection

	4 Evaluation
	4.1 Evaluation Methodology and Infrastructure
	4.2 Experiment

	5 Related Work
	6 Conclusions
	References




