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Abstract. Data streaming engines process data on the fly in contrast to
databases that first, store the data and then, they process it. In order to
process the increasing amount of data produced every day, data stream-
ing engines run on top of a distributed system. In this setting failures will
likely happen. Current distributed data streaming engines like Apache
Flink provide fault tolerance. In this paper we evaluate the impact on
performance of fault tolerance mechanisms of Flink during regular oper-
ation (when there are no failures) on a distributed system and the impact
on performance when there are failures. We use the Intel HiBench for
conducting the evaluation.
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1 Introduction

Data streaming has become a popular data processing model in the last decade
with the increase of the amount of data that is produced every second that
must be processed on the fly. Typical examples of streaming applications include
quick detection of price changes in the stock market, credit card fraud detection,
detection of attacks by inspecting network traffic among others. Data streaming
engines run on top of distributed systems in order to process the high volumes of
data produced every second (from thousands to millions of events per second).
Distributed streaming engines like StreamCloud [8], Borealis [4] and Flink [1]
have incorporated fault-tolerance mechanisms in order to ensure the availabil-
ity of the system when a failure happens. Fault-tolerance mechanisms resort to
checkpointing the state of the data streaming application and the data streams
in order to be replayed when the system recovers after the failure, ensuring that
all the data is processed. In this paper, we evaluate the performance overhead
that the fault-tolerance mechanisms introduce during regular operation running
the Intel HiBench benchmark [10] with Flink on top of a distributed system.
We also evaluate the time the system needs to resume regular processing and
the impact on performance till the system returns to regular operation (the
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system processes all the queued records during the failure). These performance
evaluation is important for practitioners in order to dimension the system when
fault-tolerance mechanisms are present and understand the behavior of the sys-
tem when it recovers.

The rest of the paper is organized as follows. First we present an introduction
to Flink (Sect. 2) then, the fault-tolerance mechanisms of Flink are described
(Sect. 3). Section 4 presents the performance evaluation. Finally conclusions are
presented in Sect. 5.

2 Flink Architecture

Apache Flink is an open-source distributed and fault-tolerant stream processing
framework. A Flink program transforms the incoming data streams and return-
ing results through sinks that can write them to different destinations. The
transformations are also known as operators and the set of operators linked by
the incoming and outgoing data streams form a topology that logically is a DAG
(directed acyclic graph).

Flink provides several built-in operators which can be classified as stateless
or stateful. Stateless operators do not keep any state. They simply transform the
incoming data. Examples of stateless operators are map, filter and union. State-
ful operators keep events in memory (windows) apply a function and produce
an output (time windows) or a number of records are received (record based
windows). Examples of stateful operators are fold, aggregates, join.

At the core of the Flink architecture there are two components that are
JobManager and TaskManager. The JobManager is the master of a Flink clus-
ter. More than one JobManager can be started in a Flink cluster to provide
high availability. The JobManager is not directly involved in data processing, it
is in charge of coordinating the distributed execution. The TaskManager runs
topologies (or part of them) and manages the data exchange using streams.

Figure 1 shows how a client application (Flink Program) runs on a Flink
cluster made by one JobManager and two TaskManagers. Each TaskManager
(process) has its own Memory and Network Manager and can be configured
with several task slots. On one hand, task slots are used to split and isolate
TaskManager dedicated memory for different topologies. On the other hand,
they fix the maximum number of concurrent sub-task (part of a topology) that
can be running on a given TaskManager. In Fig. 1, TaskManagers are config-
ured with three task slots, it means that three sub-tasks from three different
topologies can be executed by the TaskManager. It is worth noting that Flink
allows the deployment of different sub-tasks of a given topology to share the
same task slot. The JobManager keeps track of the registered topologies and
their corresponding dataflow graph. It also schedules the tasks and decides on
which TaskManager they are executed. On the client side, a Flink program is
used to build an optimized dataflow graph from the topology and deploy it on
the Flink cluster sending it to the JobManager.



Cost of Fault-Tolerance on Data Stream Processing 19

Fig. 1. Apache Flink runtime [7].

3 Fault Tolerance

Fault tolerance in Flink [6] is based on durable data sources and state check-
pointing. A durable data source is able to replay records from a specified point
in time in the past. Typically, a durable data source reads records from a persis-
tent messaging system, such as Apache Kafka [3] or RabbitMQ [12], so in case a
failure happens Flink can go back in time and re-read the input streams. Flink
uses state checkpointing to save the state of topologies into a persistent storage.
This state is recovered in case of failures. The persistent state must be accessible
by all JobManagers and TaskManagers running in the Flink cluster in order to
recover the state after a failure, hence a distributed filesystem, such as Hadoop
Distributed File System [2], can be used for this purpose. This approach is sim-
ilar to the one in [11]. Flink allows users to set different parameters to tune the
checkpointing duration like the time between two consecutive checkpoints, the
maximum time to wait for a checkpoint to be completed, the number of stored
checkpoints.

A snapshot of an operator is taken when a special tuple, called barrier, is
received from all its input streams. Then, the operator sends the barrier in all its
outgoing streams. The JobManager injects the barriers in the streams at the data
sources in order to take a distributed consistent snapshot. When a sink receives
barrier n from all its incoming streams, it informs the snapshot coordinator.
When the snapshot coordinator (the JobManager) receives this message from
all the sinks in the topology, the n-th snapshot is completed. The snapshot can
be taken synchronously or asynchronously. The former has an impact on the
performance. If the snapshot is taken asynchronously, the state is copied as a
background process and the operator immediately sends the barrier in its output
streams. Once the state is copied, the operator informs the snapshot coordinator.
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A snapshot is considered complete when the coordinator is informed by all sinks
that they have received the corresponding barriers and stateful operators have
completed their backup. At this point, the state at the sources corresponding to
that snapshot will never be needed again.

When a failure happens, and the JobManager detects that one of the
TaskManagers is not available, the affected topology is undeployed and a new
deployment is scheduled on the available task slots. The JobManager cannot
re-deploy the topology if there are not enough task slots left, in this case the
topology is suspended until new TaskManagers join the Flink cluster making
available their task slots. After a redeployment, the latest completed snapshot is
selected (n). The state for checkpoint n is read from persistent storage and the
streams are resent from the n offset.

Flink ensures at least once semantics. That is some tuples may be processed
more than once. That is, records sent after the latest completed snapshot might
be processed more than once.

Flink has recently introduced end-to-end exactly once semantics, where each
incoming event affects the final result exactly once. For this purpose Flink uses
a two-phase commit protocol that together with new special sink components,
durable data source and checkpoint is able to ensure that there are no duplicate
results in case of failures happen [5].

4 Evaluation

The goal of the performance evaluation is to evaluate the overhead that the
fault-tolerance introduces in a regular processing and the cost of recovery. For
this purpose the HiBench big data benchmark is used [9] and deployed in a
cluster.

4.1 Benchmark

The Hibench provides a set of topologies already implemented for Apache Flink
among them we picked the one that has window operators (Fixwindow) in order
to test the performance of window operations in streaming frameworks. The
benchmark creates records representing the visits of users to a web server. Each
record has a total of 200 bytes and among the other fields it includes a timestamp
taken at record creation time and the IP address of the client. Figure 2 depicts
the graph representing the Fixwindow topology. The Kafka source source oper-
ator fetches records from the remote Kafka server. The Map operator projects
Timestamp and IP fields of records from the input stream to the output stream
ones. KeyBy partitions the stream using the IP field. Window stores events from
each partition for a given amount of time. Reduce counts the elements in the
window and emits one record with the IP, oldest Timestamp among the records
in the window, and the number of elements in the window. The second Map
operator adds a Timestamp to the record and writes it into Kafka.
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The benchmark evaluates the latency of the operation calculating for each
output record the difference in time between the Timestamp added in Flink by
the latest Map in the topology and the Timestamp added by the benchmark at
record creation time.

Fig. 2. HiBench fixwindow topology.

4.2 Setup

The evaluation was performed in a cluster with six homogeneous nodes. Each
node is equipped with 2 CPU sockets with Intel XEON E5-2620 v3 with 6 cores
(12 virtual cores), a total of 24 virtual cores, 128 GB RAM divided into 8 slots.
Each slot contains a 16 GB RAM card. Each node is equipped with a directly
attached SSD Intel SD3510 480 GB. All of them connected by a 1Gbit Ethernet.
The software running on the nodes is: Intel HiBench 7.0, Flink 1.4.2, Kafka 2.10-
0.8.2.2, Hadoop 2.6.5 and Zookeeper 3.4.8. Figure 3 shows where this software is
running. Node1 runs the HiBench benchmark. We used from 2 to 5 instances of
the benchmark to increase the load. Node2 runs HDFS to store Flink checkpoints
and the HiBench data seed and Zookeeper for coordinating the Kafka cluster and
the JobManager of Flink. Node3 and Node4 run 6 Kafka Brokers each. Node5
and Node6 run 12 JobManagers each. JobManagers are configured with 2 task
slots (for a total availability of 48 task slots) and 8 GB of memory.

The experiments are run with different configurations and loads summarized
in the Table 1. Varying the number of HiBench instances generates loads from
200,000 records per second up to 500,000 records per second. We ran experi-
ments with and without Flink checkpointing mechanism in order to measure the
overhead of the checkpointing mechanism during regular operation. Checkpoints
are taken every second and stored in HDFS. Later, failures are injected in both
configurations and the time for recovery is measured.

Table 1. Experiments configurations.

Input load (r/sec) Window size Checkpointing Fault injection

200k−500k 50 Records No No

200k−500k 30 to 50 Records HDFS No

200k−500k 30 to 50 Records HDFS Yes

200k−500k 50 Records HDFS + RocksDB No

200k−500k 50 Records HDFS + RocksDB Yes
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Fig. 3. Evaluation setup.

4.3 Performance Evaluation Results

For all experiments we show measure both latency (on the left axis) and through-
put (on the right axis). The latency represents the difference in time between the
timestamp of the newest record that falls in a window and the timestamp taken
when the result record of the window is generated; it is measured in milliseconds
and we report the mean value per second. The throughput shows the number of
result records created per second, that is the number of windows that are trig-
gered per second. The x-axis shows the time evolution during an experiment.
Second 0 in the x-axis corresponds to the first output received from Flink. First,
we run experiments without the checkpointing mechanism. Figure 4 reports the
results of these experiments with four different loads.

In all cases, Flink is able to process the load with a very low latency that
is always smaller than 200 ms. The maximum throughput is around 40K, 70K,
80K and 100K records per second for the increasing load. This maximum is
reached twice with a load of 200K records per second (Fig. 4a), three times with
300K (Fig. 4b) and four times with 400K and 500K per second (Figs. 4c and
d). These peaks happen because the load is increased by adding more HiBench
instances but, the key space remains the same causing the same windows (there
is a window per key) to be triggered more times. As the load increases, windows
are filled at a faster pace.

Figure 5 shows the experiments with the checkpointing mechanism enabled
in Flink and the same workloads. Comparing Figs. 4a and 5a we observe that the
latency of the window processing with the checkpointing mechanism enabled is
almost equal to the baseline case. This happens because Flink stores the snapshot
of the state asynchronously and if the load is not too high it is able to perform
both operations without a noticeable penalty on the latency. However, as the load
increases, the latency increases up to 1 second with a load of 300K (Fig. 5b) and
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 4. Experiments results with checkpointing disabled.

up to 2 s when the load increases to 400k and 500k records per second (Fig. 5c
and d). This happens because there are more concurrent windows to checkpoint
and taking and storing the snapshot consumes CPU cycles that cannot be used
to process the input load and therefore, the processing time of records increases.

Figure 6 shows the CPU utilization per core in one of the two nodes used
for running Flink in the experiments with 200k and 500k record per second
checkpointing the state to HDFS. It can be observed that with 200K the CPU
usage is on average 40% while with a load of 500K the system is almost saturated
with 70% CPU usage on average.

Figure 7 presents the results of the experiments with failures in order to
measure impact of failures when the system recovers. The fault is injected by
killing one of the TaskManagers running the topology 90 s after the first outputs
are produced. Flink takes around 90 s to detect the failure and resume processing
that is, detect the failure of the TaskManager, undeploy the topology, redeploy
the topology on the available task-slots, load the state and restart the normal
processing. During that period there is no throughput (Figs. 7a, b and c). Then,
the latency is very high in all setups: up to 1 min with a load of 200 records per
second and reaching up to 2 min with the other configurations. This happens
because the data needs to be resent from the source and there are a lot of
data that are waiting to be processed while the system recovers. These data are
processed in 60 s with a load of 200K records (after second 210 latency is below
200 ms), 150 s with a load of 300K records, 170 s for a load of 400K. The system
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 5. Performance with checkpointing on HDFS

(a) Input load: 200,000 records/second (b) Input load: 500,000 records/second

Fig. 6. CPU utilization on one of the Flink nodes

is not able to return to regular latencies after 260 s with a load of 500K records,
showing latencies higher than 20 s during that period.

Figure 8 reports the CPU usage per core in the two nodes running Flink
when the input load rate is 500,000 record per second. Both nodes have a CPU
consumption similar to the one of Fig. 6b (checkpoint enabled without faults) at
the beginning of the experiment before the failure. When the failure happens,
CPU usage goes to 0 and after the recovery both nodes are completely saturated
processing the pending load.
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(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 7. Performance with checkpointing on HDFS and fault injection

To study the impact of the state size to be checkpointed on the latency, we
run a set of experiments, with the checkpointing, with different window size 30,
40 and 50 records. The window size represents the state to be checkpointed.
Figure 9 shows the latency graphs with the four loads.

The latency for different window sizes is similar for low loads (200K records
per second). As the load increases, the latency increases first for the larger win-
dows (with 300K records) and then for all the window sizes with a high load
(500K records per second). As expected the window size has an impact on the
time to retrieve and store the checkpoint and therefore in the regular latency.

Table 2 reports the latency percentiles (75% and 95%) for each of the exper-
iments with different window size. For the window size of 50 records we also
report the latency percentiles when there is no checkpointing. The 75% per-
centile is smaller than 200 ms in any configuration when the input load is either
200,000 or 300,000 records per second. When the load is 400,000 records per
second, the latency (75% percentile) when the state is 40 or 50 records reaches
up to 768 ms in the case of 50-records window. With the highest workload, the
75% percentile latency is between 3 and 10 times higher than the case with no
checkpointing depending on the state size. The 95% percentile shows latency
values much greater than the 75% percentile due to the peaks in the latency
that happen when there are many windows triggered at the same time. The
impact of the window size on latency is clearly shown with the largest window
comparing the latencies with and without checkpointing. The latency is at least
double when chekpointing is enabled.
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(a) Flink node 1 (b) Flink node 2

Fig. 8. CPU usage on Flink nodes with failures

(a) Input load: 200,000 records/second (b) Input load: 300,000 records/second

(c) Input load: 400,000 records/second (d) Input load: 500,000 records/second

Fig. 9. Latency varying the window size

Table 2. Latency. Percentiles 75% and 95%

Input Load
(r/sec)

Window
size 30

Window
size 40

Window
size 50

Window size 50
no chekpointing

200k 25−113 ms 32−281 ms 34−286 ms 73−158 ms

300k 60−279 ms 125−855 ms 172−947 ms 89−215 ms

400k 127−622 ms 391−2062 ms 768−4186 ms 108−282 ms

500k 681−2499 ms 885−3194 ms 1922−4982 ms 212−1060 ms



Cost of Fault-Tolerance on Data Stream Processing 27

5 Conclusions

This paper describes and evaluate the fault tolerance mechanisms available in
Apache Flink, the current de facto standard for streaming processing engines.
The paper focuses on the overhead of these mechanisms on the latency and
throughput through a comprehensive set of experiments. The analysis of the
results shows that when the fault tolerance mechanisms are enabled, the latency
can grow up the 10 times the baseline values. In presence of failures the system
is able to recover quite quickly if it has enough available resources to process the
peak on the input load after that the failure happens. As future work, we are
interested in evaluating the performance of the system in presence of multiple
topologies deployed at same time and the overhead of the exactly once end-to-
end protocols.
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