
Getting Started with CAPI SNAP:
Hardware Development for Software

Engineers

Lukas Wenzel, Robert Schmid, Balthasar Martin, Max Plauth(B) ,
Felix Eberhardt, and Andreas Polze

Operating Systems and Middleware Group, Hasso Plattner Institute
for Digital Engineering, University of Potsdam, Potsdam, Germany
{lukas.wenzel,robert.schmid,max.plauth,felix.eberhardt,

andreas.polze}@hpi.uni-potsdam.de,
balthasar.martin@student.hpi.uni-potsdam.de

Abstract. To alleviate development of FPGA-based accelerator func-
tion units for software engineers, the OpenPOWER Accelerator Work
Group has recently introduced the CAPI Storage, Network, and Analyt-
ics Programming (SNAP) framework. However, we found that software
engineers are still overwhelmed with many aspects of the novel hardware
development framework. This paper provides background and instruc-
tions for mastering the first steps of hardware development using the
CAPI SNAP framework. The insights reported in this paper are based
on the experiences of software engineering students with little to no prior
knowledge about hardware development.

Keywords: FPGA · Programming environment · Tutorial

1 Introduction

Embracing heterogeneous computing, hardware vendors are seeking new
approaches for augmenting general purpose Central Processing Units (CPUs)
with accelerator hardware to satisfy the ever-growing demand for compute capac-
ity. Field-Programmable Gate Arrays (FPGAs) can be used in many applica-
tion scenarios while being orders of magnitude more power-efficient compared
to Graphics Processing Units (GPUs) [1]. With the Zynq SoCs, Xilinx has suc-
cessfully demonstrated the consolidation of FPGA-based programmable logic
with ARM-based CPU cores [17]. Following this trend of tightly coupling pro-
grammable logic accelerators with CPUs, IBM has introduced the Coherent
Accelerator Processor Interface (CAPI) [12], making hardware accelerators such
as FPGAs first-class citizens by integrating them into the processors coherent
memory hierarchy.

Unfortunately, the benefits of FPGAs come at the cost of high development
efforts, as it is very time consuming and difficult for software engineers to imple-
ment FPGA-based Accelerator Functional Units (AFUs). To optimize hardware
c© Springer Nature Switzerland AG 2019
G. Mencagli et al. (Eds.): Euro-Par 2018 Workshops, LNCS 11339, pp. 187–198, 2019.
https://doi.org/10.1007/978-3-030-10549-5_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-10549-5_15&domain=pdf
http://orcid.org/0000-0001-7764-3336
https://doi.org/10.1007/978-3-030-10549-5_15


188 L. Wenzel et al.

designs, detailed knowledge about the targeted FPGA is required. Furthermore,
additional effort is necessary to establish communication channels with the host
application, as well as for interfacing with peripheral hardware available on the
FPGA extension card. To alleviate these issues, the OpenPOWER Accelerator
Work Group has recently introduced the CAPI Storage, Network, and Analytics
Programming (SNAP) framework. On the side of the host application, it enables
simple integration of AFUs by providing a ready-to-use job infrastructure. Com-
plementing the hardware side, the framework provides libraries for accessing
hardware components such as DRAM, NVMe flash storage and network inter-
faces. Covering both the software and hardware side of FPGA development, as
well as the ensuing build process, the CAPI SNAP framework enables developers
to focus their efforts on implementing their AFUs using Vivado HLS C/C++.

However, even with all these support mechanisms in place, we found that
even graduate students in software engineering are still overwhelmed by many
aspects of the novel framework, including the initial setup of the development
environment, simulation of AFUs, as well as deployment on actual hardware.
To help breaking down the remaining barriers for software engineers, this paper
provides guidance for mastering the first steps of hardware development using
the CAPI SNAP framework. The instructions reported in this paper are based
on the insights of graduate students in software engineering, collected over the
course of multiple student projects, with the participants having little to no prior
knowledge about hardware development. The instructions apply to on-premise
setups as well as to the SuperVessel Cloud for OpenPower [2] service.

Hereinafter, this paper is structured as follows: Enabling tight integration of
accelerators, Sect. 2 introduces the basic concepts of CAPI. Section 3 provides an
overview of the major traits of the CAPI SNAP framework. Afterwards, Sect. 4
reports best practices for getting started with the framework. Finally, Sect. 5
discusses related work, before an outlook is provided in Sect. 6.

2 Understanding CAPI

The Coherent Accelerator Processor Interface (CAPI) is an interface standard
introduced with the IBM POWER8 architecture [12]. It enables accelerators to
partake in the processors coherent view on the memory hierarchy. Prior to CAPI,
accelerator resources had to be mapped to specific IO memory areas, where data
had to be copied to and from explicitly. CAPI-enabled accelerators can access
the same virtual address space as its controlling process, drastically curtailing
the overhead for interacting with accelerators [13]. In its initial version, CAPI is
layered on top of PCIe 3.0. In the upcoming POWER9 architecture, CAPI will
be extended to support custom I/O facilities in addition to PCIe 4.0.

2.1 Architecture

CAPI involves several components on the host CPU as well as on the acceler-
ator side. The FPGA side is comprised of Accelerator Function Units (AFUs),



Getting Started with CAPI SNAP: Hardware Development 189

implementing the application logic, as well as the Power Service Layer (PSL),
which is a fixed design provided by IBM for supported FPGA cards [5].

The PSL communicates with the host part of the CAPI hardware, the Coher-
ent Accelerator Processor Proxy (CAPP) via PCIe. The CAPP is part of the
POWER CPU and from the point of view of the memory subsystem, it has the
same status as a processor core. The software side of CAPI consists of a driver
in the linux kernel, exposing installed CAPI accelerator cards as cxl devices. To
encapsulate the interaction with raw cxl devices, the libcxl provides a user-land C
API with the same functionality. Given sufficient privileges, any user application
can interact with the AFUs on a cxl device by linking against libcxl.

2.2 Development

AFUs have to be expressed in low-level hardware description languages such
as VHDL or Verilog, differing significantly from imperative languages like C in
that most statements have concurrent semantics. The interface between PSL
and AFU facilitates efficient communication, however its complexity imposes
high efforts on AFU developers. Demonstrating the degree of complexity, Fig. 1
illustrates the state machine of a simple AFU for adding of two numbers stored
in host memory. The AFU-PSL interface consists of five semi-independent sets
of signals:

– The Job-Interface is controlled by the PSL and indicates job control and reset
commands issued by the host.

– The MMIO-Interface exposes a register view of the AFU to the host, which
can map this view into its virtual memory to control and monitor the AFU.

– The Command-Interface is controlled by the AFU, which can issue a variety
of read or write commands with different side effects on the cache hierarchy.

– The Response-Interface and Buffer-Interface are controlled by the PSL and
are used to complete pending commands (e.g. read and write).

For further details on implementing AFUs directly on top of CAPI, please
refer to the tutorial “Tinkering with CAPI” by Keneth Wilke [14].

3 The CAPI SNAP Framework in a Nutshell

While CAPI provides the technical foundations for tightly coupling accelerators
with CPUs (see Sect. 2), the technology is hard to adopt for software engineers.
With the goal of making it as easy as possible for software engineers to leverage
CAPI-enabled FPGA hardware acceleration, the CAPI Storage, Network, and
Analytics Programming (SNAP) framework [10,11] has been introduced recently.
The framework assists developers in various aspects explicated hereinafter. Also
the acceleration paradigms supported by the framework are discussed.



190 L. Wenzel et al.

top

Job LogicJob Interface

job_interface

AFU
Descriptor

Logic

mmio_interface

MMIO Interface

adder_workelement

Command Interface

Buffer Interface

Response Interface

reset

running

finished

IDLE
READ
WAIT

SUM

WRITE
IDLE
WAIT

WRITE
WAIT

jea

ready

finished

—

write (jea, reg)

—

reg.sum = 

reg.a + reg.b
!running

—

running

read (reg, jea)

ready

—

Fig. 1. The state diagram of a simple adder AFU demonstrates the complexity of
developing AFUs directly on top of CAPI.

3.1 Core Features

High-Level Language Support. Having to implement application logic using
low-level hardware description languages such as VHDL or Verilog, and switching
from procedural to state-based thinking is very challenging for most software
engineers. CAPI SNAP lowers the hurdles significantly by providing high-level
language support based on HLS C/C++.

Job Interface. Calling an action using CAPI requires a lot of complexity in the
calling application in order maintain all required communication channels. The
framework provides a simple API for interacting with AFUs, allowing actions
to be issued by creating a job based on a filled parameter struct, e.g. via the
blocking call snap action sync execute job(action, &job, timeout).

Hardware Abstraction. All FPGA extension cards supported by CAPI SNAP
offer peripheral hardware components such as DRAM, NVMe storage or network
interfaces. Without the framework, developers would have to implement interface
logic and data movers for leveraging the peripheral components, also requiring
data movers for interacting with host memory. As illustrated in Fig. 2, the CAPI
SNAP framework hides a lot of this complexity by providing simple interfaces,
abstracting away the specific details of both peripheral components and the
specifics of the FPGA chip itself.

Automated Build Process. Using the Xilinx Vivado Design Suite [16] as a
foundation, the development workflow for CAPI SNAP based AFUs is comprised
of many stages, including software development, hardware development, hard-
ware simulation as well as hardware deployment. As visualized in Fig. 3, each
stage requires its own complex set of tools — originating from various sources
(Vivado, CAPI SNAP and CAPI) — in order to create functional builds. Orches-
trating all of these tools properly is a very complex task, which is being taken



Getting Started with CAPI SNAP: Hardware Development 191

CAPI + SNAP Library and 
Data Movers

Application

Device Driver

PCIE Transport Layer

Host Data Mover

Algorithm

Flash, DRAM, EN data movers

Application

Algorithm

Host

FPGA

Traditional FPGA
Development Stack

CAPI SNAP
Development Stack

Fig. 2. CAPI SNAP hides complexity on the layers between AFUs and the host appli-
cation, as well as for accessing peripheral components on the FPGA card. Illustration
adapted from [6].

LegendVivado HLS

CompilerSNAP HLS

Headers

SNAP Action

Skeleton

SNAP 
Consumer 
Examples

libsnap

libcxl

HW Simulation

PSL 
Simulation 

Engine

Vivado

xsim

HW Deployment

Vivado

Synthesis

Pre-routed

PSL 
Checkpoint

Vivado xelab

CAPP on 
POWER CPU

SNAP 
Maintenance 

Tools

Tests and 

Optimization

Performance

Optimization

Tests and 

Optimization

HW Development

SW Development

Tests with Software

Implementation

Tests with

Simulated AFU

Vivado HLS

Test Bench

Vivado

SNAP

CAPI

Fig. 3. CAPI SNAP automates the complex build process by orchestrating a wide
range of tools originating from various sources.

care of by the CAPI SNAP framework, freeing up many resources on the devel-
opers end.

3.2 Acceleration Paradigms

In addition to the well-established Offload paradigm commonly used in the field
of GPU computing (see Fig. 4a), the availability of peripheral components on the
FPGA card enables the CAPI SNAP framework to support a variety of acceler-
ation methods. The Egress and Ingress methods (see Fig. 4b and c, respectively)
can be applied in scenarios where data streams leaving or entering the system
(e.g. via network or persistent storage) need to be processed on-the-fly. Use
cases for these methods include transparent encryption or compression, as well
as media-processing tasks. The Funnel method (see Fig. 4d) is eligible in sce-
narios where the input bandwidth of all external sources exceeds the ingestion



192 L. Wenzel et al.

Processor

Source

Destination

FP
G

A

Action

(a) Offload Method

Processor

Source Destination

FP
G

A

Action

(b) Egress Method

Processor

Destination Source

F P
G

A
Action

(c) Ingress Method

Processor

Destination Source

FP
G

A

Action

Source

Source

(d) Funnel Method

Fig. 4. Due to the availability of peripheral components on the FPGA card, CAPI
SNAP supports various acceleration paradigms next to traditional offloading.

capabilities of the host. Potential use cases include filter or aggregation tasks on
incoming sensor data, as well as database-like operations such as joins, intersec-
tions, and merges on large datasets residing on external storage.

4 Getting Started with CAPI SNAP

This section provides an overview of the most important steps for getting started
with CAPI SNAP, covering the basic setup of the development environment,
setup and execution of a simulation model for testing purposes, the setup of a
test bench for validation, as well as deployment and invocation of AFUs on real
hardware.

4.1 Basic Setup

Setting up a development environment for CAPI SNAP involves several compo-
nents, including the Vivado Design Suite, the Power Service Layer Checkpoint,
the Power Service Layer Simulation Engine, and last but not least the CAPI
SNAP Framework itself. In the following, the setup process of all these compo-
nents is documented.

Vivado Design Suite. The Xilinx Vivado Design Suite [16] provides the foun-
dation for the CAPI SNAP framework. Being the centerpiece, the Vivado IDE is
used to synthesize and layout actions, for providing High Level Synthesis (HLS)
C/C++ support, as well as for simulating designs without the actual hardware
using xsim (Vivado Simulator).

Power Service Layer Checkpoint. On the FPGA, the Power Service Layer
(PSL) manages the communication with the host (see Subsect. 2.1). This includes
translating memory addresses, handling interrupts and virtualizing AFUs if nec-
essary. Since the PSL component needs to be part of the FPGA bitstream, IBM



Getting Started with CAPI SNAP: Hardware Development 193

provides the PSL for download as a pre-routed checkpoint (.dcp) file [5]. Care
should be taken to pick the correct checkpoint file for the FPGA card at hands,
since each card requires a different checkpoint file.

Power Service Layer Simulation Engine. In order to augment the Vivado
Simulator xsim with CAPI-like behavior, the Power Service Layer Simulation
Engine (PSLSE) is required additionally, which is is freely available for down-
load [4]. The PSLSE implements the PSL in software and connects the (locally
hosted) simulation server with the desired action. The host application then
communicates with the (locally hosted) PSLSE server instead of actual hard-
ware. Since hardware synthesis is a very time-consuming process, simulation is
usually preferred over hardware deployment for quick testing purposes during
development.

CAPI SNAP Framework. After having downloaded the CAPI SNAP frame-
work from [11], the Vivado environment must be established by sourcing the
settings64.sh script and exporting the location of a valid license file. To ensure
that every terminal session has a Vivado environment, the lines in Listing 1.1
might be added to the local shell initialization script (e.g. �/.bashrc).
1 source /opt/Xilinx/Vivado/2016.4/settings64.sh
2 export XILINXD_LICENSE_FILE=<path to Xilinx license>

Listing 1.1. Setup of the Vivado environment in a new terminal session.

The SNAP build process requires the locations of several dependencies. These
should be specified in the snap env.sh script in the SNAP root directory. The
setup is finally completed by executing make snap config in the CAPI SNAP
root directory. This opens an interactive menu to specify the build configuration.
After saving the choices and leaving the menu, SNAP shows a summary of the
chosen configuration similar to Listing 1.2.
1 =======================================================
2 == SNAP SETUP ==
3 =======================================================
4 =====Checking Xilinx Vivado:===========================
5 Path to vivado is set to: /opt/Xilinx/Vivado/2016.4/bin/vivado
6 Vivado version is set to: Vivado v2016.4 (64-bit)
7 =====CARD variables====================================
8 FPGACARD is set to: "FGT"
9 FPGACHIP is set to: "xcku060-ffva1156-2-e"

10 PSL_DCP is set to: "/tmp/cards/FGT/b_route_design.dcp"
11 =====SNAP PATH variables===============================
12 SNAP_ROOT is set to: "/tmp/snap"
13 ACTION_ROOT is set to: "/tmp/snap/actions/hdl_example"
14 =====SNAP simulation variables=========================
15 SIMULATOR is set to: "xsim"
16 =====SNAP function variables===========================
17 NUM_OF_ACTIONS is set to: "1"
18 SDRAM_USED is set to: "FALSE"
19 NVME_USED is set to: "FALSE"
20 ILA_DEBUG is set to: "FALSE"
21 FACTORY_IMAGE is set to: "FALSE"

Listing 1.2. Output yielded from the execution of make snap config.



194 L. Wenzel et al.

Depending on which card is used, the variable FPGACARD has to be set corre-
spondingly. At the time of writing, valid options for FPGACARD are N250S, ADKU3,
and S121B for the Nallatech 250S, the Alpha Data KU3, and the Semptian NSA-
121 FPGA-cards, respectively. The variables SNAP ROOT and SIMULATOR are set
automatically, making xsim the default simulator. However, ACTION ROOT and
the CAPI SNAP function variables (SDRAM USED, NVME USED) have to be set
based on the action that should be build. Per default, the example hdl example
is build, requiring neither access to DRAM nor NVMe storage.

4.2 Simulating an Action

Simulation is a powerful tool during the development phase, as it enables devel-
opers to test the correct communication between AFUs and the host application
by tracing the flow of binary signals. Simulation speed itself is much slower than
the execution on real hardware. Therefore the simulation model does not include
the PSL nor any part of the host side hardware. Nevertheless these components
are essential for a host application to access the AFU under test. This issue can
be sidestepped by using the PSLSE server. The PSLSE implements a higher level
and thus faster model of the internal CAPI components. It provides a modified
version of the libcxl, which uses the PSLSE server to access the virtual device
instead of real CAPI hardware. The simulated PSL merely acts as a proxy, whose
behavior on the signal level is controlled by the PSLSE server.

After CAPI SNAP has been configured, a simulation model of the user design
can be built by running make model from the SNAP ROOT directory. In this step,
all framework components and the user design are compiled into a simulation
model as well as a simulator configuration. The setup of the PSLSE server and
its connection to the simulator is automated by the sim make target.

Executing make sim creates an interactive terminal session with the environ-
ment correctly set up to run applications on the simulated hardware. Before the
action can be tested, it needs to be initialized as part of the discovery process
implemented by the snap maint tool. Afterwards the actual host application can
interact with the simulated hardware action.

Leaving this session also stops the underlying simulation environment. Dur-
ing the simulation, traces of all signals are recorded in a wave database. After-
wards, the detailed operation of the hardware action can be explored by viewing
the recorded traces with the xsim --gui hardware/sim/xsim/latest/top.wdb
command.

4.3 Debugging in the Test Bench

Simulation is only rarely feasible for debugging AFUs implemented in HLS
C/C++: The HLS code will be converted into VHDL/Verilog blocks that are
quite hard to match to the HLS code. To facilitate debugging and validation
of HLS code, setting up a test bench in Vivado enables developers to validate
the correct behavior of their code by executing HLS code like a regular C/C++
program in a software debugger.



Getting Started with CAPI SNAP: Hardware Development 195

In order to enable software-based execution in the test bench, a main function
needs to be added to the HLS code as explicated in Listing 1.3. To avoid the
synthesis of the main function in later development steps, the function should
be enclosed by the preprocessor conditional #ifdef NO SYNTH ... #endif.
1 #ifdef NO_SYNTH
2 int main()
3 {
4 bf_halfBlock_t left = 0xda7a, right = 0xb10c;
5 printf("encrypt(0x%08x, 0x%08x) -> ", left, right);
6 bf_encrypt(left, right);
7 printf("0x%08x, 0x%08x\n", left, right);
8 }
9 #endif

Listing 1.3. In order to use CPU-based execution in the work bench, the HLS code
needs to be augmented with a main function.

Before the test bench can be executed, the tested HLS source file needs to be
added as a simulation source by right clicking Test Bench in the project explorer
and selecting Add Files. Furthermore, the SNAP specific CFLAGS documented in
Listing 1.4 must be set up by opening the Project/Project Settings dialog and
editing the CFLAGS of the HLS source file in the Simulation tab. Afterwards, the
execution can be started by pressing the Run C Simulation icon in the toolbar.
After the execution has started, the Debug view will be entered, where the usual
functionality of a C/C++ debugger is available.
1 -DNO_SYNTH -I./include -I../../software/include -I./<action_directory>/include

Listing 1.4. CFLAGS necessary for the work bench setup.

4.4 Running on Hardware

Once the AFU has been successfully tested in the test bench and the simulator,
it can be deployed to the FPGA hardware. For that purpose, the command
make image needs to be executed from the SNAP ROOT directory in order to
synthesize bitstream images. Synthesizing the bitstream image is a compute-
intensive process and can take any time from several minutes up to a couple
of hours, depending on the complexity of the action at hands. Once the build
process has successfully finished, the resulting bitstream files can be found in
the hardware/build/Image folder. The file ending in *.bit can be flashed to
the FPGA using a JTAG programmer; the *.bin file is intended to be flashed
using the capi-flash-script.

Programming via JTAG Programmer. For a new FPGA card straight
from the factory, the operating system will not detect it as a CAPI-enabled
device, since the pre-installed image on the factory partition of the FPGA doesn’t
support CAPI. Hence, a suitable image needs to be flashed onto the user partition
using an external JTAG programmer. While this process is slightly cumbersome,
it usually has to be performed only once in the lifetime of the FPGA card.
Afterwards, new bitstreams can be flashed from the host system.



196 L. Wenzel et al.

On the machine connected to the JTAG programmer, a light-weight version
of Vivado including the hardware server tool hw server is sufficient. Once the
Vivado Hardware Manager has successfully connected to the FPGA, the activity
LEDs on the programmer should turn on.

If the FPGA card has not been detected as a CAPI device yet, the user parti-
tion of the FPGA will be cleared upon each power cycle of the POWER machine.
Hence, for initialization purposes, a bitstream image needs to be flashed after
the system has been powered on, but before the operating system performs the
PCIe walk. The timespan in between the power cycle and booting the operating
system kernel should be sufficient to finish the programming process before the
host operating system has completed the boot process. Once this procedure has
been completed, the FPGA should be appear under /dev/cxl.

Programming from the Host Machine. Once the FPGA is detected as
a CAPI-device appearing under /dev/cxl, the capi-flash-script utility can
be used to flash new bitstreams directly from the host. The tool is part of the
capi-utils, which are available on GitHub [3].

5 Related Work

There are several technologies for leveraging FPGA compute resources in appli-
cations using high-level programming languages. The approaches can be loosely
or tightly coupled. Intel offers a tightly coupled integration with The Open Pro-
grammable Acceleration Engine (OPAE) [9]. In many aspects, the approach is
similar to IBM CAPI SNAP. It consists of libraries and kernel drivers offering
resource management and abstraction of the underlying FPGA technology to
the application developer. The OPAE C-Library [7] (libopae-c) is used by the
applications to communicate with the FPGA. The building blocks on the FPGA
device are comprised of a static part, the FPGA Management Engine (FME) and
as many slots with accelerated function units (AFUs) as the device supports [9].
The AFUs an be partially reconfigured during runtime. One slot and one AFU
form a function which can either be physical or virtual. The kernel driver sup-
ports SR-IOV so that virtual functions can be assigned to virtual machines [18].
The OPAE and CAPI SNAP are similar but also differ in several aspects, f.e.
in OPAE there is no Job Management, the interface to the AFUs is given via a
freely defined 256 KB Registers which have to be mapped into the address space
of the host process to communicate.

There are also other approaches for leveraging FPGA accelerators using high-
level programming languages. With SDAccel [15] Xilinx offers a development
environment to execute C, C++ and OpenCL Kernels on FPGA Hardware. The
Intel FPGA SDK for OpenCL [8] offers a similar development environment. Due
to the lack of coherent host memory access, both technologies offer a more loosely
coupled integration of the FPGA resources.



Getting Started with CAPI SNAP: Hardware Development 197

6 Outlook

To alleviate the complexity of developing FPGA-based accelerator functions
for software engineers, the OpenPOWER Accelerator Work Group has recently
introduced the CAPI Storage, Network, and Analytics Programming (SNAP)
framework. Over the course of multiple graduate student projects, we have
observed that the high level of abstraction provided by CAPI SNAP in conjunc-
tion with HLS, the framework enabled students to implement common algo-
rithms in hardware and evaluate these accelerator-based resources within one
semester. However, even though CAPI SNAP is well documented and comes
with many examples, we have noticed that graduate students in software engi-
neering found themselves challenged with certain details of the novel hardware
development framework. At the same time, we also found that the framework
helped students to improve their understanding of hardware development, as
CAPI SNAP allowed them to concentrate on implementing application logic
using a hardware description language without having to consider the complex-
ity of any interface and management logic. In this paper, we consolidated these
insights into a getting started guide, providing the background knowledge and
the first instructions necessary for breaking down the remaining barriers for
software engineers.

With the CAPI SNAP framework being a relatively young technology com-
pared to well-established frameworks for heterogeneous computing, we think that
it offers great potential for bridging the gap between hardware development and
software engineering, allowing software engineers to tap into the extended solu-
tion space offered by the more flexible resources that FPGAs can offer. For users
without access to IBM POWER systems and CAPI-supported FPGA cards, we
recommend using the SuperVessel Cloud for OpenPower [2] service, which offers
cloud-based access to CAPI-enabled resources for academic researchers. Also, we
would like to stress that the active community behind CAPI SNAP has been very
open-minded and forthcoming regarding feedback we provided. In general, the
community-character is a welcome change to the closed, vendor-specific nature
of other ecosystems met in the field of GPU-computing.

Since the limited space of a paper does not offer the ideal venue for a
detailed hands-on guide, this paper is augmented with an extended online tuto-
rial, which is available at https://www.dcl.hpi.uni-potsdam.de/capi-snap. The
extended online tutorial covers several aspects of the CAPI SNAP framework,
including setup, configuration and debugging in greater detail. Furthermore, it
provides an additional section that documents the process of developing a new
HLS-based AFU step-by-step, using the blowfish encryption algorithm as an
exemplary workload.

Acknowledgements. We would like to thank everyone at IBM who held close contact
and helped us during the project, including but not limited to: Frank Haverkamp,
Jörg-Stephan Vogt, Sven Boekholt, Thomas Fuchs, Bruno Mesnet, Nicolas Mäding,
and Bruce Wile.

https://www.dcl.hpi.uni-potsdam.de/capi-snap


198 L. Wenzel et al.

References

1. Fowers, J., Brown, G., Cooke, P., Stitt, G.: A performance and energy comparison
of FPGAs, GPUs, and multicores for sliding-window applications. In: Proceed-
ings of the ACM/SIGDA International Symposium on Field Programmable Gate
Arrays, FPGA 2012, pp. 47–56. ACM, New York (2012)

2. IBM China Research Lab: SuperVessel Cloud for POWER/OpenPower. https://
ptopenlab.com/

3. IBM Corporation: capi-utils package. GitHub. https://github.com/ibm-capi/capi-
utils

4. IBM Corporation: Power Service Layer Simulation Engine (PSLSE). GitHub.
https://github.com/ibm-capi/pslse

5. IBM Corporation: PSL Checkpoint Files for the CAPI SNAP Design Kit. https://
www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?
aliasId=CAPI

6. IBM Corporation: CAPI SNAP Education Series: Module #1 - CAPI SNAP
Overview (2017) (Presentation)

7. Intel Corporation: Github Organisation for the Open Programmable Acceleration
Engine. https://github.com/OPAE

8. Intel Corporation: Intel FPGA SDK for OpenCL, December 2017. https://www.
altera.com/en US/pdfs/literature/hb/opencl-sdk/aocl programming guide.pdf

9. Luebbers, E., Liu, S., Chu, M.: Simplify Software Integration for FPGA Accel-
erators with OPAE (White Paper). https://01.org/sites/default/files/downloads/
opae/open-programmable-acceleration-engine-paper.pdf

10. OpenPOWER Accelerator Work Group: CAPI Storage, Network, and Analytics
Programming (SNAP) Framework. IBM developerWorks. https://developer.ibm.
com/linuxonpower/capi/snap/

11. OpenPOWER Accelerator Work Group: CAPI Storage, Network, and Analytics
Programming (SNAP) Framework Repository. GitHub. https://github.com/open-
power/snap

12. Stuecheli, J., Blaner, B., Johns, C.R., Siegel, M.S.: CAPI: a coherent accelerator
processor interface. IBM J. Res. Dev. 59(1), 7:1–7:7 (2015)

13. Wile, B.: Coherent Accelerator Processor Proxy (CAPI) on POWER8, October
2014. presented at Enterprise 2014

14. Wilke, K.: Tinkering with CAPI. Such Programming, January 2016. https://www.
suchprogramming.com/tinkering-with-capi/

15. Xilinx Corporation: The Xilinx SDAccel Development Environment. https://www.
xilinx.com/publications/prod mktg/sdx/sdaccel-backgrounder.pdf

16. Xilinx Corporation: Vivado Design Suite. Product Website. https://www.xilinx.
com/products/design-tools/vivado.html

17. Xilinx Inc.: Xilinx Introduces Zynq-7000 Family, Industry’s First Extensible Pro-
cessing Platform, March 2011. Press Release

18. Zhang, Z.: Getting Started With Open Programmable Acceleration Engine,
August 2017. Webinar. https://www.brighttalk.com/webcast/10773/275799?
utm source=Intel+-+Data+Center+Group&utm medium=brighttalk&utm
campaign=275799

https://ptopenlab.com/
https://ptopenlab.com/
https://github.com/ibm-capi/capi-utils
https://github.com/ibm-capi/capi-utils
https://github.com/ibm-capi/pslse
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=CAPI
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=CAPI
https://www-355.ibm.com/systems/power/openpower/tgcmDocumentRepository.xhtml?aliasId=CAPI
https://github.com/OPAE
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl_programming_guide.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://01.org/sites/default/files/downloads/opae/open-programmable-acceleration-engine-paper.pdf
https://developer.ibm.com/linuxonpower/capi/snap/
https://developer.ibm.com/linuxonpower/capi/snap/
https://github.com/open-power/snap
https://github.com/open-power/snap
https://www.suchprogramming.com/tinkering-with-capi/
https://www.suchprogramming.com/tinkering-with-capi/
https://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
https://www.xilinx.com/publications/prod_mktg/sdx/sdaccel-backgrounder.pdf
https://www.xilinx.com/products/design-tools/vivado.html
https://www.xilinx.com/products/design-tools/vivado.html
https://www.brighttalk.com/webcast/10773/275799?utm_source=Intel+-+Data+Center+Group&utm_medium=brighttalk&utm_campaign=275799
https://www.brighttalk.com/webcast/10773/275799?utm_source=Intel+-+Data+Center+Group&utm_medium=brighttalk&utm_campaign=275799
https://www.brighttalk.com/webcast/10773/275799?utm_source=Intel+-+Data+Center+Group&utm_medium=brighttalk&utm_campaign=275799

	Getting Started with CAPI SNAP: Hardware Development for Software Engineers
	1 Introduction
	2 Understanding CAPI
	2.1 Architecture
	2.2 Development

	3 The CAPI SNAP Framework in a Nutshell
	3.1 Core Features
	3.2 Acceleration Paradigms

	4 Getting Started with CAPI SNAP
	4.1 Basic Setup
	4.2 Simulating an Action
	4.3 Debugging in the Test Bench
	4.4 Running on Hardware

	5 Related Work
	6 Outlook
	References




