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Abstract. The number of cores in HPC systems and servers increased a
lot for the last few years. In order to also increase the available memory
bandwidth and capacity, most systems became NUMA (Non-Uniform
Memory Access) meaning each processor has its own memory and can
share it. Although the access to the remote memory is transparent for
the developer, it comes with a lower bandwidth and a higher latency.
It might heavily impact the performance of the application if it hap-
pens too often. Handling this memory locality in multi-threaded appli-
cations is a challenging task. In order to help the developer, we developed
NUMAPROF, a memory profiling tool pinpointing the local and remote
memory accesses onto the source code with the same approach as MALT,
a memory allocation profiling tool. The paper offers a full review of the
capacity of NUMAPROF on mainstream HPC workloads. In addition
to the dedicated interface, the tool also provides hints about unpinned
memory accesses (unpinned thread or unpinned page) which can help the
developer find portion of codes not safely handling the NUMA binding.
The tool also provides dedicated metrics to track access to MCDRAM
of the Intel Xeon Phi codenamed Knight’s Landing. To operate, the tool
instruments the application by using Pin, a parallel binary instrumen-
tation framework from Intel. NUMAPROF also has the particularity of
using the OS memory mapping without relying on hardware counters or
OS simulation. It permits understanding what really happened on the
system without requiring dedicated hardware support.

Keywords: NUMA · Memory · Profiler · Instrumentation · Pin
Access · Remote · MCDRAM · KNL

1 Introduction

In the late 2000s, the number of cores in servers and HPC systems increased a
lot, with commonly at least two CPUs per server. There is now up to 72 cores in
one CPU if we consider the up-to-date Intel R© Xeon PhiTM codenamed Knight’s
Landing (KNL). In order to avoid hitting the memory wall [17], most of the
current architectures became NUMA (Non-Uniform Memory Access) meaning
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that each processor has its own memory. This way we can easily increase the
memory bandwidth of the system to feed the cores. This architecture now applies
inside the socket itself like for the Intel KNL which can be configured to run as
up to 4 NUMA domains or looking at some AMD R© processors (e.g. RyzenTM

1950X).
Nowadays, all the commonly available NUMA architectures are ccNUMA

(Cache Coherent NUMA) meaning that the synchronization between the NUMA
domains is automatically handled by the architecture without requiring any
intervention from the developer. This is certainly one of the reasons for the wide
adoption of this kind of architecture as all existing programs can run out of the
box on them. Even if it is simple to make an application running on NUMA
machines, it is hard to extract the full performance of the machine because of
the data remote access costs.

There are now some studies about using OpenMP on multiple NUMA
domains [15], some are also explicitly tuning the OpenMP runtime for this usage
[5]. Using multi-threaded applications over NUMA domains fully rely on the
developer to well place the data in memory to efficiently exploit the architec-
ture and ideally limit the remote memory accesses. Strictly avoiding them is not
always a good thing; it is sometimes better to spread the data over multiple
NUMA domains to get more memory bandwidth. This is where the knowledge
of the developer is needed and the automation becomes limited.

As we will show in the next section, on most of the operating systems, the
semantic to set up the memory placement is by default implicit. It relies on
the first touch policy which can lead to many mistakes. Without any profiling
tools, the developer must rely on his confidence and on global timings measure-
ment to believe that he made the placement right. This is where we present the
NUMAPROF tool. It provides a profiling backend associated with a graphical
interface annotating the source code with various metrics. Such a tool can also
be useful for developers working on NUMA-aware runtimes like MPC [10].

Section 2 will first look on the related work by listing the available NUMA
profiling tools. Section 3 will contrast our contribution. As our tool mainly targets
the Linux operating system we will describe the available API in Sect. 4. Section 5
will provide the technical details about NUMAPROF. We will lastly provide
an analysis example by using NUMAPROF on an application and show some
findings.

2 Related Work

Some NUMA profiling tools already exist and we can find several papers on this
topic. We first found NUMATOP [19] which is the “simplest” one. It is an appli-
cation similar to top which counts the number of local and remote accesses of all
running applications and displays the result into the terminal. The tool relies on
hardware counters to determine the local and remote accesses. It is interesting
for looking for the processes placement when running multiple applications on
the same node and check their binding. As a limitation, it does not provide any
details on the source of the remote accesses inside the application.
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SNPERF [11] provides charts with memory accesses on each NUMA domain
over time within a given process. It relies on hardware counters of the Origin
2000TM architecture. This is useful to check if the memory bandwidth is balanced
over the nodes. This tool is not available on the web and is hardware dependent
on an uncommon architecture.

Memphis [9] is a tool making deep instrumentation using AMD OpteronTM

hardware counters. It uses event sampling to report the domain access count
onto source code lines. For this property, it looks like what we want. But it is
now unavailable and its code is dependent on a specific old hardware. From the
paper it also looks not providing a graphical interface to exploit the profiles it
generates.

For another approach, there is MemProf [7] which, this time, focuses on
access patterns. The tool tracks each thread memory access flow by using a ker-
nel module and tracking threads binding to detect specific bad patterns in the
application. Again, it relies on specific hardware feature from AMD R©: Instruc-
tion Based Sampling (IBS) [6].

One can think about a tool based on Valgrind [13] and we can find such a tool:
NUMAgrind [18]. This time, the tool is based on an architecture simulation, so,
not relying on specific hardware counters. It simulates all the cache details and
also the page affinity. This approach is interesting because it allows simulating
any kind of architecture with the drawback of neglecting the effective operating
system memory mappings. Last, it relies on Valgrind which does not allow to
run threads in parallel, making the overhead really big for a large number of
cores. This is an issue to simulate something on the KNL, for example. The tool
is not available any more on the Internet.

Still looking for hardware simulation we can also find SIMT [14] which fully
simulates the architecture details. This tool simulates the interconnect protocol
and can be used for architecture design but can also give some hints about
applications on those architectures.

Lastly, we found HPCToolkit [8] which is really close to what we want to
provide with NUMAPROF and is also open source. It uses hardware counters
and events sampling to track the application. It then provides a nice reporting
by annotating the source code and the call stacks in a graphical interface. Inter-
estingly, it provides all the usage information of a variable in one go: allocation
site, first touch site and all access site. It also provides a summary of the access
pattern over threads so the developer can look at how the memory accesses are
distributed and might find some reordering or packing to improve data locality.
This is something we do not have in NUMAPROF. Due to its usage of hardware
counters it has a low overhead but becomes dependent on specific hardware. It
has the advantage of providing a kind of cost estimation due to the sampling
approach which is something we do not yet have in NUMAPROF. The NUMA
part of the tool described in the paper is not available in the public release.

Really close to our approach for the backend implementation we also found
Tabarnac [4] which also instrument the memory accesses. It then generate a
static web page as output with limited charts.
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We finally took inspiration and codes from MALT [16], a malloc tracker, for
its web-based interface providing global metrics and source annotation. Web GUI
are interesting as it can be easily forwarded via the ssh-port forward, avoiding
the latency of rendering when forwarding a full X application. It also helps
to quickly implement the interface and open possibility to work with multiple
people connected onto the same interface.

3 Contribution

Looking on the available tool we notice a few things. Many of them rely on
dedicated hardware counters which make them quickly outdated and not being
able to be used on up-to-date architectures. This way, they also, most of the
time, rely on sampling which might miss some details of the code.

On the other side we have tools working on hardware emulation which is
nice as allowing simulation of any kind of hardware on our workstation. But it
has the disadvantage to miss the real memory mapping built by the operating
system we run on. Also a lot of them are not yet/anymore available.

Last, all the listed tools, except HPCToolkit and Tabarnac (non interactive),
provide raw text output which might be hard to interpret. To be useful, the tool
needs to come up with an attractive graphical interface annotating the source
code with the extracted metrics.

In order to overcome these issues, we want to build NUMAPROF following
those rules:

– We do not rely on hardware counters.
– We keep track of the real mapping of the operating system.
– We must run in parallel.
– We provide a graphical interface to look on the profile annotating the code

lines.
– We want to make it Open-Source to be available to the community, available

at [3].

With NUMAPROF we allow checking what the operating system does for the
mapping. This can be useful to validate codes but also runtimes which are sup-
posed to help handling multithreading. Being independent on hardware counters
ensure a better support over time by not being dependent on a specific archi-
tecture. On this aspect we also provide dedicated efforts on handling the huge
pages semantic when considering the first touch measurements which is explicitly
handled by none of the listed tools.

Although we could have used Valgrind to make the binary instrumentation, it
would lead to large overhead when running on nodes like the Intel KNL handling
up to 288 threads. Hence, we proceed by using Pin [12]. This tool does an on-
the-fly binary instrumentation providing services very similar to Valgrind but
with multi-threading support and being a little bit faster. It is also easy to use,
just as Valgrind, wrapping the command line we want to run and making an on
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the fly instrumentation. NUMAPROF instruments all the memory accesses and
check the NUMA distance of each access to build the profile.

In addition to the local and remote metric, the tool also adds a new metric:
unpinned. This permit to track cases where the running thread is not bound to a
specific domain and making “random” accesses generating “random” placement
of the memory. Compared to other tools we also searched to provide information
on the source lines making the first touch. Hence, we pinpoint the source of the
remote accesses. Lastly, we also provide access counter on memory allocation
site to detect which allocated chunks lead to incorrect accesses.

The tool also provide dedicated metrics to handle the case of the MCDRAM
from Intel Knight-Landing helping profiling on this architecture.

Our tool currently does not provide caches simulation so we report raw
accesses not considering cache effects. This might be done in a second step to get
more meaningful metrics when considering spin locks which in practice stay in
the cache not generating effective remote accesses (eg. in the OpenMP runtime).

4 NUMA Linux API

This section will describe the Linux NUMA API to understand what we want
to observe and which operations we need to intercept to track the NUMA state
of the application.

We first remember that most operating systems allocate a virtual segment
when an application makes a big allocation. It then fills it, on the fly, with
physical pages when the application starts to really access it. This is called the
first touch policy. Operating systems like Linux decide during this first access
which NUMA page to map, by default by looking at the current thread location.
This way the operating system tries to automatically fit the data accesses by
considering the memory usage will later be done in the same way. This approach
is nice but leads in some ways to problems because it is implicit and many non-
expert developers might not know what they are really doing. We will show that
our tool is specifically tuned to track those problems.

Hopefully, the user can change the first touch policy of a segment by using
the membind system call. It setups a strict binding (MPOL_BIND) of a segment
to a specific NUMA domain or forces page interleaving (MPOL_INTERLEAVE). It
can lastly set a preferred domain (MPOL_PREFERRED) which will be chosen and
neglected if there is no free pages any more on this domain. This membind call is
specific to Linux. In last resort, the user can also provide a detailed mapping by
using the move_pages system call providing the mapping for each page of the
targeted segment.

By default, the threads are spawned randomly on a core and can move
depending on decisions from the operating system scheduler. But, as the memory
is linked to the process, the OS has no knowledge of the link between data and
threads. When a thread moves to another NUMA domain, there is no informa-
tion permitting to also move the related data. The only available real solution
is to bind the threads on a specific core, to place the data accordingly and keep
this state for the whole execution.
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This thread mapping can be handled via the sched_setaffinity system
call which is also not POSIX. This call takes a mask as parameters to allow
the thread to run on the given cores (or CPU threads if using hyper-threading).
This mapping is automatically done when the user sets the OMP_PROC_BIND
environment variable for OpenMP.

The user can also handle the thread and memory binding by selecting its
behaviour through the command wrapper numactl.

Again, we see with this interface that nothing links the threads to the data
so the placement policy is implicit meaning that nothing prevents the user from
mistakes and nothing can notify the user if he does the thing wrong. This is where
tools like NUMAPROF can be useful. Also, all the aforementioned interfaces are
Linux dependent so our tool will target only this operating system.

5 Implementation Details

This section will give details about the NUMAPROF implementation going from
the backend up to the graphical interface.

5.1 Metrics

As many other tools, NUMAPROF provides the local/remote access metric. But
it also track the unpinned accesses, meaning the thread is not bound to a specific
NUMA domain and can move on other nodes. It also tracks if a page has been
first-touched by such a thread, meaning the page is “randomly” placed on the
machine generating later random accesses.

NUMAPROF also finds the code location where the page placement was
made, which happened at the first touch. Lastly, it counts the access metrics on
the allocation site, meaning we can quickly know which allocated segments are
concerned by remote memory accesses.

To summarize, we provide the listed metric for each access call site and
allocation site:

first-touch. Counts the number of first touch on the given location.
unpinned first-touch. Counts the number of unpinned first touch on the given

location.
local. Counts the local memory accesses when the thread is on the same NUMA

domain as the page.
remote. Counts the remote memory accesses when the thread is on a different

NUMA domain than the page.
unpinned-page. Counts the cases of a thread bound to a NUMA domain but

the page is not.
unpinned-thread. Counts the cases of a thread not bound accessing a bound

page.
unpinned-both. Counts the cases of a non-bound thread accessing a non bound

page.
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MCDRAM. Counts accesses to local MCDRAM memory. MCDRAM is con-
sidered when the accessed NUMA domain has no cores.

MCDRAM has two sub-counters which are local and remote to consider the
case of the KNL which can be configured with 4 NUMA domains each having
its local MCDRAM.

5.2 Thread Tracking

In order to build our metrics we first need to track the thread placement. For
this, we need to check the thread location at spawning time. Thanks to Pin we
can intercept the spawning of a thread and place our handler on it. From there
we extract the thread binding by using the sched_getaffinity system call.
From the cores/threads affinity, we extract the NUMA affinity of the thread and
keep track of this state. A thread which can move onto more than one NUMA
domain will be considered as unpinned. If the thread is not bound, we pursue
without needing to check on every access where he is running to determine the
local or remote memory access. We just track its memory accesses as unpinned.

We lastly need to track the thread movement if there are changes during the
run. In the Linux OS this can happen on the call of sched_setaffinity which
we intercept thanks to Pin. We do not manage a possible change from outside
the process. But, in this case there is nothing to do except to provide a function
to be called by the user.

Threads can also set up a memory policy (set_mempolicy) possibly assigning
a remote memory domain to the process. We intercept this policy and consider
the thread bound if it is restricted to one domain.

All the thread movement (which are rare) will be logged in the profile so
the user can check if it matches his expectation. This is also a new feature from
NUMAPROF compared to existing tools.

5.3 Memory Access Tracking

As said, thanks to Pin, we probe all the memory accesses and check if they are
remote or local. We already know where the thread is, thanks to the tracking
described in the previous section. We now need to know where the page is. On
Linux this can be done by using the move_pages system call which is normally
used to move the pages. If we do not provide a mapping in parameters, the call
returns the current location of the pages. Notice we can request a list of pages
in one call.

To limit the overhead we cannot make a system call for every memory access
so we need to cache the information. As a workaround, we build a shadow page
table rebuilding the same structure used in the kernel. Then we can easily detect
the first access (first touch) and use the cached value on next accesses. We do
not remove entries in this table so we can use it in a lock-free manner having to
take locks only when we add new entries in the tree. This permit to maintain
scalability.
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The page table entries are allocated when intercepting calls to mmap. To track
the state of the pages we also need to track calls to munmap (resp. mremap) to
flag the related pages as released (resp. to move them). While flagging the page
as free, we do not remove the tree structures if empty to keep the algorithm read
lock-free.

We also implemented a dedicated support for huge pages. At first touch we
request the binding with move_pages for all the pages of the given huge page. If
all the pages are available on the same NUMA domain, we consider it is a huge
page, so, accounting the first touch only once for the huge page.

One last thing, to improve the performance of the tool we do not probe the
local stack memory accesses, as we know they are local. This provides in practice
a speedup of a factor 2, greatly reducing the high overhead of the tool.

5.4 Instruction and Allocation Counters

We report the metrics globally, per thread, per call site (instruction) and per
allocation site. For the call site, we maintain an std::map indexed by the instruc-
tion memory address. This structure is not lock-free so we need to take locks on
every access. In order to make the profiler scalable we cache the entries of this
tree into each thread. In this way, each thread can quickly update the counters
in the cache and then sometimes (when there are too many entries in the cache)
flush it into the global tree by taking locks.

For the allocations we again need a way to quickly find in a lock-free man-
ner the pointer to the counters. For this, we extend the shadow page table by
making an entry for every eight addressed bytes. This pointer is used to point
the corresponding allocation site. We used the same approach as the instruction
with a cache in the thread to store local copies of the counters and then flush
the cache when it becomes too big. This limits the number of atomic operations.
Notice we can up to double the memory consumption by using this approach. To
limit this effect we use two storage methods. For allocation fully using a page,
we use only one pointer and allocate the list of eight bytes entries only if the
page contains small allocations.

To maintain this page table pointers we need to track the call to malloc,
free, calloc, realloc...

5.5 Scalability

One can check the scalability of the tool on the Hydro [2] application running
on an Intel KNL. The Fig. 1 shows that the tool scales up to 64 threads with
an overhead of a factor 27x. There is then a slight increase with an overhead of
60x on 256 threads. In any case this is far better than what we observe with the
Valgrind’s memcheck tool due to the serialization of the threads.

5.6 Graphical Interface

NUMAPROF takes back the idea from MALT by providing a dynamic web-
based interface. It provides global metrics summarizing the application like the
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Fig. 1. NUMAPROF and Valgrind overhead on HydroC code on KNL.

global local/remote/unpinned metrics and an access matrix. The access matrix
is provided to quickly check if the memory accesses are on the diagonal or form
a line pointing intensive accesses to one NUMA domain. Second, the interface
provides the per thread metrics to quickly see how the first touch and accesses
are balanced. It also provides the pinning log and access matrix for each thread.
Finally, and most important feature, the GUI provides annotation of the source
code to project the counters onto the source lines as shown in Fig. 2. This is the
core part of the tool.

6 Use Case Example: Hydro

We tested the tool onto some applications: AMG2013, HACC, Cloverleaf and
it mostly shows that those applications were well optimized making only local
memory accesses. On huge pages they showed some remote accesses when the
array splitting not to match with 2 MB limits of huge pages but we observed by
testing that this does not impact too much the application performance.

We then tested the Hydro [2] application (commit d1303337624) which is less
tuned. On this application NUMAPROF observed interesting things. Firstly, in
August 2017 we observed that when running the application on an Intel KNL
was not allocating memory on the MCDRAM (in FLAT mode) when it should.
Searching deeper on the issues pointed a bug form the kernel which ignored
the MPOL_PREFERRED semantic when the huge pages are enabled. This bug was
known by Red Hat [1] and has been fixed end of 2017. Moving to the right policy
makes the application going down from 42.8 s to 28.0 s.
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Fig. 2. NUMAPROF graphical interface, source code annotation.

Starting the real analysis, we first looked at the access matrix from Fig. 3
showing a wrong placement of some segments. The test is done on an Intel
KNL with MCDRAM activated which explains the two vertical lanes, the sec-
ond one being MCDRAM accesses. We see that there are issues with the blocs
allocated into the main memory but also a mis-distribution of the blocks into
the MCDRAM shown by the vertical lines meaning all the threads accessed data
on the same NUMA domain.

Fig. 3. HydroC access matrix before and after optimisation.

Looking at the annotated sources, we can search for remote memory accesses
and more precisely on the related allocation call sites. We first found the alloca-
tion of the ThreadBuffers in the Domain::setTiles function which is not done
in parallel. It maps all the allocated memory onto the first NUMA domain. This
can be fixed by adding a pragma omp parallel section in place of the loop.
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Second, we noticed remote memory accesses onto the Tile objects. Here there
is a missing feature of NUMAPROF, we would like to have the call stack. Any-
way, reading back the code leads to the call of Tile::godunov() which is called
from Domain::computeTimeStep() in a loop indexed by i. If we look a little bit
at the beginning of the loop, we now see that the index i is modified via the
m_mortonIdx array. This is not done at the allocation time meaning the allo-
cation and access orders mismatched. We can fix this by using the same index
indirection in the allocation loop where we make the new Tile.

This slightly improves the access matrix making it more diagonal as shown by
Fig. 3. This also translates onto performance by lowering the runtime to 22.9 s.
This is a time reduction of 18% achieved without knowing the code in advance
and by working for half an hour.

The tool still reports remote memory accesses. Most of them come from a
spin lock into the OpenMP runtime. The rest mostly comes from access to global
floating point constants which are stored in the data section of the binary. In
other words, it is a false negative as those constant and spin locks will be in
practice stored into the cache if accessed in a loop.

7 Conclusion

We showed the need to NUMA profiling tools and didn’t find our wish in the
existing ones. Hence, NUMAPROF was built in a simple way on top of the Pin
instrumenter which quickly provided a useful tool coming with a nice web-based
graphical interface. The source annotation and global metrics like access matrix
had been useful to optimize the Hydro application gaining 18% of performance
in half an hour without knowing the code before. Notice that the overhead of
the tool was 60x on 256 threads.

Of course there is still a lot of work to be done. We mainly consider adding
a cache simulator not to report too many memory access which are stored in
the cache and do not slow down the application. Also we still have margins to
improve the performance of the tool to reduce the overhead by mostly improving
the internal caching mechanism and maybe packing the access and flushing them
in groups. The tool is flexible enough that adding support of more memory levels
like the 3D Xpoint should be easy.

This methodology is not limited to x86 architecture. It can be applied to
other architectures by adding support of DynamoRIO [20], which is similar to
Pin. As a complement one can also consider using Valgrind.

The tool is available under open source license at http://memtt.github.io/.
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