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Abstract. Work-stealing schedulers are common in shared memory
environments. However, large scale distributed memory usage has been
limited to specific ad-hoc implementations preventing a broader adop-
tion. In this paper we introduce a new scalable work-stealing algorithm
for distributed memory systems as well as our implementation as the
TITUS DLB library. It is based on Kleinberg’s small-world graph. It
allows to control the communication patterns and associated runtime
overheads while providing efficient heuristics for victim selection and
results routing. To validate our approach, we present the DLB Bench
benchmark which emulates arbitrary workload distribution and imbal-
ance characteristics. Finally, we compare TITUS DLB to the ad-hoc
solution developed for the YALES2 computational fluid dynamics and
combustion solver. We achieve up to 54% performance gain over thou-
sands of cores.

1 Introduction

In high-end HPC machines, the current architecture trend is to dramatically
increase the number of cores. Managing large scale concurrency is a challenge
for many HPC applications and runtimes, which eventually hit a scalability wall.

Load balancing systems optimize workload distribution and resource usage
to improve the scalability of unbalanced applications.

Work-stealing, as presented in [7,8], is an asynchronous distributed decen-
tralized dynamic load balancing algorithm.

In order to implement scalable work-stealing for large scale distributed mem-
ory systems, we take into account an overlooked limitation of the classical victim
selection strategy: random victim selection may trigger the connexion of all pos-
sible pairs of processes, and the expected memory and time overhead limits
scalability.
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In this paper, we introduce the TITUS DLB library: a new scalable approach
to the work-stealing algorithm for dynamic load-balancing targeting large scale
computations on distributed memory systems.

We control runtime overheads by constraining the communication pattern
of the work-stealing algorithm to a scalable, low diameter, family of overlay
networks: the Kleinberg’s small-world sparse neighboring graph class. This over-
lay network provides short paths, allowing for efficient scheduling. Moreover,
to return the data resulting from the execution of relocated computation, we
propose a scalable results routing strategy.

Using a synthetic benchmark which emulates arbitrary workload characteris-
tics and distribution, we study the efficiency of our scheduler in various configu-
rations up to 3584 cores. We also evaluate the performance of our implementation
compared to a hierarchical work-sharing approach in use in the ill-balanced com-
putation of detailed chemistry from the YALES2 computational fluid dynamic
and combustion application and achieve up to 54% speedup at 3584 cores.

2 Context and Objectives

We address load balancing using a relocatable tasks representation of a given
computation.

Tasks are indivisible self-contained units of sequential work. They consume
exclusive input data and produce results data. Relocating a task requires relo-
cating its input data. Each task is spawned by its owner process initially holding
the required input data. We do not address tasks dependencies. A task is com-
pleted when the produced results have been stored in its owner’s memory. The
execution time of each task is presumed to be irregular and unpredictable.

Parallel work resolution is completed as soon as the global set of tasks has
been executed and the termination detection algorithm has converged.

We are interested in minimizing the parallel resolution time. We measure the
time spent between the beginning of parallel work and the termination detection
on each process. The maximum of these measured times is the parallel resolu-
tion time. Assuming homogeneous processor capabilities, we deduce the parallel
efficiency against an hypothetical resolution time with perfect scheduling and
zero overhead, i.e. the average work per process.

Blumofe et al. [5] introduce the work first principle: they observe that the
available parallelism in parallel programs is vastly superior to the parallelism
exploited for its execution, i.e. scheduling efficiency is driven by the work schedul-
ing overhead, rather than that of the critical path scheduling overhead. As a first
step towards an efficient and scalable distributed task scheduling algorithm for
such applications, we address the problem of scheduling a set of tasks available
for computation. All tasks are spawned before parallel resolution begins, and the
critical path of the scheduled computation is the resolution time of the longest
task to solve, which is assumed to be a small fraction of the average work per
process.

The presented implementation of our algorithm does not yet support the
benchmarks generally adopted for dynamic task scheduling (see Sect. 6.1), and
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focuses on the elaboration of a scalable communication pattern for this specific
problem.

2.1 Context

Work-stealing approaches define two process states: processes who own work
are workers, while the others are thieves. Thieves attempt to acquire work from
workers using a work stealing protocol.

Following the work first principle [8], we attempt to minimize the amount
of time spent by workers on non-working activities, and move the scheduling
overhead to thieves. Work stealing protocols have been proposed which rely on
RDMA to access task data and operate load balancing without affecting the
execution of tasks on the worker’s end [7,15].

In [22], Woodall et al. outline an important limitation of RDMA capable
hardware: the first communication between two processes (the connection) incurs
a much longer response time than the subsequent communications as well as
some memory overhead. Amortizing this pair connexion overhead is a necessity
for the elaboration of a scalable distributed algorithm.

We use an overlay network to constrain the communication pattern of our
scheduler in order to control and amortize the overhead of RDMA connexion.
As in [14,17,20], work-stealing is local to a thief’s neighborhood as work spreads
among thieves through the edges of the overlay network.

2.2 Work-Stealing Algorithm Description

A worker is a process that locally holds work. A worker manages two sets of
local tasks: tasks are executed from the private set and thieves acquire tasks
from the shared set. When one of these sets is empty, the worker re-balances
them. Processes do not hold any information about tasks spawned by other
processes nor about the global set of tasks.

A thief is a process that holds no work. Termination detection is performed
before each theft attempt. The thief then selects a victim, as discussed in Sect. 4
and performs the work stealing protocol. When an attempt succeeds, the theft
policy selects a number of tasks from the remote set of tasks to relocate.

In the studied context, the termination detection protocol is a non-blocking
barrier: when a process detects that all its owned tasks have completed, local
completion is reached and the barrier is entered. If local completion has been
reached, the process checks the advancement of the termination detection barrier
before each theft.

3 Related Work

Static load balancing approaches compute a balancing strategy before computa-
tion. These approaches do not apply to unpredictable workloads, and are subject
to system noise at scale.
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Dynamic load balancing redistribute workload during computation [8,20]. It
is a well studied topic and an important part of task-based runtime systems,
which can use both workload-specific and platform-specific information to pro-
vide portable scheduling performance.

Maintaining a centralized knowledge of the load has a limited scalability
and entails an uneven usage of network leading to contention [2]. Hierarchical
approaches [2,14] alleviate this issue by distributing the load balancing respon-
sibility across a hierarchy of master processes. By contrast, work-stealing is a
decentralized scheduling algorithm which principles are theoretically sound and
have been well studied for shared memory execution models [8,21]. Cilk [8],
X-Kaapi [9], and Intel TBB [13] are a few examples which all feature work-
stealing.

Many approaches for distributed memory systems using work-stealing have
been proposed [7,15,17,20]. They perform very well at spreading work across
a large distributed memory system, but do not address pair initialization over-
heads. They rely on hybrid programming using threads, alleviating the issue, or
have been tested with limited scalability or on very specific use cases such as
the GRAPH500 BFS [3] or UTS [18] in which tasks do not produce individual
results.

Charm++ [1] supports a variety of dynamic scheduling policies, and allows
for the composition of tuned ad-hoc solutions, making each solution designed
with specific heuristic for a given application.

ADLB [14] or YALES2 introduce a hierarchy of basic working actors (threads
and/or processes) and scheduling decision makers. Such hierarchical work-
sharing is the most efficient approach in use in large scale HPC applications
today. However, these approaches approaches may yield uneven resource usage,
over-synchronization (jitter on the higher level of the hierarchy impacts overall
performance), and require careful tuning and adaptation at large scale [14].

In this paper, we present a general-purpose non-hierarchical scalable app-
roach to load-balancing that spreads the scheduling overhead and related net-
work usage among the distributed system. Our algorithm uses a scalable overlay
network to constrain the victim selection with interesting properties discussed
in Sect. 4.

4 Work-Stealing on Smallworld Graph

In this section we discuss how Kleinberg’s small-world graphs [11] are a good
candidate for our constrained work-stealing algorithm.

They are built on top of a regular spanning lattice, e.g. a two-dimensional
grid, that defines D(u, v) as the lattice distance between any two nodes (u, v) in
the system. Random edges are added to the spanning lattice and called shortcuts,
resulting in interestingly low diameter graphs. Figure 1a shows an example of
such graph.

Graph generation time and memory overhead is O(d ∗ |V |) as long as d <<
|V |. The graph representation can be scattered across processes, resulting in
memory overhead of O(d) per process.
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Using such a graph G = {V,E} to constrain victim selection in a work
stealing protocol allows to connect a large number of nodes using a low and
constant number of connections for each process: the degree d of the graph.

J. Kleinberg shows that G has a small diameter, δ = O(logd(|V |)), with high
probability. In other terms, it exists with high probability a path of length at
most logd(|V |) between any pair of nodes. Intuitively, this property allows work
to spread efficiently in the graph.

4.1 Work Spreading

Work Reachability Criterion. Consider a worker u and a thief v at a distance
Δ. The minimum number of thefts required for the worker’s tasks to reach the
thief is Δ. Assuming that a proportion p of the remote tasks are stolen at each
successful theft, the minimum number of available tasks on u for at least one
task to reach v is O(pΔ).

(a) (b)

Fig. 1. (a) Example of small world graph and the generated route from node 0 to node
18 (b) Illustration of work fragmentation and results coarsening

In particular, if one worker owns all the tasks W , ensuring that all processes
may participate in the computation requires that the amount of parallel tasks is
at least WpΔ > 1 ⇔ Δ < logp−1 W .

To cope with workloads polynomial in the size of the system, W = O(|V |α)
with α > 1, a suitable overlay network must have low diameter Δ = O(log |V |)
which is satisfied.

Resilience to Jitter. The work-stealing algorithm allows spreading work
through disjoint path in parallel without synchronization. J. Kleinberg shows
that multiple short paths exist in such a small-world graph [12]. As such, while
an homogeneous random source of jitter impacts the efficiency of a number of
thefts, it is unlikely to globally slow down the work spreading process.
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Data Locality. Kleinberg’s graphs are randomly generated graphs built on top
of a notion of distance which can be mapped to the actual hardware network
topology. They are more heavily clustered than simple random graphs because
of a bias toward short-length connections in the system, providing optimal route
length for a simple routing strategy presented in section.

Perarnau and Sato [19] observe that given latency estimates, using a similar
bias when selecting a victim for a theft promotes low-latency thefts and obtain
significant performance gains.

In the experiments presented in Sect. 5, the small-world graph is built on top
of the 1-dimension lattice formed by the MPI rank numbering. Assuming that
the rank numbering, often based on hwloc [6], takes into account the physical
distance in the network, a higher distance in terms of this lattice distance is
likely to correspond to an equivalent or higher communication latency.

4.2 Results Routing and Coarsening

At each routing step the message is forwarded to the closest neighbor - in terms of
lattice distance - to its destination [11]. J. Kleinberg shows that routes are found
shortest when the probability for two nodes u, v to be connected by a shortcut is
proportional to D(u, v)−p, with p the dimension of the lattice. Figure 1a shows
an example of routing. We measured that our implementation of this strategy
finds routes through a 10000 nodes 64-regular random small-world graph with
an average of 2.87 jumps, with maximum length of 6, over a million of random
source-destination tuples.

After each theft, work is fragmented in two chunks. After computing, each
chunk’s resulting data has to be routed back to their owner. This effect is rep-
resented graphically in Fig. 1b. In order to mitigate congestion due to the sheer
amount of routed chunks, we leverage the following routing properties:

– Whenever any two sets of resulting data belonging to the same owner are
routed to the same node, they will be routed through the same nodes for the
remainder of their routes.

– As sets of results from the same owner get closer to their destination, the
probability to be routed to the same nodes increase.

Our results routing protocol aggregates buffered results chunks by next hop
in route. As a consequence, the number of communications is asymptotically
smaller than the number of chunks to route (i.e. the number of successful theft
performed to balance load).

4.3 Memory and Communication Management

We use GASPI [10], an explicit Partitioned Global Address Space - PGAS -
approach: accesses to remote memory locations are issued through traditional
communication function calls. GASPI communication phases can occur in a tra-
ditional MPI program. It offers fine grained one-sided communication and a
notification mechanism, allowing a truly asynchronous implementation.
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Each process allocates dedicated memory segments which can be remotely
accessed through read, write, atomic, and collective operations. A worker’s set
of shared tasks is stored in the TASK segment. A TMP segment receives task
resulting data as they are computed. The RESULTS segment receives results
chunks as they are routed and implements a simple lock-based remote memory
reservation protocol. Metadata are stored on each segment in order to implement
the related functionalities.

The set of private tasks is stored in a private memory buffer. Tasks are
executed last-to-first, and balancing the sets of private and shared tasks is a
local memory copy. Accessing the TASK segment of a given process requires
obtaining a lock through a remote atomic compare and swap operation. If such
a lock attempt succeeds, the thief performs two remote read operations. The
first read operation acquires metadata information. Then, using this information
the remote set of shared tasks is copied to the local TASK segment. The lock
ownership on the remote TASK segment is then transfered to the victim. Workers
check the state of the TASK segment between the execution of tasks, if a theft
occurred and the lock ownership has been transfered, the set of shared tasks is
empty and all data have been copied. half the set of local private tasks is then
moved to the TASK segment, metadata are updated, and the lock is released.
In Sect. 6.1, we provide hints for refining this strategy.

5 Use Cases and Experiments

We ran experiments on the Myria cluster at CRIANN, a Tier-2 computing center.
Each compute node has 28 Intel Broadwell Xeon cores. Nodes are connected with
Intel Omni-Path. We run on a maximum of 3584 cores on 128 compute nodes.

Pair Initialization Connection. In the presented experiments, we generate
small world graphs with an average degree of 4log2(|V |). It is an arbitrary choice
- among those which satisfy d << |V | - which implications at scale should be
investigated further. We establish all connections allowed by the small-world
overlay network and measure a 18 s of pair connection time at 3584 cores. This
does not represent a significant overhead for typical HPC applications. This pair
connection time is excluded from the presented performance.

5.1 DLB Bench: A Synthetic Proto-Benchmark

We introduce DLB bench, a dynamic load balancing benchmark that allows us
to assess the performance of our scheduler against arbitrarily challenging initial
work distribution. In this paper, we spread 70% of the tasks among 10% of
processes (Fig. 2) following a gaussian distribution.

Due to our small-world overlay network, some processes are not connected
to any work owner and most resulting data have to be routed to a small and
clustered set of ranks.

Table 1 presents the various workload profiles considered in this study.
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Fig. 2. DLB Bench: workload distribution

Table 1. DLB Bench: workload profiles

Average work
per process

Average
problem size
per process

Tasks per
process

Shared task
segment size

Cycle/byte

10 s 4, 16, 32 MB 2 k, 8 k, 16 k 2, 8, 16 MB 750, 3 k, 6 k

5 s 2, 8, 16,
32 MB

1 k, 4 k, 8 k
16 k

1, 4, 8, 16 MB 375, 1.5 k, 3 k,
6 k

1 s 1, 4, 8, 16 MB 500, 2 k, 4 k,
8 k

0.5, 2, 4, 8 MB 150, 600, 1.2 k,
2.4 k

Workloads and Efficiency. Table 1 presents the workloads simulated using
DLB Bench. It is a weak-scaling experiment: overall problem size and overall
work duration scales with the number of cores. Per process values are given
and are referred to using average work (W/n) and problem size per process
(S/n). We measure the efficiency of our load-balancer for each of the 11 selected
workload profiles up to 3584 cores, and present the performance of the median
execution - in terms of parallel efficiency - out of 5 repetitions. We did not
observe significant performance variability for workload profiles where work per
process is 5 and 10 s.

Figure 3 presents the parallel efficiency for the simulated workload charac-
teristics of Table 1.

Down to 5 s of average work per core, our load balancing strategy generally
shows high efficiency. As expected, a performance loss appears with low arith-
metic intensity problems due to data transfer time overhead. When scheduling
1 s of average parallel work, the scheduling overhead becomes significant. To
achieve more than 75% parallel efficiency on the studied workloads up to 3584
processes, we observe that the presented implementation requires both more than
1 s of execution time and a minimum of about 400 cycles per byte arithmetic
intensity. Further investigation, which we do not present in details due to lack
of space, suggest that these figures can be improves by suggestions presented in
Sect. 6.1.
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Fig. 3. DLB Bench weak scaling efficiency

5.2 YALES2 Multi-physics Solver

YALES2 is a scalable multi-physics solver for HPC developed at CORIA. The
code features many different solvers, collaborations with several academic labo-
ratories and industrial partners, and it is used to solve large scale HPC problems
in industrial companies such as SAFRAN, SOLVAY or ADWEN. It aims at mod-
eling reactive flows in complex burners from primary atomization of the liquid
fuel up to pollutant production. Detailed chemistry, in which tens of species are
transported and react with each other, has gained a lot of interest due to the
enabling available computational power. However, combustion is a localized and
dynamic phenomenon that occurs in thin reaction zones at the sub-millimeter
scale. Integrating the stiff chemical reactions requires few data and incurs high
arithmetic intensity in the reaction zones, entailing an unbalanced workload.

YALES2 features a scalable ad-hoc task-based hierarchical work-sharing
scheduler. Processes are attributed to a group using workload estimation based
on previous iterations in order to provide approximated inter-group load bal-
ancing. However, the quality of this approximation drops at high number of
cores and for very dynamic use-cases where reaction zones prediction is hard.
At group level, processes operate a round-robin master/slave scheduling pol-
icy: masters distribute their work to their group and pass on the master token.
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Table 2. Preccinsta: Workload profiles at 3584 cores

Mesh
size

Average work
per core range
over 10
iterations

Problem size
per core

Tasks
per core

Shared tasks
segment size

Average
cycle/byte

14 M 0.15–0.23 s 0.28 MB 655 448 KB 1484

110 M 0.47–0.65 s 2.2 MB 5171 448 KB 550

Despite its high scalability, it does not satisfy the work-first principle [8]: workers
pro-actively distribute their work among processes in their group and commu-
nication volume scales proportionally to the amount of work for any workload
profile and imbalance.

We interfaced our approach in place of this built-in load-balancer, allowing
us to test and evaluate our strategy in a real-life application at large scale, and
demonstrate its efficiency empirically.

Workload. Figure 4 presents a typical workload distribution of an iteration
of the studied experiment. Compared to the DLB Bench workload presented
in Fig. 2, work is less imbalanced, and initial task owners are distributed more
evenly across the system. While the number of tasks spawned on each process
is roughly the same and all the tasks carry the same amount of input data, the
source of the imbalance is the unpredictability of each task’s execution time.

Table 2 shows the main characteristics of scheduled workload. There is little
variation in the amount of work and relative imbalance from one iteration to
another.

Experimental Results. Figure 5 presents the performance of TITUS DLB
compared to the original load balancing strategy implemented in Yales2. Starting
with a 14 million elements mesh, we refine the mesh in order to obtain a 110
millions elements test case. The total amount of work scales with the number
of elements. Using these two use cases, we perform a strong scaling experiment
up to 3584 cores. We run the first 10 time step iterations of the simulation, and
measure the time spent in the chemistry simulation phase. In order to exclude
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Fig. 4. Preccinsta: work distribution (Sorted)
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pair initialization time for the original scheduler, we exclude the first iteration
from these results. We compute parallel efficiency and speedup over the original
scheduler from the sum of these times for the other 9 iterations.

10

100

224 896 1792 3584
Number of Cores

Ti
m

e 
(s

ec
on

d)

Mesh Size
110M

14M

Version
DLB

Original

1.0

1.2

1.4

1.6

1000 2000 3000
Number of Cores

Sp
ee

du
p 

ov
er

 O
rig

in
al

Mesh Size
110M

14M

0.0

0.2

0.4

0.6

0.8

1.0

224 896 1792 3584
Number of Cores

Pa
ra

lle
l E

ffi
ci

en
cy

Mesh Size
110M

14M

Version
DLB

Original

Fig. 5. Compared strong scaling performances of TITUS DLB against Yales2’s built-in
dynamic scheduler for two mesh sizes

In all tested configurations, TITUS DLB outperforms the original dynamic
scheduler significantly, and up to 54% at 3584 core. The best efficiency achieved
by the built-in dynamic scheduler on 3584 cores is 65% on the 110 M element
case. TITUS DLB achieves 88% efficiency, speeding up execution by 39%.

6 Conclusion

We propose a dynamic load-balancing strategy for large scale computations
which we successfully demonstrate on a coupled chemistry and CFD simulation.

The small-world based communication pattern we introduce allows an effi-
cient implementation of the work-stealing algorithm for large scale distributed
computations.
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The TITUS DLB Library and DLB Bench are released under open-source
LGPL3.0 license at https://github.com/EXAPARS/TITUS.

6.1 Future Work

We are interested in developing an analytical model to provide a theoretical
analysis of the presented approach.

We intend to extend the scope of the presented approach by allowing tasks
to be spawned dynamically, providing support for a wider variety of problems,
such as dynamic tasks decomposition and fork-join parallelism, allowing us to
compare the performance of the proposed approach to existing dynamic task
scheduling strategies through usually adopted benchmarks such as UTC and
BFS.

The development of DLB Bench gives us the opportunity to study and com-
pare the performance of existing approaches in various configurations, which
may be included in future publications.

Moreover, we plan to optimize our implementation to use shared-memory
communication for intra-node communications and explore various algorithmic
improvement. Some shared work-queue and associated work stealing protocol
may provide lock-free algorithms as well as not require the victim to take action
in between thefts. Small-world generation and victim selection strategies may
take more finely data locality into account in the form of expected or average
latency. Lock-free memory allocators can be found in the literature [16], which
may be adapted to our results returning strategy, further alleviating contention
at scale. Finally, in [4], Berenbrink et al. show that a number of theft policies
are viable in the classical work-stealing scheme, which may be explored in this
context.
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