
Chapter 8
Periodic Models

8.1 Introduction

Periodic matrix models are often used to study cyclical temporal variation (seasonal
or interannual), sometimes as a (perhaps crude) approximation to stochastic models.
However, formally periodic models also appear when multiple processes (e.g.,
demography and dispersal) operate within a single projection interval. The models
take the form of periodic matrix products. A familiar example is when population
projection over an annual interval is described as a product of seasonal operators.
The perturbation analysis of periodic models (Caswell and Trevisan 1994; Lesnoff
et al. 2003; Caswell and Shyu 2012) must specify both the vital rates affected by
the perturbation and the timing of the perturbation within the cycle. This chapter
presents a general approach to the perturbation analysis of both linear and nonlinear
periodic models. The results consist of a series of analyses of some of the most
commonly encountered periodic models.

If the environment is time-invariant on the scale of a chosen projection interval
(e.g., from year to year), the result is a periodic matrix population model in which
the seasonal product repeats itself. Such a model can be written as

n(t + 1) = Bp · · ·B2B1n(t) (8.1)

Here, Bi is the matrix at phase i of the cycle and p is the period. The period is the
number of phases in the cycle; i.e., the number of matrices in the periodic matrix
product in (8.1). Neither the identities nor the number of stages need be the same
from one phase to the next, so the matrices Bi may be rectangular rather than square.
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The phases need not be the same length, so the period may or may not be measured
in units of time. For example, in the model of Pico et al. (2002), each season is of
2 months duration, and the period (p = 6) corresponds directly to a time scale. In
contrast, the model of Hunter and Caswell (2005a) has three phases, with durations
of 3 weeks, 5 weeks, and 10 months, respectively. The period (p = 3) of that model
does not correspond to a time scale, but it identifies the number of matrices in the
periodic product and appears in calculations in the same role as p = 6 in the model
of Pico et al. (2002).

The projection matrix over the entire periodic cycle is1

A = Bp · · ·B2B1 (8.2)

The earliest studies of periodic matrix models were due to Darwin and Williams
(1964), Skellam (1966), and MacArthur (1968). In recent years, with little fanfare,
periodic models have emerged as an important tool for incorporating multiple
processes within a single projection interval. Uses of periodic models include the
following.

1. Seasonal variation. Plants and animals experience obvious and dramatic seasonal
variation in their demographic rates. Periodic models have been used to describe
this variation, with seasons variously defined in terms of monthly periods,
calendar seasons, or in terms of environmental events such as rainfall or flood
patterns (e.g., Smith et al. 2005).

Although annual or near-annual species are obvious candidates for periodic
models, within-year time scales may also be important for long-lived species. For
example, Hunter and Caswell (2005a) incorporated chick development events on
a time scale of weeks into a periodic model for the sooty shearwater, which has a
lifetime of decades. Similarly, Jenouvrier et al. (2010, 2014) have used periodic
models to capture the timing of events in the breeding cycle within a portion of
the year in the long-lived emperor penguin.

1Although we will not address it in this chapter, the model (8.1) can be written in a way that
explicitly defines the starting phase in the cycle. As written, A in (8.2) projects from phase 1 to
phase 1; if desired we could write this as A1 and define matrices

A2 = B1Bp · · ·B2

.

.

.

Ap = Bp−1 · · ·B1Bp

The Ai are obtained by cyclic permutations of the sequence {Bp, . . . ,B1}; each of these projects
from a different phase in the cycle. Some demographic properties (e.g., the population growth rate
λ) are invariant with respect to such permutations; others (e.g., the eigenvectors) are not (Caswell
2001). In this chapter, we will start with phase 1 and refer to A rather than A1.
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2. Periodic interannual variability. Periodic models based on sequences of annual
observations have been used to study effects of inter-event intervals, where events
include fires, floods, ENSO events, etc.

3. Harvest and management. These activities often take place at specified points
within an annual or interannual cycle. Periodic models have been used to study
the effects of their timing; one of the earliest periodic models being devoted to
seasonal harvesting (Darwin and Williams 1964).

4. Conditional probabilities. Periodic matrix products appear when models are
written as products of conditional probabilities. In stage-classified models, for
example, a transition matrix U, is written as the product of a diagonal matrix
� (with survival probabilities σ on the diagonal) and a matrix G of transition
probabilities conditional on survival:

U = G� (8.3)

which creates a period-2 periodic matrix product within the model.
5. Multistate vec-permutation models. When individuals are classified by two

or more criteria (e.g., stage and location), the dynamics over the projection
interval can be described in terms of the processes affecting each criterion (e.g.,
transitions and movement). The result is a periodic model that uses the vec-
permutation matrix to generate a block-structured projection matrix over the
entire interval. See Chap. 6 for analysis of such models.

6. Nonlinear models. Henson and Cushing (1997) developed a model for Tribolium
in an experimental system in which container size was varied periodically. Shyu
et al. (2013) developed a nonlinear seasonal model of an invasive plant to account
for the timing of both density effects and management actions within the year.
In such models, cyclic dynamics can be produced both by the environmental
periodicity and the nonlinearities (e.g., Cushing 2006).

8.1.1 Perturbation Analysis

As in Fig. 8.1, we suppose that in phase i of the cycle, the parameter vector takes on
the value θ i and determines the matrix Bi . The projection matrix A is the product,
in the specified order, of the Bi . Although the output ξ is calculated from A, the
parameter dependence operates through the Bi (Fig. 8.1). The sensitivity of ξ to the
elements of A is in general not of interest, because those elements are complicated
expressions involving the elements of all the Bi , and thus mix disparate biological
processes. Here we calculate the sensitivity of demographic outcomes to the entries
of the Bi .

In this chapter we analyze linear periodic models of the form (8.1) and the
cyclic dynamics of nonlinear seasonal models with delayed density effects. We
will briefly discuss the generalization of the multistate age×stage-classified models
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Table 8.1 Table of symbols in this chapter

Symbol Meaning

si Number of stages at phase i of the cycle

p Period of the cycle

q Dimension of parameter vector θ

r Number of locations in spatial model

θ i Parameter vector evaluated at phase i

Bi Projection matrix from phase i to phase i + 1, or in location i

Cj
i Ordered product Bj · · ·Bi of matrices from i to j

Mi Dispersal matrix for stage i

A Projection matrix over entire cycle

Ai Projection matrix over cycle, starting at phase i

Ri Matrix of LTRE contributions from phase i

Es,i s × s matrix with 1 in (i, i) position and 0 elsewhere

Is Identity matrix of dimension s

D (x) Diagonal matrix with x on the diagonal

1 Vector of ones

B, M, etc. Block-structured matrices

◦ Hadamard, or element-by-element product

⊗ Kronecker product

θ1

θ2θ

θp

B1[θ1]

Parameter
vector

Parameters
at each phase

Matrices
at each phase

Matrix over
entire projection

cycle

Output variable

B2[θ2] A = Bp....B1      ξ

Bp[θp]

Fig. 8.1 A vector θ of parameters determines an output variable ξ , which may be a scalar, vector,
or matrix. The parameter vector will generally take on different values at each phase in the cycle,
and determine the phase-specific matrix Bi . These matrices determine the projection matrix A as
a periodic matrix product; the output variable is computed from A. The perturbation problem is to
compute the sensitivity or elasticity of ξ to θ

explored in Chap. 6 to an arbitrary number of classifications. We extend the LTRE
decomposition analysis to the periodic case, making it possible to analyze effects of
parameter changes at any point in a periodic environment.
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8.2 Linear Models

Consider the basic model (8.1) with projection matrix (8.2). The period of the cycle
is p. To allow for differences in the state vector at different phases within the cycle,
define the number of stages at phase i as si . Thus the matrix Bi is of dimension
si+1 × si , with the subscript i interpreted mod(p) (that is, (p + 1) mod(p) = 1).

Let ξ (dimension m × 1) denote an output variable calculated from A, where
ξ might be a scalar, a vector, or a vectorized matrix. Let θ be a parameter vector
(dimension q × 1). The derivative of ξ with respect to θ is the m × q matrix

dξ

dθ T
=

(
dξi

dθj

)
i = 1, . . . , m; j = 1, . . . , q (8.4)

By the chain rule, the effects of the parameters on ξ are captured in the matrix
product

dξ

dθ T
= dξ

dvec TA
dvecA

dθ T
. (8.5)

The first term in (8.5) is the derivative of the output variable ξ with respect to the
matrix A from which it is calculated. The second term in (8.5) is the derivative of
the periodic product matrix A with respect to the parameter vector θ . To obtain this,
differentiate (8.2), to obtain

dA = Bp · · ·B2 (dB1)

+Bp · · · (dB2)B1

...

+ (
dBp

)
Bp−1 · · ·B1 (8.6)

It is convenient to define the matrix Cj
i as the ordered product (from right to left) of

the B matrices from i up to j :

Cj
i = Bj · · ·Bi i ≤ j (8.7)

and set C0
1 = Cp

p+1 = Is1 . Then (8.6) becomes

dA = Cp

2 (dB1) + Cp

3 (dB2)C1
1 · · · + (

dBp

)
Cp−1
1 (8.8)

Applying the vec operator to both sides gives

dvecA =
p∑

i=1

[(
Ci−1
1

)T ⊗ Cp

i+1

]
dvecBi (8.9)
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Equation (8.9) accounts automatically for the possibly different dimensions of the
Bi . The resulting derivative with respect to the parameter vector θ is

dvecA
dθ T

=
p∑

i=1

[(
Ci−1
1

)T ⊗ Cp

i+1

] dvecBi

dθ T
. (8.10)

where dvecBi/dθ T is the derivative of the matrix Bi with respect to the parameter
vector θ , evaluated at θ i . Equation (8.10) sums the contributions of the derivatives
of all of the phase-specific matrices Bi with respect to θ , thus accounting for all the
ways in which θ may affect the demographic rates at each point in the cycle. As
written, (8.10) gives the result of perturbing θ at each point in the cycle. The effect
of a phase-specific perturbation is easily obtained by summing only over phases in
which θ i is modified.

Substituting (8.10) into the formula (8.5) gives the general expression for the
sensitivity of ξ to changes affecting any or all of the Bi :

dξ

dθ T
= dξ

dvec TA

(
p∑

i=1

[(
Ci−1
1

)T ⊗ Cp

i+1

] dvecBi

dθ T

)
. (8.11)

The elasticity of ξ to θ is the matrix

εξ

εθ T
=

(
θj

ξi

dξi

dθj

)
(8.12)

= D (ξ)−1 dξ

dvec TA

(
p∑

i=1

[(
Ci−1
1

)T ⊗ Cp

i+1

] dvecBi

dθ T

)
D (θ) (8.13)

where D (x) is a diagonal matrix with x on the diagonal and zeros elsewhere.
Because elasticities are logarithmic derivatives, they apply only when ξ > 0 and
θ ≥ 0.

8.2.1 A Simple Harvest Model

The projection matrix for a simple harvest model (e.g., Hauser et al. 2006) can be
written

A = B (I − H) . (8.14)

The matrix B describes demography in the absence of harvest. The matrix H =
D (h) is a harvest matrix, where hi is the probability that an individual of stage i



8.2 Linear Models 165

is harvested.2 Either B, H, or both may be functions of a vector θ of parameters.
Differentiating (8.14) and applying the vec operator gives

dvecA = − (Is ⊗ B) dvecH + [
(I − H)T ⊗ Is

]
dvecB. (8.15)

The diagonal matrix H can be written

H = Is ◦ (
1shT

)
(8.16)

where 1s is a s × 1 vector of ones and ◦ denotes the Hadamard product. The
differential of H in (8.16) is

dvecH = D (vec Is) (Is ⊗ 1s) dh. (8.17)

Combining (8.16) and (8.15) and applying the chain rule gives the derivative with
respect to θ :

dvecA
dθ T

= − (Is ⊗ B)D (vec Is) (Is ⊗ 1s)
dh
dθ T︸ ︷︷ ︸

perturbations of h

+ [
(I − H)T ⊗ Is

] dvecB
dθ T︸ ︷︷ ︸

perturbations of B

.

(8.18)
The conditional probability model (8.3) has the same form as the harvest

model (8.14), so a similar analysis applies to it as well:

dvecU = (I ⊗ G)D (vec I) (I ⊗ 1) dσ + (� ⊗ I) dvecG. (8.19)

However, the conditional transition matrix G is column-stochastic (all columns
sum to 1), because all loss of individuals is accounted for by �. Thus relevant
perturbations must be parameterized so that the stochasticity is preserved. For
example, ifG describes growth in the standard size-classified model (Caswell 2001,
Section 4.2), e.g.,

G =
⎛
⎝1 − γ1 0 0

γ1 1 − γ2 0
0 γ2 1 − γ3

⎞
⎠ (8.20)

then perturbations of the γi will preserve stochasticity of G. If G has no such
convenient parameterization, then changes in the entries of G must be compensated
for by changes elsewhere in the same column (see Caswell 2001; Hill et al. 2004;

2Alternatively, let μi be the mortality due to harvest experienced by an individual in stage i. Then
H = exp [−D (μ)]. Harvest imposes an additional, additive hazard on top of the natural mortality
contained in B.
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Theorem 4.5 of Caswell 2013). For explicit formulas for compensation, see Chap. 11
of this volume; for an application, see van Daalen and Caswell (2017).

The harvest model (8.14) can be extended to describe harvest imposed at a
specified phase within a p-cycle. Suppose that harvest takes place between phase
m and phase m + 1, so that

A = Bp · · ·Bm+1 (I − H) Bm · · ·B1 (8.21)

(see Darwin and Williams (1964) for an early example of this kind of seasonal
harvest model). Using the same approach, it can be shown that

dvecA
dθ T

= − [(
Cm
1

)T ⊗ Cp

m+1

] dvecH
dθ T

+ [
Is1 ⊗ Cp

m+1 (I − H)
] m∑

i=1

[(
Ci−1
1

)T ⊗ Cm
i+1

] dvecBi

dθ T

+ [(
(I − H)Cm

1

)T ⊗ Is1
] p∑

i=m+1

[(
Ci−1

m+1

)T ⊗ Cp

i+1

] dvecBi

dθ T

(8.22)

The expression (8.17) can be substituted for dvecH in (8.22), and the resulting
expression for dvecA/dθ T substituted into (8.5).

8.3 Multistate Models

We have encountered several examples of models in which individuals are classified
by two criteria (age and stage, stage and environmental state, stage and location,
etc.). These multistate models can be constructed by the vec-permutation matrix
approach; see Chaps. 5 and 6 or Hunter and Caswell (2005b) and Caswell et al.
(2018).

Suppose individuals classified by two criteria; e.g., stages (1, . . . , s) and loca-
tions (1, . . . , r). One might describe population dynamics in terms of stage transi-
tions within locations, and spatial movement within stages, with the two processes
acting sequentially. Thus individuals first survive and reproduce according to their
stage-specific demography, and then disperse among locations, and then repeat. Let
Bi be the s × s matrix describing transitions and reproduction within location i, and
Mj the r × r matrix describing movement probabilities for stage j . Let B and M

be the sr × sr block diagonal matrices with the Bi and the Mj , respectively, on the
diagonal.

The population is projected by

n(t + 1) = KT
MKB n(t).. (8.23)
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The matrix K is the vec-permutation matrix, or commutation matrix, (Henderson
and Searle 1981; Magnus and Neudecker 1979), which satisfies

vecN T = K vecN (8.24)

For the calculation of K, see Sect. 2.2.3.
The model (8.23) is formally periodic, with the operation of B andM alternating;

thus the projection matrix is

A = KT
MKB. (8.25)

The dependence of A on the parameters θ can take place through Bi [θ], Mi [θ ], or
both.

The general sensitivity formula (8.5) requires the derivative dA/dθ T. Differenti-
ating (8.25) gives

dA = KT (dM)KB + KT
MK (dB) . (8.26)

Applying the vec operator gives

dvecA = (
B

TKT ⊗ KT
)
dvecM + (

Isp ⊗ KT
MK

)
dvecB (8.27)

We want to express dvecB and dM in terms of the derivatives of their diagonal
entries Bi and Mj . This can be done using equations (14) and (15) of Caswell and
van Daalen (2016). Define the matrices Pi and Qi , of dimension rs × s and s × rs,
respectively,

Pi =
⎛
⎝ 0s(i−1)×s

Is
0s(r−i)×s

⎞
⎠ Qi = (

0s×(i−1)s Is 0s×(r−i)s

)
. (8.28)

Then

dvecB =
r∑

i=1

(
QT

i ⊗ Pi

)
dvecBi . (8.29)

Similarly, forM, define matrices Ri and Si

Ri =
⎛
⎝ 0r(i−1)×r

Ir
0r(s−i)×r

⎞
⎠ Si = (

0r×(i−1)r Ir 0r×(s−i)r

)
. (8.30)
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Then

dvecM =
s∑

i=1

(
ST

i ⊗ Ri

)
vecMi . (8.31)

Substituting (8.29) and (8.31) into the expression (8.27) for dvecA gives the final
result

dvecA
dθ T

= X1

s∑
j=1

(
ST

j ⊗ Rj

) dvecMj

dθ T

︸ ︷︷ ︸
perturbations of the Mj

+ X2

r∑
i=1

(
QT

i ⊗ Pi

) dvecBi

dθ T

︸ ︷︷ ︸
perturbations of the Bi

(8.32)

where X1 and X2 are constant matrices,

X1 = (
B

TKT ⊗ KT
)

(8.33)

X2 = (
Isr ⊗ KT

MK
)

(8.34)

that need be calculated only once. Although X1, X2, and the Kronecker products
appearing in the summations are large, they are also extremely sparse. The sparse
matrix capabilities in MATLAB can take advantage of this fact. Substituting (8.32)
into (8.5) gives the sensitivity of an output variable ξ to changes in parameters that
perturb any or all of theMj and Bi .

8.4 Nonlinear Models and Delayed Density Dependence

Anticipating the more extensive treatment in Chap. 10, we consider the effects
of nonlinearity in periodic models. You may want to return to this section after
Sect. 10.7, which analyzes periodic oscillations arising from time-invariant non-
linearities. When periodic environmental changes interact with such oscillations,
the results can be complicated, and such interactions are the focus of the present
section.

In a periodic nonlinear model, each of the Bi in (8.2) may depend on density.
Especially in seasonal models, the vital rates in the matrix Bi may depend on
densities not only at phase i, but at previous phases within the cycle as well. For
example, in a study of the invasive plant garlic mustard (Alliaria petiolata) Shyu
et al. (2013) found that seed production of fruiting plants in the fall reflected the
density experienced by vegetative rosettes in the early spring.

To develop a model including such delayed density dependence, define

ni (t) = population at season i in year t (8.35)
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Starting at season 1, the dynamics are given by

n1(t + 1) = Bpnp(t)

n2(t) = B1n1(t)

... (8.36)

np(t) = Bp−1np−1(t)

Density-dependence, in a general form, means that the matrices Bi may be functions
of densities over one cycle prior to season i:

B1 = B1
[
n1(t),np(t − 1), . . . ,n2(t − 1)

]

B2 = B2
[
n2(t),n1(t),np(t − 1), . . . ,n3(t − 1)

]
... (8.37)

Bp = Bp

[
np(t),np−1(t), . . . ,n1(t)

]

A fixed point on the interannual time scale, from t to t + 1, is a p-cycle on the
seasonal scale, satisfying

n̂1 = Bp

[
n̂1, . . . , n̂p

]
n̂p

n̂2 = B1
[
n̂1, . . . , n̂p

]
n̂1

... (8.38)

n̂p = Bp−1
[
n̂1, . . . , n̂p

]
n̂p−1

A k-cycle on the interannual time scale is a kp-cycle on the seasonal time scale, the
points of which are numbered n̂1, . . . , n̂kp. The corresponding sequence of matrices,
in which the annual cycle B1, . . . ,Bp is repeated k times, is defined as B1, . . . ,Bkp.
With this notation, (8.38) still holds, with kp instead of p entries.

Differentiating (8.38) yields

dn̂i = (dBi−1) n̂i−1 + Bi−1
(
dn̂i−1

)
i = 1, . . . , p (8.39)

where the subscripts on n̂ andB are interpreted modulo p. Applying the vec operator
to (8.39) yields

dn̂i = (
n̂T

i−1 ⊗ Is
)
dvecBi−1 + Bi−1dn̂i−1. (8.40)
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The sensitivity analysis of the cycle involves a set of block-structured matrices,
the form of which is easily generalized from the special case with p = 3. Assuming
p = 3 and noting that B depends on all the n̂i as well as on the parameter vector θ ,
the total differential of Bi−1 in (8.40) is

dvecBi−1 = ∂vecBi−1

∂nT
1

dn̂1 + ∂vecBi−1

∂nT
2

dn̂2 + ∂vecBi−1

∂nT
3

dn̂3 + ∂vecBi−1

∂θ T
dθ

(8.41)
For notational convenience, define the matrices

Hi = (
n̂T

i ⊗ Is
)

i = 1, . . . , p (8.42)

Substituting (8.41) into (8.40) produces the set of equations

dn̂1 = H3
∂vecB3

∂θ T
dθ + H3

p∑
j=1

∂vecB3

∂nT
j

dn̂j + B3dn̂3

dn̂2 = H1
∂vecB1

∂θ T
dθ + H1

p∑
j=1

∂vecB1

∂nT
j

dn̂j + B1dn̂1 (8.43)

dn̂1 = H2
∂vecB2

∂θ T
dθ + H2

p∑
j=1

∂vecB2

∂nT
j

dn̂j + B2dn̂2

This set of equations can be reduced to a single equation by collecting all the points
on the kp-cycle into a single vector. Write an array (of dimension sp × k)

N =
yr. 1 yr. k

season 1 n̂1 · · · n̂1
...

...
...

season p n̂p · · · n̂p

(8.44)

Then write the vector (of dimension spk × 1)

N = vecN (8.45)

In terms of this vector, the set of equations (8.43) can be rewritten

dN

dθ T
= [

Iskp − B − HC
]−1

HD. (8.46)
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where H and B are the block-circulant matrices

H =
⎛
⎝ 0 0 H3

H1 0 0
0 H2 0

⎞
⎠ (8.47)

B =
⎛
⎝ 0 0 B3

B1 0 0
0 B2 0

⎞
⎠ , (8.48)

and C and D are the block matrices

C =

⎛
⎜⎜⎜⎜⎜⎝

∂vecB1

∂nT
1

· · · ∂vecB1

∂nT
3

...
. . .

...
∂vecB3

∂nT
1

. . .
∂vecB3

∂nT
3

⎞
⎟⎟⎟⎟⎟⎠

(8.49)

D =

⎛
⎜⎜⎜⎜⎜⎜⎝

∂vecB1

∂θ T

∂vecB2

∂θ T

∂vecB3

∂θ T

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8.50)

All the derivatives are evaluated at n̂1, . . . , n̂3.

8.4.1 Averages

The vector dN/dθ T created by (8.46) contains the sensitivities of all s stages, at each
of p seasons within the year, for each of the k years within the inter-annual k-cycle.
If this is too much information, one can calculate the sensitivity of averages, or other
linear combinations, taken in various ways.

To write these averages, let bm be a m × 1 vector of weights. For a simple
average of m quantities, each entry of bm is 1/m; for a weighted average, the
entries of bm would be non-negative numbers summing to 1. More generally, bmay
contain arbitrary weights, such as biomass, metabolic rate, economic value, etc. See
Chaps. 7 and 10. To calculate averages from N, first apply these vectors to average
over rows or columns ofN and then apply the vec operator to express the results as
averages over N.
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Annual fixed point If the dynamics are a fixed point on the annual time scale,
averages can be calculated over stages (using a vector bs), over seasons (using a
vector bp), or both. The p × 1 vector of averages over stages is

avg. over stages = vec
(
bT

sN
)

(8.51)

= (
Ip ⊗ bT

s

)
N (8.52)

The s × 1 vector of averages over seasons is

avg. over seasons =
(
bT

p ⊗ Is
)
N (8.53)

The average over both seasons and stages (a scalar) is

avg. over stages and seasons =
(
bT

p ⊗ bT
s

)
N (8.54)

Because the average is a linear operator, the sensitivities of these averages are
obtained by applying the same weights to the derivative dN/dθ T in (8.46):

sensitivity of avg. over stages = (
Ip ⊗ bT

s

) dN

dθ T
(8.55)

sensitivity of avg. over seasons =
(
bT

p ⊗ Is
) dN

dθ T
(8.56)

sensitivity of avg. over both =
(
bT

p ⊗ bT
s

) dN

dθ T
(8.57)

Annual k-cycle When the dynamics produce a k-cycle on the annual time scale,
averages can be calculated over any desired combination of stages, seasons, and
years. Table 8.2 gives the resulting expressions for the averages. As in the case of
equations (8.55) and (8.56), the sensitivities of these averages to parameters are
obtained by applying the same weights to dN/dθ T.

8.4.2 A Nonlinear Example

As an example of the calculations for nonlinear systems, imagine an organism
with two stages: immature juveniles and reproducing adults. Suppose that the year
contains two seasons: a benign, reproduction-heavy Season 1 and a harsh, mortality-
heavy Season 2. The life cycle graph is shown in Fig. 8.2. Adults in Season 1 all
survive to Season 2 and give birth to new juveniles with per-capita fertility f , which
depends on adult density in Season 1 according to f [n1] = ae−bn2 , where a and b

are the maximum fertility and the strength of density-dependence, respectively, and
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Table 8.2 Calculation of averages of attractors of nonlinear periodic matrix population models.
The upper half of the table shows averages over stages and over seasons when the dynamics are
a fixed point on the inter-annual time scale, and thus a p-cycle on the seasonal time scale. The
lower half of the table shows averages over all combinations of stages, seasons, and years, when
the dynamics are a k-cycle on the inter-annual time scale, and thus a kp-cycle on the seasonal time
scale

Average over Formula Vectors Dimension

Stages
(
Ip ⊗ bT

s

)
N 1 p × 1

Seasons
(
bT

p ⊗ Is
)
N 1 s × 1

Seasons and stages
(
bT

p ⊗ bs

)
N 1 1 × 1

Stages
(
Ik ⊗ Ip ⊗ bT

s

)
N 1 kp × 1

Seasons
(
Ik ⊗ bT

p ⊗ Is
)
N k s × 1

Years
(
bk ⊗ Ip ⊗ Is

)
N p s × 1

Seasons and years
(
bT

k ⊗ bT
p ⊗ Is

)
N 1 s × 1

Seasons and stages
(
Ik ⊗ bT

p ⊗ bT
s

)
N 1 k × 1

Years and stages
(
bT

k ⊗ Ip ⊗ bT
s

)
N 1 p × 1

Stages, seasons, years
(
bT

k ⊗ bT
p ⊗ bT

s

)
N 1 1 × 1

Fig. 8.2 A periodic life cycle
graph for a simple two-stage,
two-season nonlinear model.
J and A denote juveniles and
adults, respectively

J A

J A

J A

Season 1

Season 2

Season 1

SJ

f(n)

Sa

1

n2 is the adult density in Season 1. In the harsher Season 2, juveniles and adults
survive with probabilities sj and sa . A juvenile that survives to Season 1 matures
into an adult.

This life cycle produces seasonal transition matrices B1 and B2:

B1[n1] =
(
0 f [n1]
0 1

)
(8.58)

B2 =
(
0 0
sj sa

)
(8.59)
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Fig. 8.3 A bifurcation diagram on the seasonal time scale for the two-season, two-stage model
of Fig. 8.2. Total densities are plotted for Season 1 (•) and 2 (+). Parameters: a = 20, b = 1,
sj = 0.5; sa varied from 0 to 1

and the nonlinear periodic model

n1(t + 1) = B2n2(t)

n2(t) = B1 [n1(t)]n1(t) (8.60)

Figure 8.3 is a bifurcation diagram for the system (8.60) in response to changes in
adult survival sa . When adults are long-lived (sa � 0.22) there is a 2-cycle on the
seasonal scale, corresponding to a fixed point on the annual time scale, satisfying

n̂1 = B2n̂2 (8.61)

n̂2 = B1[n̂1]n̂1 (8.62)

At sa ≈ 0.22 this 2-cycle bifurcates to a 4-cycle on the seasonal time scale,
corresponding to a 2-cycle on the annual scale.

To derive the block matrices C and D in Eqs. (8.49) and (8.50), define the
parameter vector as

θ = (
sj sa a b

)T
. (8.63)
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The derivative matrices are

dvecB1

dθ T
=

⎛
⎜⎜⎝
0 0 0 0
0 0 0 0
0 0 e−bn̂2 −an̂2e

−bn̂2

0 0 0 0

⎞
⎟⎟⎠ (8.64)

dvecB2

dθ T
=

⎛
⎜⎜⎝
0 0 0 0
1 0 0 0
0 0 0 0
0 1 0 0

⎞
⎟⎟⎠ (8.65)

dvecB1

dnT
=

⎛
⎜⎜⎝
0 0
0 0
0 −abe−bn̂2

0 0

⎞
⎟⎟⎠ (8.66)

dvecB2

dnT
= 0 (dimension 4 × 2) (8.67)

We calculate the sensitivities of the equilibrium population at each phase of the
cycle using Eq. (8.46) with sa = 0.4 (a 2-cycle on the seasonal time scale; see
Fig. 8.3) and with sa = 0.1 (a 4-cycle on the seasonal time scale). The results, and
the sensitivities of several averages, are shown in Fig. 8.4.

At the seasonal 2-cycle (annual fixed point), increases in sj or sa increase
density in Season 1 and reduce density in Season 2, and have little effect on the

sj sa a b

Avg Over Stages

−2.5
−2

−1.5
−1

−0.5
0

0.5
Avg Over Stages and Seasons

Avg Over Stages

−3

−2

−1

0

1

2
Avg Over Stages and Seasons

Year 1
Year 2

−4
−3
−2
−1

0
1
2

Avg Over Stages and Years

Season 1
Season 2

−2.5
−2

−1.5
−1

−0.5
0

0.5
1

Avg Over Stages, Seasons, and Years

sj sa a b

sj sa a b sj sa a b

sj sa a b sj sa a b

sa = 0.4 sa = 0.1

−4
−3
−2
−1

0
1
2

Season 1
Season 2

−5

−2.5

0

2.5

5

d
n̂

/d
θ

Year 1, Season 1
Year 1, Season 2
Year 2, Season 1
Year 2, Season 2

Fig. 8.4 Sensitivities of equilibrium total population size in Seasons 1 and 2, as well as the annual
population average, to the demographic parameters sj , sa , a, and b. Left: sensitivities when sa =
0.4 (seasonal 2-cycle, annual equilibrium). Right: sensitivities when sj = 0.1 (seasonal 4-cycle,
annual 2-cycle)
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density averaged over seasons. The maximum fertility level a has little effect at
either season, and the density-dependent parameter b has large negative effects
throughout.

At the 4-point seasonal cycle (2-cycle on the annual time scale), the patterns are
more complicated. We describe them in terms of the kp = 4 seasons in the cycle.
The maximum fertility a has little effect at any point. The survival probabilities sj
and sa have effects that are opposite in sign: an increase in sj increases the density
in seasons 1 and 4, and reduces it in seasons 2 and 3. An increase in sa has the
opposite effect. Averaged over years, both sa and sj increase density in season 1
and reduce it in season 2, thus increasing the amplitude of the oscillation. Averaged
over seasons, sa and sj have opposite effects. When averaged over stages, seasons,
and years, the effects of sa cancel each other out, and only sj and b have appreciable
effects.

Even in this simple example, it is clear that parameter changes can have effects
that differ among seasons and years. A set of MATLAB scripts to carry out these
calculations appears in an online supplement to Caswell and Shyu (2012).

8.5 LTRE Decomposition Analysis

The LTRE decomposition analysis introduced in Sects. 2.9 and 4.5 can be extended
to obtain the contributions, to any given outcome, of differences in parameters at
each phase of the cycle.

Suppose that ξ is a m × 1 dependent variable (scalar or vector-valued), a
function of a parameter vector θ that takes on values θ1, . . . , θp over the cycle.
Use superscripts to denote two conditions,3 which produce results ξ (1) and ξ (2):

θ
(1)
1 , . . . , θ (1)

p → ξ (1) (8.68)

θ
(2)
1 , . . . , θ (2)

p → ξ (2) (8.69)

To first order, the effect on ξ is

ξ (2) − ξ (1) ≈
p∑

k=1

dξ

dθ T
k

(
θ

(2)
k − θ

(1)
k

)
(8.70)

The kth term in the summation in (8.70) is the total contribution, over all of the
parameters in θ , of parameter differences in phase k of the cycle.

Define Rk as a m × p contribution matrix whose entries are the contributions of
parameter θj in phase k to the effects on outcome variable ξi . Then

Rk = dξ

dθ T
k

D
(
θ

(2)
k − θ

(1)
k

)
(8.71)

3The extension to more than two conditions is easy; see Caswell (2001).
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where the derivative is evaluated at the average of θ (1) and θ (2). These contributions
are a decomposition of the approximate effect in (8.70),

ξ (2) − ξ (1) ≈
p∑

k=1

Rk1p (8.72)

The contribution matrix (8.71) requires dξ/dθ T
k , that is, the derivative of ξ to

the parameter at phase k of the cycle. In the linear model (8.2), this is given by
the kth term in the summation in (8.11). In the case of the nonlinear model (8.36),
the derivative is obtained from Eq. (8.46) by setting all blocks of D, except those
corresponding to phase k, to zero.

8.6 Discussion

The distinguishing feature of periodic models is that the dynamics over a projection
interval are given by a periodic product of matrices. The periodic product may reflect
the existence of multiple timescales (e.g., seasonal and annual), or the operation of
multiple processes (e.g., demography and harvest), or express conditional proba-
bilities, or arise from classifying individuals by multiple criteria. The sensitivity
analysis of periodic models must account for the chain of causation (Fig. 8.1) from
demographic parameters at each phase in the cycle to the corresponding projection
matrices, and thence to the periodic matrix product over the whole cycle, and finally
to demographic outcome ξ . Matrix calculus makes this easy to do, starting with a
simple chain rule expression (see Eq. (8.5)) and then using an appropriate version
of (8.9) to calculate the derivative dvecA/dθ T.
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