
Chapter 11
Sensitivity Analysis of Discrete Markov
Chains

11.1 Introduction

As we have seen repeatedly, Markov chains are often used as mathematical models
of demographic (as well as other natural) phenomena, with transition probabilities
defined in terms of parameters that are of interest in the scientific question at
hand. Sensitivity analysis is an important way to quantify the effects of changes
in these parameters on the behavior of the chain. This chapter revisits, in a more
rigorous way, some of the quantities already explored for absorbing Markov chains
(Chaps. 4, 5, and 6). It will also consider ergodic Markov chains (in which no
absorbing states exist), and calculate the sensitivity of the stationary distribution
and measures of the rate of convergence.

Perturbation (or sensitivity) analysis is a long-standing problem in the theory
of Markov chains (Schweitzer 1968; Conlisk 1985; Golub and Meyer 1986;
Funderlic and Meyer 1986; Seneta 1988, 1993; Meyer 1994; Cho and Meyer 2000;
Mitrophanov 2003, 2005; Mitrophanov et al. 2005; Kirkland et al. 2008). When
Markov chains are applied as models of physical, biological, or social systems, they
are often defined as functions of parameters that have substantive meaning.
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11.2 Absorbing Chains

The transition matrix for a discrete-time absorbing chain can be written

P =
(
U 0
M I

)
(11.1)

where U, of dimension s × s, is the transition matrix among the s transient states,
and M, of dimension a × s, contains probabilities of transition from the transient
states to the a absorbing states. Assume that the spectral radius of U is strictly less
than 1. Because we are concerned here with absorption, but not what happens after,
we ignore transitions among absorbing states; hence the identity matrix (a × a) in
the lower right corner. The matrices U[θ ] and M[θ ] are functions of a vector of
parameters. We assume that θ varies over some set in which the column sums of P
are 1 and the spectral radius of U is strictly less than one.

11.2.1 Occupancy: Visits to Transient States

Let νij be the number of visits to transient state i, prior to absorption, by an
individual starting in transient state j . The expectations of the νij are entries of

the fundamental matrix N = N1 =
(
E(ηij )

)
:

N = (I − U)−1 (11.2)

(e.g., Kemeny and Snell 1960; Iosifescu 1980). Let Nk =
(
E(ηk

ij )
)
be a matrix

containing the kth moments about the origin of the νij . The first several of these
matrices are (Iosifescu 1980, Thm. 3.1)

N1 = (I − U)−1 (11.3)

N2 = (
2Ndg − I

)
N1 (11.4)

N3 =
(
6N2

dg − 6Ndg + I
)
N1 (11.5)

N4 =
(
24N3

dg − 36N2
dg + 14Ndg − I

)
N1. (11.6)

Theorem 11.2.1 Let Nk be the matrix of kth moments of the νij , as given by (11.3),
(11.4), (11.5), and (11.6). The sensitivities of Nk , for k = 1, . . . , 4 are

dvecN1 =
(
NT
1 ⊗ N1

)
dvecU (11.7)
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dvecN2 =
[
2
(
I ⊗ Ndg

) − Is2
]
dvecN1 + 2

(
NT ⊗ I

)
dvecNdg (11.8)

dvecN3 =
[
I ⊗

(
6N2

dg − 6Ndg + I
)]

dvecN1

+
[
6
(
NTNdg ⊗ I

)
+ 6

(
NT ⊗ Ndg

)
− 6

(
NT ⊗ I

)]
dvecNdg (11.9)

dvecN4 =
[
I ⊗

(
24N3

dg − 36N2
dg + 14Ndg − I

)]
dvecN1

+
[
24

(
NTN2

dg ⊗ I
)

+ 24
(
NTNdg ⊗ Ndg

)
+ 24

(
NT ⊗ N2

dg

)

−36
(
NTNdg ⊗ I

)
−36

(
NT ⊗ Ndg

)
+14

(
NT ⊗ I

)]
dvecNdg (11.10)

where (see Sect. 2.8)

dNdg = I ◦ dN1 (11.11)

dvecNdg = D (vec I)dvecN1. (11.12)

Proof The result (11.7) is derived in Caswell (2006, Section 3.1). For k > 1, and
considering Nk as a function of N1 and Ndg, the total differential of Nk is

dvecNk = ∂vecNk

∂vec TN1
dvecN1 + ∂vecNk

∂vec TNdg
dvecNdg. (11.13)

The two terms of (11.13) are the partial differentials of vecNk , obtained by taking
differentials treating only N1 or only Ndg as variables, respectively. Denote these
partial differentials as ∂N1 ∂N1 and ∂Ndg and ∂Ndg . Differentiating N2 in (11.4), gives

∂N1N2 = 2Ndg (dN1) − dN1 (11.14)

∂NdgN2 = 2
(
dNdg

)
N1. (11.15)

Applying the vec operator gives

∂N1vecN2 =
[
2
(
I ⊗ Ndg

) − Is2
]
dvecN1 (11.16)

∂NdgvecN2 = 2
(
NT
1 ⊗ I

)
dvecNdg, (11.17)

and (11.13) becomes

dvecN2 =
[
2
(
I ⊗ Ndg

) − Is2
]
dvecN1 + 2

(
NT
1 ⊗ I

)
dvecNdg, (11.18)
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which is (11.8). The derivations of dvecN3 and dvecN4 follow the same sequence
of steps. The details are given in Appendix A. ��

The derivatives of N2, N3, and N4 can be used to study the variance, standard
deviation, coefficient of variation, skewness, and kurtosis of the number of visits to
the transient states (Caswell 2006, 2009, 2011).

11.2.2 Time to Absorption

Let ηj be the time to absorption starting in transient state j and let ηk =
E

(
ηk
1, · · · , ηk

s

)T
. The first several of these moments are (Iosifescu 1980, Thm. 3.2)

ηT1 = 1TN1 (11.19)

ηT2 = ηT1 (2N1 − I) (11.20)

ηT3 = ηT1

(
6N2

1 − 6N1 + I
)

(11.21)

ηT4 = ηT1

(
24N3

1 − 36N2
1 + 14N1 − I

)
. (11.22)

Theorem 11.2.2 Let ηk be the vector of the kth moments of the ηi . The sensitivities
of these moment vectors are

dη1 =
(
I ⊗ 1T

)
dvecN1 (11.23)

dη2 =
(
2NT

1 − I
)

dη1 + 2
(
I ⊗ ηT1

)
dvecN1 (11.24)

dη3 =
(
6n2 − 6N1 + I

)T
dη1

+
[
6
(
NT
1 ⊗ ηT1

)
+ 6

(
I ⊗ ηT1N1

)
− 6

(
I ⊗ ηT1

) ]
dvecN1 (11.25)

dη4 =
(
24N3

1 − 36N2
1 + 14N1 − I

)T
dη1

+
{
24

[(
NT
1

)2 ⊗ ηT1

]
+ 24

(
NT
1 ⊗ ηT1N1

)
+ 24

(
I ⊗ ηT1N

2
1

)

−36
(
NT
1 ⊗ ηT1

)
− 36

(
I ⊗ ηT1N1

)
+ 14

(
I ⊗ ηT1

) }
dvecN1 (11.26)

where dvecN1 is given by (11.7).
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Proof The derivative of η1 is obtained (Caswell 2006) by differentiating to get
dηT1 = 1T (dN1) and then applying the vec operator. For the higher moments,
consider the ηk to be functions of η1 and N1, and write the total differential

dηk = ∂ηk

∂ηT1

dη1 + ∂ηk

∂vec TN1
dvecN1. (11.27)

The partial differentials of η2 with respect to η1 and N1 are

∂η1η
T
2 =

(
dηT1

)
(2N1 − I) (11.28)

∂N1η
T
2 = 2ηT1 (dN1) . (11.29)

Applying the vec operator gives

∂η1η2 =
(
2NT

1 − I
)

dη1 (11.30)

∂N1η2 = 2
(
I ⊗ ηT1

)
dvecN1 (11.31)

which combine according to (11.27) to yield (11.24). The derivations of dη3 and
dη4 follow the same sequence of steps; the details are shown in Appendix A. ��

11.2.3 Number of States Visited Before Absorption

Let ξi ≥ 1 be the number of distinct transient states visited before absorption, and
let ξ1 = E(ξ). Then

ξT1 = 1TN−1
dg N1 (11.32)

(Iosifescu 1980, Sect. 3.2.5), where N−1
dg = (

Ndg
)−1.

Theorem 11.2.3 Let ξ1 = E(ξ). The sensitivity of ξ is

dξ1 =
[
−

(
NT
1 ⊗ 1T

) (
N−1
dg ⊗ N−1

dg

)
D (vec I) +

(
I ⊗ 1TN−1

dg

)]
dvecN1,

(11.33)
where dvecN1 is given by (11.7).
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Proof Differentiating (11.32) yields

dξT1 = 1T
(
dN−1

dg

)
N1 + 1TN−1

dg dN1. (11.34)

Applying the vec operator yields

dξ1 =
(
NT
1 ⊗ 1T

)
dvecN−1

dg +
(
I ⊗ 1TN−1

dg

)
dvecN1. (11.35)

Applying (2.82) to dvecN−1
dg and using (11.12) for dvecNdg gives

dξ1 = −
(
NT
1 ⊗ 1T

) (
N−1
dg ⊗ N−1

dg

)
D (vec I)dvecN1 +

(
I ⊗ 1TN−1

dg

)
dvecN1

(11.36)
which simplifies to (11.33). ��

11.2.4 Multiple Absorbing States and Probabilities
of Absorption

When the chain includes a > 1 absorbing states, the entry mij of the a×s submatrix
M in (11.1) is the probability of transition from transient state j to absorbing state
i. The result of the competing risks of absorption is a set of probabilities bij =
P

[
absorption in i |starting in j

]
for i = 1, . . . , a and j = 1, . . . , s. The matrix

B = (
bij

) = MN1 (Iosifescu 1980, Thm. 3.3).

Theorem 11.2.4 Let B = MN1 be the matrix of absorption probabilities. Then

dvecB =
(
NT
1 ⊗ I

)
dvecM +

(
NT
1 ⊗ B

)
dvecU. (11.37)

Proof Differentiating B yields

dB = (dM)N1 + M (dN1) . (11.38)

Applying the vec operator gives

dvecB =
(
NT
1 ⊗ I

)
dvecM + (I ⊗ M) dvecN1. (11.39)

Substituting (11.7) for dvecN1 and simplifying gives (11.37). ��
Column j of B is the probability distribution of the eventual absorption state for

an individual starting in transient state j . Usually a few of those starting states are
of particular interest (e.g., states corresponding to “birth” or to the start of some
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process). Let B(:, j) = Bej denote column j of B, where ej is the j th unit vector
of length s. Thus the derivative of B(:, j) is

dvecB(:, j) =
(
eTj ⊗ Is

)
dvecB (11.40)

where dvecB is given by (11.37). Similarly, row i of B is B(i, :) = eTi B and

dvecB(i, :) =
(
Is ⊗ eTi

)
dvecB (11.41)

where ei is the ith unit vector of length a.

11.2.5 The Quasistationary Distribution

The quasistationary distribution of an absorbing Markov chain gives the limiting
probability distribution, over the set of transient states, of the state of an individual
that has yet to be absorbed. Let w and v be the right and left eigenvectors associated
with the dominant eigenvalue of U, normalized so that ‖w‖ = ‖v‖ = 1. Darroch
and Seneta (1965) defined two quasistationary distributions in terms ofw and v. The
limiting probability distribution of the state of an individual, given that absorption
has not yet happened, converges to

qa = w (11.42)

The limiting probability distribution of the state of an individual, given that
absorption has not happened and will not happen for a long time, is

qb = w ◦ v

wTv
(11.43)

Horvitz and Tuljapurkar (2008) pointed out that the convergence to the quasista-
tionary distribution implies that, in a stage-classified model, mortality eventually
becomes independent of age.

Lemma 1 Let the dominant eigenvalue of U, guaranteed real and nonnegative by
the Perron-Frobenius theorem, satisfy 0 < λ < 1, and let w and v be the right and
left eigenvectors corresponding to λ, scaled so that wTv = 1. Then

dw =
(
λIs − U + w1TU

)−1 [
wT ⊗

(
Is − w1T

)]
dvecU (11.44)

dv =
(
λIs − UT + veT1U

T
)−1 [ (

Is − veT1
)

⊗ vT
]
dvecU (11.45)
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Proof Equation (11.44) is proven in Caswell (2008, Section 6.1). Equation (11.45)
is obtained by treating v as the right eigenvector of UT. ��
Theorem 11.2.5 The derivative of the quasistationary distribution qa is given
by (11.44). The derivative of the quasistationary distribution qb is

dqb = 1

vTw

[ (
D (v) − qbvT

)
dw +

(
D (w) − qbwT

)
dv

]
(11.46)

where dw and dv are given by (11.44) and (11.45) respectively.

Proof The derivative of qa follows from its definition as the scaled right eigenvector
of U. For qb, differentiating (11.43) gives

dqb = 1(
vTw

)2
{ (

vTw
)

d (v ◦ w) − (v ◦ w)
[(

dvT
)
w + vT (dw)

]}
(11.47)

= 1

vTw

[
d (v ◦ w) − qb

(
dvT

)
w − qbvT (dw)

]
(11.48)

Applying the vec operator gives

dqb = 1

vTw

[
D (v)dw + D (w)dv −

(
wT ⊗ qb

)
dv − qbvTdw

]
(11.49)

which simplifies to give (11.46). ��

11.3 Life Lost Due to Mortality

The approach here makes it easy to compute the sensitivity of a variety of dependent
variables calculated from the Markov chain. As an example of this flexibility,
consider a recently developed demographic index, the number of years of life lost
due to mortality (Vaupel and Canudas Romo 2003).

The transient states of the chains are age classes, absorption corresponds to death,
and absorbing states correspond to age at death. Let μi be the mortality rate and
pi = exp(−μi) the survival probability at age i. The matrix U has the pi on the
subdiagonal and zeros elsewhere. The matrix M has 1 − pi on the diagonal and
zeros elsewhere. Let f = B(:, 1) be the distribution of age at death and η1 the vector
of expected longevity as a function of age.

A death at age i represents the loss of some number of years of life beyond that
age. The expectation of that loss is given by the ith entry of η1, and the expected
number of years lost over the distribution of age at death is η† = ηT1 f. This quantity
also measures the disparity among individuals in longevity (Vaupel and Canudas
Romo 2003). If everyone died at the identical age x, f would be a delta function at x
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and further life expectancy at age x would be zero; their product would give η† = 0.
Declines in discrepancy have accompanied increases in life expectancy observed in
developed countries (Edwards and Tuljapurkar 2005; Wilmoth and Horiuchi 1999).
Thus it is useful to know how η† responds to changes in mortality.

Differentiating η† gives

dη† =
(
dηT1

)
Be1 + ηT1 (dB) e1. (11.50)

Applying the vec operator gives

dη† = eT1b
TdηT1 +

(
eT1 ⊗ ηT1

)
dvecB. (11.51)

Substituting (11.23) for dη1 and (11.37) for dvecB gives

dη† = fT
(
I ⊗ 1T

)
dvecN1 +

(
eT1 ⊗ ηT1

)

[ (
NT
1 ⊗ I

)
dvecM +

(
NT
1 ⊗ B

)
dvecU

]
(11.52)

Simplifying and writing derivatives in terms of μ gives

dη†

dμT
=

[
fT

(
NT
1 ⊗ ηT1

)
+

(
eT1N

T
1 ⊗ ηT1B

)]

dvecU

dμT
+

(
eT1N

T
1 ⊗ ηT1

) dvecM

dμT
(11.53)

Because mortality rates vary over several orders of magnitude with age, it is useful
to present the results as elasticities,

εη†

εμT
= 1

η†

dη†

dμT
D (μ). (11.54)

Figure 11.1 shows these elasticities for two populations chosen to have very
different life expectancies: India in 1961, with female life expectancy of 45 years
and η† = 23.9 years and Japan in 2006, with female life expectancy of 86 years
and η† = 10.1 years (Human Mortality Database 2016). In both cases, elasticities
are positive from birth to some age (≈50 for India, ≈85 for Japan) and negative
thereafter. This implies that reductions in infant and early life mortality would
reduce η†, whereas reductions in old age mortality would increase η†. Zhang and
Vaupel (2009) have shown that the existence of such a critical age is a general
property of these models.



264 11 Sensitivity Analysis of Discrete Markov Chains

Fig. 11.1 The elasticity of
mean years of life lost due to
mortality, η†, to changes in
age-specific mortality,
calculated from the female
life tables of India in 1961
and of Japan in 2006. (Data
obtained from the Human
Mortality Database 2016)
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11.4 Ergodic Chains

Now let us consider perturbations of an ergodic finite-state Markov chain with an
irreducible, primitive, column-stochastic transition matrix P of dimension s × s.
The stationary distribution π is given by the right eigenvector, scaled to sum to 1,
corresponding to the dominant eigenvalue λ1 = 1 of P. The fundamental matrix of

the chain is Z = (
I − P + π1T

)−1
(Kemeny and Snell 1960).

We are interested only in perturbations that preserve the column-stochasticity
of P; i.e., for which P remains a stochastic matrix. Such perturbations are easily
defined when the pij depend explicitly on a parameter vector θ . However, when
the parameters of interest are the pij themselves, an implicit parameterization must
be defined to preserve the stochastic nature of P under perturbation (Conlisk 1985;
Caswell 2001). In Sect. 11.4.5 we will explore new expressions for two different
forms of implicit parameterization.

Previous studies of perturbations of ergodic chains focus almost completely on
perturbations of the stationary distribution, and are divided between those focusing
on sensitivity as a derivative (e.g., Schweitzer 1968; Conlisk 1985; Golub and
Meyer 1986) and studies focusing on perturbation bounds and condition numbers
(Funderlic and Meyer 1986; Meyer 1994; Seneta 1988; Hunter 2005; Kirkland
2003); for reviews see Cho and Meyer (2000) and Kirkland et al. (2008). The
approach here is similar in spirit to that of Schweitzer (1968), Conlisk (1985), and
Golub and Meyer (1986), in that we focus on derivatives of Markov chain properties
with respect to parameter perturbations, but taking advantage of the matrix calculus
approach. We do not consider perturbation bounds here.
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11.4.1 The Stationary Distribution

Theorem 11.4.1 Let π be the stationary distribution, satisfying Pπ = π and
1Tπ = 1. The sensitivity of π is

dπ =
[
πT ⊗

(
Z − π1T

)]
dvecP (11.55)

where Z is the fundamental matrix of the chain.

Proof The vector π is the right eigenvector of P, scaled to sum to 1.
Applying Lemma 1, and noting that λ = 1 and 1TP = 1T, gives dπ =
Z

[
πT ⊗ (

Is − π1T
)]

dvecP. Noting that Zπ = π and simplifying the Kronecker
products yields (11.55). ��

Based on an analysis of eigenvector sensitivity (Meyer and Stewart 1982), Golub
and Meyer (1986) derived an expression for the derivative of π to a change in a
single element of P using the group generalized inverse (I − P)# of I − P. Since
(I − P)# = Z − π1T (Golub and Meyer 1986), expression (11.55) is exactly the
Golub-Meyer result expressed in matrix calculus notation. Our results here permit
sensitivity analysis of functions of π using only the chain rule. If g(π) is a vector-
or scalar-valued function of π , then

dg(π) = dg

dπT

dπ

dvec TP
dvecP (11.56)

Some examples will appear in Sect. 11.5.

11.4.2 The Fundamental Matrix

The fundamental matrixZ = (
I − P + π1T

)−1
plays a role in ergodic chains similar

to that played by N1 in absorbing chains (Kemeny and Snell 1960). It has been
extended using generalized inverses (Meyer 1975; Kemeny 1981), but we do not
consider those extensions here.

Theorem 11.4.2 The sensitivity of the fundamental matrix is

dvecZ =
(
ZT ⊗ Z

) {
Is2 −

[
1πT ⊗

(
Z − π1T

)]}
dvecP (11.57)

Proof From (2.82),

dvecZ = −
(
ZT ⊗ Z

)
dvec

(
I − P + π1T

)
(11.58)

=
(
ZT ⊗ Z

) (
dvecP − (1 ⊗ Is) dπ

)
(11.59)
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Substituting (11.55) for dπ and simplifying gives (11.57). ��

11.4.3 The First Passage Time Matrix

Let R =
(
rij

)
be the matrix of mean first passage times from j to i, given by

Iosifescu (1980, Thm. 4.7).

R = D (π)−1
(
I − Z + ZdgE

)
. (11.60)

Again, this is the transpose of the expression obtained when P is row-stochastic.

Theorem 11.4.3 The sensitivity of R is

dvecR = −
[
RT ⊗ D (π)−1

]
D (vec Is) (1 ⊗ Is) dπ

−
{ [

Is ⊗ D (π)−1
]

−
[
E ⊗ D (π)−1

]
D (vec Is)

}
dvecZ (11.61)

where dπ is given by (11.55) and dvecZ is given by (11.57).

Proof Differentiating (11.60) gives

dR = d
[
D (π)−1

] (
I − Z + ZdgE

)
+ D (π)−1

[
− dZ + (

dZdg
)
E

]
. (11.62)

Applying the vec operator gives

dvecR =
[ (

I − Z + ZdgE
)T ⊗ Is

]
dvec

[
D (π)−1

]

−
[
Is ⊗ D (π)−1

]
dvecZ +

[
E ⊗ D (π)−1

]
dvecZdg. (11.63)

Using (2.82) for dvec
[D (π)−1

]
, (2.69) for dvecD (π), and (11.12) for dvecZdg

yields

dvecR = −
[
RTD (π) ⊗ Is

] [
D (π)−1 ⊗ D (π)−1

]
D (vec I) (1 ⊗ I) dπ

−
[
I ⊗ D (π)−1

]
dvecZ +

[
E ⊗ D (π)−1

]
D (vec I) dvecZ (11.64)

which simplifies to give (11.61). ��
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11.4.4 Mixing Time and the Kemeny Constant

The mixing time K of a chain is the mean time required to get from a specified
state to a state chosen at random from the stationary distribution π . Remarkably, K
is independent of the starting state (Grinstead and Snell 2003; Hunter 2006) and is
sometimes called Kemeny’s constant; it is a measure of the rate of convergence to
stationarity, and is K = trace(Z) (Hunter 2006). In addition to being a quantity of
interest in itself, the rate of convergence also plays a role in the sensitivity of the
stationary distribution of ergodic chains (Hunter 2005; Mitrophanov 2005).

Theorem 11.4.4 The sensitivity of K is

dK = (vec Is)T dvecZ. (11.65)

Proof Differentiating K = trace(Z) gives

dK = 1T (I ◦ dZ) 1. (11.66)

Applying the vec operator gives

dK =
(
1T ⊗ 1T

)
D (vec I)dvecZ (11.67)

which simplifies to (11.65). ��

11.4.5 Implicit Parameters and Compensation

Theorems 11.4.1, 11.4.2, 11.4.3, and 11.4.4 are written in terms of dvecP. However,
perturbation of any element, say pkj , to pkj + θkj , must be compensated for by
adjustments of the other elements in column j so that the column sum remains
equal to 1 (Conlisk 1985). Two kinds of compensation are likely to be of use
in applications: additive and proportional. Additive compensation adjusts all the
elements of the column by an equal amount, distributing the perturbation θkj

additively over column j . Proportional compensation distributes θkj in proportion
to the values of the pij , for i 	= k. Proportional compensation is attractive because
it preserves the pattern of zero and non-zero elements within P.

To develop the compensation formulae, let us start by considering a probability
vector p, of dimension s × 1, with pi ≥ 0 and

∑
i pi = 1. Let θi be the perturbation

of pi , and write

p(θ) = p(0) + Aθ (11.68)
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for some matrix A to be determined. If y is a function of p, then

dy = dy

dpT
dp

dθT
dθ (11.69)

evaluated at θ = 0.

Additive compensation For the case of additive compensation, we write

p1(θ) = p1(0) + θ1 − θ2

s − 1
− · · · − θs

s − 1

p2(θ) = p2(0) − θ1

s − 1
+ θ2 − · · · − θs

s − 1

... (11.70)

ps(θ) = ps(0) − θ1

s − 1
− θ2

s − 1
− · · · + θs

The perturbation θ1 is added to p1 and compensated for by subtracting θ1/(s − 1)
from all other entries of p; clearly

∑
i pi(θ) = 1 for any perturbation vector θ .

The system of Eqs. (11.70) can be written

p(θ) = p(0) +
(
I − 1

s − 1
C

)
θ . (11.71)

Defining E to be a matrix of ones, then the matrix C can be written (as a so-called
Toeplitz matrix) as C = E− I, with zeros on the diagonal and ones elsewhere. Thus
the matrix A in (11.68) is

A = I − 1

s − 1
C (11.72)

Proportional compensation For proportional compensation, assume that pi < 1
for all i. The vector p(θ) is

p1(θ) = p1(0) + θ1 − p1θ2

1 − p2
− · · · − p1θs

1 − ps

p2(θ) = p2(0) − p2θ1

1 − p1
+ θ2 − · · · − p2θs

1 − ps

... (11.73)

ps(θ) = ps(0) − psθ1

1 − p1
− psθ2

1 − p2
− · · · + θs
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The perturbation θ1 is added to p1 and compensated for by subtracting θ1pi/(1−p1)

from the ith entry of p. Again,
∑

i pi(θ) = 1 for any perturbation vector θ .
Equation (11.73) can be written

p(θ) = p(0) +
[
I − D (p) C D (1 − p)−1

]
θ (11.74)

so that the matrix A in (11.68) is

A = I − D (p) C D (1 − p)−1 (11.75)

The transition matrix We have derived compensation formulae for a single
probability vector p. Now consider perturbation of a probability matrix P, each
column of which is a probability vector. Define a perturbation matrix � where θij

is the perturbation of pij . Perturbations of column j are to be compensated by a
matrix Aj , so that

P(�) = P(0) +
[
A1�(:, 1) · · ·As�(:, s)

]
(11.76)

where Ai compensates for the changes in column i of P. Applying the vec operator
to (11.76) gives

vecP(�) = vecP(0) +
⎛
⎜⎝
A1

. . .

As

⎞
⎟⎠ vec� (11.77)

= vecP(0) +
s∑

i=1

(Eii ⊗ Ai ) vec�. (11.78)

The terms in the summation in (11.78) are recognizable as the vec of the product
Ai�Eii ; thus

P(�) = P(0) +
s∑

i=1

Ai�Eii (11.79)

where Eii is a matrix with a 1 in the (i, i) entry and zeros elsewhere.

Theorem 11.4.5 Let P be a column-stochastic s × s transition matrix. Let � be
a matrix of perturbations, where θij is applied to pij , and the other entries of �

compensate for the perturbation. Let C = E − I. If compensation is additive, then

P(�) = P(0) +
(
I − 1

s − 1
C

)
� (11.80)
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dvecP

dvec T�
=

[
Is2 − 1

s − 1
(Is ⊗ C)

]
. (11.81)

If compensation is proportional, then

P(�) = P(0) +
s∑

i=1

{
I − D [P(:, i)] C D [1 − P(:, i)]−1

}
�Eii (11.82)

dvecP

dvec T�
= Is2 −

s∑
i=1

{
Eii ⊗ D [P(:, i)] C D [1 − P(:, i)]

}
. (11.83)

Proof P(�) is given by (11.79). If compensation is additive, Ai is given by (11.72)
for all i. Substituting into (11.79) gives (11.80). Differentiating (11.80) and applying
the vec operator gives (11.81).

If compensation is proportional, substituting (11.75) for Ai in (11.79)
gives (11.82). Differentiating yields

dP = (dθ)

s∑
i=1

Eii −
s∑

i=1

D [P(:, 1)] C D [1 − P(:, i)]−1(d�)Eii . (11.84)

Using the vec operator gives (11.83). ��
Perturbations of P subject to compensation are given by perturbations of �. Thus

for any function y(P) we can write

dy

dvec TP

∣∣∣∣
comp

= dy

dvec TP

dvecP

dvec T�
(11.85)

where dvecP/dvec T� is given (for additive and proportional compensation) by
Theorem 11.4.5. The slight notational complexity is worthwhile for clarifying how
to use Theorem 11.4.5 in practice.

11.5 Species Succession in a Marine Community

Markov chains are used by ecologists as models of species replacement (succession)
in ecological communities; (e.g., Horn 1975; Hill et al. 2004; Nelis and Wootton
2010). In these models, the state of a point on a landscape is given by the species
occupying that point. The entry pij of P is the probability that species j is replaced
by species i between t and t +1. If a community consists of a large number of points
independently subject to the transition probabilities in P, the stationary distribution
π will give the relative frequencies of species in the community at equilibrium.
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Hill et al. (2004) used a Markov chain to describe a community of encrusting
organisms occupying rock surfaces at 30–35m depth in the Gulf of Maine. The
Markov chain contained 14 species plus an additional state (“bare rock”) for
unoccupied substrate. The matrix P was estimated from longitudinal data (Hill et al.
2002, 2004) and is given, along with a list of species names, in Appendix B. We
will use the results of this chapter to analyze the sensitivity of species diversity
and the Kemeny constant to the processes of colonization and replacement that
determing P.

11.5.1 Biotic Diversity

The stationary distribution π , with the species numbered in order of decreasing
abundance and bare rock placed at the end as state 15, is shown in Fig. 11.2. The
two dominant species are an encrusting sponge (calledHymedesmia) and a bryozoan
(Crisia).

The entropy of this stationary distribution, H(π) = −πT(logπ), where the
logarithm is applied elementwise, is used as an index of biodiversity; it is maximal
when all species are equally abundant and goes to 0 in a community dominated by
a single species. The sensitivity of H is

dH = −
(
log πT + 1T

)
dπ (11.86)

Most ecologists, however, would not include bare substrate in a measure of
biodiversity, so we define instead a “biotic diversity” Hb(π) = H (πb) where

πb = Gπ

‖Gπ‖ . (11.87)

Fig. 11.2 The stationary
distribution for the subtidal
benthic community
succession model of Hill
et al. (2004). States 1–14
correspond to species,
numbered in decreasing order
of abundance in the stationary
distribution. State 15 is bare
rock, unoccupied by any
species. For the identity of
species and the transition
matrix, see Appendix B
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The matrix G, of dimension 14 × 15, is a 0–1 matrix that selects rows 1–14 of π .
Because π is positive, ‖Gπ‖ = 1TGπ . Differentiating πb gives

dπb =
(

G

1TGπ
− Gπ1TG(

1TGπ
)2

)
dπ (11.88)

which simplifies to

dπb =
(
G − πb1TG

1TGπ

)
dπ (11.89)

This model contains no explicit parameters; perturbations of the transition
probabilities themselves are of interest and a compensation pattern is needed.
Because the relative magnitudes of the entries in a column of P reflect the relative
abilities of species to capture or to hold space, proportional compensation is
appropriate in this case because it preserves these relative abilities.

The sensitivity and elasticity of the biotic diversity Hb to changes in the matrix
P, subject to proportional compensation, are

dHb

dvec TP

∣∣∣∣
comp

= dHb

dπT
b︸︷︷︸

1

dπb

dπT︸︷︷︸
2

dπ

dvec TP︸ ︷︷ ︸
3

dvecP

dvec T�︸ ︷︷ ︸
4

(11.90)

εHb

εvec TP

∣∣∣∣
comp

= 1

Hb

dHb

dvec TP
D (vecP) (11.91)

Term 1 on the right hand side of (11.90) is the derivative of Hb with respect to
πb, and is given by (11.86). Term 2 is the derivative of the biotic diversity vector
πb with respect to the full diversity vector π , given by (11.89). Term 3 is the
derivative of the diversity vector π with respect to the transition matrix P, given
by, (11.55). Finally, Term 4 is the derivative of the matrix P taking into account the
compensation structure in (11.83).

The sensitivity and elasticity vectors (11.90) and (11.91) are of dimension
1 × s2 = 1 × 255. To reduce the number of independent perturbations, we
consider subsets of the pij : disturbance (in which a species is replaced by bare
rock), colonization of unoccupied space, replacement of one species by another,
and persistence of a species in its location, where

P [disturbance of sp. i] = psi

P [colonization by sp. i] = pis

P [persistence of sp. i] = pii



11.5 Species Succession in a Marine Community 273

−0.01

0

0.01

0.02
... to disturbance of

E
la

st
ic

ity
 o

f H

−0.04

−0.02

0

0.02
... to colonization by

−0.6

−0.4

−0.2

0

0.2
... to persistence of

Species

−0.2

−0.1

0

0.1

0.2
... to replacement by

Species

E
la

st
ic

ity
 o

f H

−0.05

0

0.05

0.1

0.15
... to replacement of

Species

Fig. 11.3 The elasticity of the biotic diversity Hb(π) calculated over the biotic states of the
stationary distribution of the subtidal benthic community succession model of Hill et al. (2004).
States 1–14 correspond to species, numbered in decreasing order of abundance in the stationary
distribution. State 15 is bare rock, unoccupied by any species. For the identity of species and the
transition matrix, see Appendix B

P [replacement of sp. i] =
∑
k 	=i,s

pki

P [replacement by sp. i] =
∑
j 	=i,s

pij .

Extracting the corresponding elements of εHb

εvec TP
gives the elasticities to these

classes of probabilities. Figure 11.3 shows that the dominant species (1 and 2)
have impacts that are larger than, and opposite in sign to, those of the remaining
species. Biodiversity would be enhanced by increasing the disturbance of, or the
replacement of, species 1 and 2, and reduced by increasing the rates of colonization
by, persistence of, or replacement by species 1 and 2.

11.5.2 The Kemeny Constant and Ecological Mixing

Ecologists have used several measures of the rate of convergence of communities
modelled by Markov chains, including the damping ratio and Dobrushin’s coef-
ficient of ergodicity (Hill et al. 2004). The Kemeny constant K is an interesting
addition to this list; it gives the expected time to get from any initial state to
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Fig. 11.4 The sensitivity of the Kemeny constant K of the subtidal benthic community succession
model of Hill et al. (2004). States 1–14 correspond to species, numbered in decreasing order of
abundance in the stationary distribution. State 15 is bare rock, unoccupied by any species. For the
identity of species and the transition matrix, see Appendix B

a state selected at random from the stationary distribution (Hunter 2006). Once
reaching that state, the behavior of the chain and the stationary process are
indistinguishable.

The sensitivity of K , subject to compensation, is

dK

dvec TP

∣∣∣∣
comp

= dK

dvec TZ

dvecZ

dvec TP

dvecP

dvec T�
(11.92)

where the three terms on the right hand side are given by (11.65), (11.57),
and (11.83), respectively.

Figure 11.4 shows the sensitivities dK/dvec TP, subject to proportional
compensation, and aggregated as in Fig. 11.3. Unlike the case with Hb, the
two dominant species do not stand out from the others. Increases in the rates
of replacement will speed up convergence, and increases in persistence will
slow convergence. The disturbance of, colonization by, persistence of, and
replacement of species 6 (it is a sea anemone, Urticina crassicornis) have
particularly large impacts on K . Examination of row 6 and column 6 of P
(Appendix B) shows that U. crassicornis has the highest probability of persistence
(p66 = 0.86), and one of the lowest rates of disturbance, in the community.
While it is far from dominant (Fig. 11.2), it has a major impact on the rate
of mixing.
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11.6 Discussion

Given that many properties of finite state Markov chains can be expressed as
simple matrix expressions, matrix calculus is an attractive approach to finding
the sensitivity and elasticity to parameter perturbations. Most of the literature on
perturbation analysis of Markov chains has focused on the stationary distribution
of ergodic chains, but the approach here is equally applicable to absorbing chains,
and to dependent variables other than the stationary distribution. The perturbation
of ergodic chains is often studied using generalized inverses, since the influential
studies of Meyer (Meyer 1975, 1994; Golub and Meyer 1986; Funderlic and Meyer
1986). Matrix calculus provides a complementary approach; the sensitivity of the
stationary distribution π obtained here agrees with the result obtained by Golub and
Meyer (1986) using the group generalized inverse.

The examples shown here are typical of cases where absorbing or ergodic
Markov chains are used in population biology and ecology. In each example, the
dependent variables of interest are functions several steps removed from the chain
itself. The ease with which one can differentiate such functions is a particularly
attractive property of the matrix calculus approach.

A Appendix A: Proofs

Theorems 11.2.1 and 11.2.2 give the sensitivities of the moments of the number of
visits to transient states and of the time to absorption, respectively. These results are
obtained by applying matrix calculus to the expressions for the moments. Proofs are
given in the text for the first two moments; the proofs for the others follow the same
steps but introduce no new concepts, and so are presented here.

A.1 Derivatives of the Moments of Occupancy Times

To continue the proof of Theorem 11.2.1, take partial differentials of N3 in (11.5)
with respect to N1 and Ndg, to obtain

∂N1N3 =
(
6N2

dg − 6Ndg + I
)

dN1 (11.93)

∂NdgN3 = 6
(
dNdg

)
NdgN1 + 6Ndg

(
dNdg

)
N1 − 6

(
dNdg

)
N1 (11.94)

Applying the vec operator to each term and using Roth’s theorem gives

∂N1vecN3 =
[
I ⊗

(
6N2

dg − 6Ndg + I
)]

dvecN1 (11.95)
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∂NdgvecN3 =
[
6
(
NT
1Ndg ⊗ I

)
+ 6

(
NT ⊗ Ndg

)
− 6

(
NT
1 ⊗ I

)]

dvecNdg. (11.96)

Substituting (11.95) and (11.96) into (11.13) gives (11.9).
Taking partial differentials of N4 in (11.6) gives

∂N1N4 =
(
24N3

dg − 36N2
dg + 14Ndg − I

)
dN1 (11.97)

∂NdgN4 = 24
(
dNdg

)
N2
dgN1 + 24Ndg

(
dNdg

)
NdgN1 + 24N2

dg

(
dNdg

)
N1

−36
(
dNdg

)
NdgN1 − 36Ndg

(
dNdg

)
N1 + 14

(
dNdg

)
N1. (11.98)

Applying the vec operator yields

∂N1vecN4 =
[
I ⊗

(
24N3

dg − 36N2
dg + 14Ndg − I

)]
dvecN1 (11.99)

∂NdgvecN4 =
[
24

(
NT
1N

2
dg ⊗ I

)
+ 24

(
NT
1Ndg ⊗ Ndg

)
+ 24

(
NT
1 ⊗ N2

dg

)

−36
(
NT
1Ndg ⊗ I

)
− 36

(
NT
1 ⊗ Ndg

)

+14
(
NT
1 ⊗ I

)]
dvecNdg. (11.100)

Substituting (11.99) and (11.100) into (11.13) gives (11.10).

A.2 Derivatives of the Moments of Time to Absorption

To continue the proof of Theorem 11.2.2, take partial differentials of η3, in (11.21)
with respect to η1 and N1, to obtain

∂η1η
T
3 =

(
dηT1

) (
6N2

1 − 6N1 + I
)

(11.101)

∂N1η
T
3 = 6ηT1 (dN1) + 6ηT1N1 (dN1) − 6ηT1 (dN1) . (11.102)

Applying the vec operator yields

∂η1η3 =
(
6N2

1 − 6N1 + I
)T

dη1 (11.103)

∂N1η3 =
[
6
(
NT
1 ⊗ ηT1

)
+ 6

(
I ⊗ ηT1N1

)
− 6

(
I ⊗ ηT1

)]
dvecN1 (11.104)

which combine to yield (11.25).
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The partial differentials of η4 in (11.22) with respect to η1 and N1 are

∂η1η
T
4 = dηT1

(
24N3

1 − 36N2
1 + 14N1 − I

)
(11.105)

∂N1η
T
4 = ηT1

[
24 (dN1)N2

1 + 24N1 (dN1)N1 + 24N2
1 (dN1)

− 36 (dN1)N1 − 36N1 (dN1) + 14dN1

]
. (11.106)

Applying the vec operator to each equation gives

∂η1η4 =
(
24N3

1 − 36N2
1 + 14N1 − I

)T
dη1 (11.107)

∂N1η4 =
{
24

[(
N2
1

)T ⊗ ηT1

]
+ 24

(
NT
1 ⊗ ηT1N1

)
+ 24

(
I ⊗ ηT1N

T
1

)

− 36
(
NT
1 ⊗ ηT1

)
− 36

(
I ⊗ ηT1N1

)
+ 14

(
I ⊗ ηT1

)}
dvecN1 (11.108)

which combine to give (11.26).

B Appendix B: Marine Community Matrix

Model states Species type State ID Number

1 Hymedesmia 1 sp. Sponge HY1 14875

2 Crisia eburnea Bryozoan CRI 9915

3 Myxilla fimbriata Sponge MYX 4525

4 Mycale lingua Sponge MYC 3001

5 Filograna implexa Polychaete FIL 2219

6 Urticina crassicornis Sea anemone URT 992

7 Ascidia callosa Ascidian ASC 1052

8 Aplidium pallidum Ascidian APL 1166

9 Hymedesmia 2 sp. Sponge HY2 1226

10 Idmidronea atlantica Bryozoan IDM 730

11 Coralline Algae Encrusting algae COR 875

12 Metridium senile Sea anemone MET 1298

13 Parasmittina jeffreysi Bryozoan PAR 402

14 Spirorbis spirorbis Polychaete SPI 225

15 Bare Rock BR 4266
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The transition matrix for the marine benthic community (Hill et al. 2004) is

P =⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.771 0.145 0.052 0.017 0.117 0.009 0.241 0.199 0.056 0.309 0.056 0.025 0.321 0.158 0.101
0.102 0.609 0.061 0.054 0.218 0.024 0.223 0.235 0.147 0.228 0.222 0.068 0.179 0.448 0.320
0.017 0.031 0.710 0.006 0.035 0.012 0.051 0.038 0.026 0.031 0.028 0.018 0.023 0.018 0.025
0.004 0.011 0.004 0.839 0.004 0.000 0.016 0.018 0.011 0.010 0.008 0.030 0.000 0.018 0.009
0.015 0.028 0.020 0.005 0.404 0.016 0.080 0.089 0.020 0.027 0.036 0.016 0.063 0.085 0.062
0.001 0.005 0.004 0.000 0.008 0.863 0.024 0.007 0.006 0.006 0.000 0.000 0.000 0.006 0.005
0.018 0.022 0.008 0.004 0.033 0.001 0.105 0.044 0.011 0.042 0.025 0.010 0.030 0.030 0.048
0.012 0.025 0.008 0.006 0.032 0.007 0.041 0.154 0.026 0.031 0.020 0.016 0.020 0.018 0.034
0.002 0.011 0.025 0.008 0.013 0.016 0.014 0.015 0.586 0.010 0.007 0.004 0.003 0.018 0.013
0.014 0.015 0.003 0.004 0.007 0.003 0.033 0.027 0.021 0.165 0.007 0.003 0.020 0.030 0.031
0.003 0.012 0.005 0.006 0.006 0.004 0.025 0.016 0.006 0.013 0.507 0.001 0.017 0.006 0.017
0.002 0.008 0.007 0.011 0.005 0.007 0.005 0.020 0.005 0.008 0.002 0.537 0.000 0.006 0.017
0.005 0.005 0.002 0.000 0.006 0.000 0.014 0.009 0.001 0.012 0.005 0.003 0.248 0.000 0.011
0.003 0.004 0.008 0.003 0.005 0.000 0.012 0.009 0.005 0.006 0.003 0.003 0.000 0.030 0.013
0.029 0.069 0.084 0.036 0.108 0.036 0.115 0.122 0.074 0.104 0.076 0.266 0.076 0.127 0.294

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(11.109)
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