
Chapter 10
Sensitivity Analysis of Nonlinear
Demographic Models

10.1 Introduction

Nonlinearities in demographic models arise due to density dependence, frequency
dependence (in 2-sex models), feedback through the environment or the economy,
recruitment subsidy due to immigration, and from the scaling inherent in calcula-
tions of proportional population structure. This chapter presents a series of analyses
particular to nonlinear models: the sensitivity and elasticity of equilibria, cycles,
ratios (e.g., dependency ratios), age averages and variances, temporal averages and
variances, life expectancies, and population growth rates, for both age-classified and
stage-classified models.

Nonlinearity is defined in contrast to linearity. If x is an age or stage distribution
vector, and if the dynamics of x are given by

x(t + 1) = f [x(t)], (10.1)

then the model is linear if f (·) is a linear function, i.e., if

f (ax1 + bx2) = af (x1) + bf (x2) (10.2)

for any constants a and b and any vectors x1 and x2.
If a model is not linear, it is nonlinear. Not surprisingly, this covers a lot of

territory, but nonlinearity in demographic models can be classified into four main
sources: density dependence, environmental feedback, interactions between the
sexes, and models that arise in calculation of proportional structure.
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Density dependence: arises when one or more of the per-capita vital rates
are functions of the numbers or density of the population. Such effects have
been incorporated into demographic studies of plants (e.g., Solbrig et al.
1988; Gillman et al. 1993; Silva Matos et al. 1999; Pardini et al. 2009;
Shyu et al. 2013) and animals (e.g., Pennycuick 1969; Clutton-Brock et al.
1997; Cushing et al. 2003; Bonenfant et al. 2009). Density dependence has
been intensively studied in the laboratory (e.g., Pearl et al. 1927; Frank
et al. 1957; Costantino and Desharnais 1991; Carey et al. 1995; Mueller and
Joshi 2000; Cushing et al. 2003). It can arise from competition for food,
space, or other resources, or from interactions (e.g., cannibalism) among
individuals.
Simple density dependence is less often invoked by human demogra-

phers1. Weiss and Smouse (1976) proposed a density-dependent matrix model,
and Wood and Smouse (1982) applied it to the Gainj people of Papua New
Guinea. Density dependence is included in epidemiological feedback models
applied to a rural English population in the sixteenth and seventeenth centuries
by Scott and Duncan (1998).

The Easterlin effect (1961) produces density dependence in which fertility is a
function of cohort size. Analysis of the Easterlin effect has focused mostly on the
possibility that it could generate cycles in births (e.g., Lee 1974, 1976; Frauenthal
and Swick 1983; Wachter and Lee 1989; Chu 1998).

Environmental (or economic) feedback. Density-dependent models are often
an attempt to sneak in, by the back door as it were, a feedback through
the environment. A change in population size changes some aspect of the
environment, which affects the vital rates, which in turn affect future population
size. Models in which the feedback operates through resource consumption are
the basis for the food chain and food web models that underlie models of global
biogeochemistry (e.g.,. Hsu et al. 1977; Tilman 1982; Murdoch et al. 2003;
Fennel and Neumann 2004). These models are typically unstructured, but there is
a rich literature on structured models, written as partial differential equations, to
incorporate physiological structure and resource feedback (de Roos and Persson
2013).

Feedback models are also invoked in human demography, with the feedback
operating through the economy (Lee 1986, 1987; Chu 1998). An interesting
aspect of these approaches is the possibility that, if larger populations support
more robust economies, the feedback could be positive instead of negative (Lee
1986; Cohen 1995, Appendix 6). An exciting combination of ecological and

1Lee (1987) reviewed the situation and said “. . . we might say that human demography is all about
Leslie matrices and the determinants of unconstrained growth in linear models, whereas animal
population studies are all about Malthusian equilibrium through density dependence in nonlinear
models . . . ”. He admits that this is an exaggeration, and there clearly are nonlinear concerns in
human demography (Bonneuil 1994), but a non-exhaustive survey finds no mention of density
dependence in several contemporary human demography texts (e.g., Hinde 1998; Preston et al.
2001; Keyfitz and Caswell 2005).
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economic feedback appears in the food ratio model recently proposed by Lee
and Tuljapurkar (2008).

Two-sex models. To the extent that both males and females are required for
reproduction (and, in the bigger scheme of things, this is not always so),
demography is nonlinear because the marriage function or mating function
cannot satisfy (10.2). Nonlinear two-sex models have a long tradition in human
demography (see reviews in Keyfitz 1972; Pollard 1977) and have been applied
in ecology (e.g., Lindström and Kokko 1998; Legendre et al. 1999; Kokko and
Rankin 2006; Lenz et al. 2007; Jenouvrier et al. 2010, 2012). Their mathematical
properties have been investigated by e.g, Caswell and Weeks (1986), Chung
(1994) and Iannelli et al. (2005) and in a very abstract setting by Nussbaum
(1988, 1989).

In their most basic form, two-sex models differ from density-dependent
models in that the vital rates depend only on the relative, not the absolute,
abundances of stages in the population (they are sometimes called frequency-
dependent for this reason). This has important implications for their dynamics.

Models for proportional population structure. Even when the dynamics of
abundance are linear, the dynamics of proportional population structure are
nonlinear (e.g., Tuljapurkar 1997). This leads to some useful results on the
sensitivity of the stable age or stage distribution and the reproductive value.

Linear models lead to exponential growth and convergence to a stable structure.
Much of their analysis focuses on the population growth rate λ or r = log λ.
Nonlinear models do not usually lead to exponential growth (frequency-dependent
two-sex models are an exception). Instead, their trajectories converge to an attractor.
The attractor may be an equilibrium point, a cycle, an invariant loop (yielding
quasiperiodic dynamics), or a strange attractor (yielding chaotic dynamics); see
Cushing (1998) or Caswell (2001, Chapter 16) for a detailed discussion.

This chapter analyzes the sensitivity and elasticity of equilibria and cycles.
Because the dynamic models considered here are discrete, solutions always exist
and are unique. The nature and the number of the attractors depends on the specific
model. Perturbation analysis always considers perturbations of something, so the
equilibria or cycles must be found before their perturbation properties can be
analyzed.

10.2 Density-Dependent Models

We begin with the basic discrete-time2 density-dependent model, written as

n(t + 1) = A[θ ,n(t)] n(t) (10.3)

2It is possible to generalize to continuous-time models, that would be written

dn
dt

= A[θ ,n(t)] n(t)
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where n(t) is a population vector of dimension s×1 andA is a population projection
matrix of dimension s × s. The matrix A depends on a p × 1 vector θ of parameters
as well as on the current population vector n(t).3

10.2.1 Linearizations Around Equilibria

An equilibrium of (10.3) satisfies

n̂ = A
[
θ , n̂

]
n̂. (10.4)

Such an equilibrium may be stable (small perturbations from n̂ eventually return
to the equilibrium) or unstable.4 That stability is determine by the linearization of
the nonlinear system (10.3) near x̂. That is, define the deviation from x̂ as z(t) =
x(t) − x̂. Then z(t) follows

z(t + 1)M[θ , x̂]z(t) (10.5)

The matrix M is the Jacobian matrix,

M = ∂x(t + 1)

∂xT(t)

∣∣∣∣
x̂

(10.6)

To obtain M, differentiate both sides of (10.3),

dx(t + 1) = (dA) x + A (dx) (10.7)

Applying the vec operator to both sides gives

dx(t + 1) =
(
xT ⊗ Is

)
dvecA + Adx (10.8)

from which

M =
(
xT ⊗ Is

) dvecA

dxT
+ A (10.9)

for some appropriately defined matrix function A; see Verdy and Caswell (2008). Such models are
less often used, but see Shyu and Caswell (2016a, 2018) for a two-sex model example.
3The explicit dependence on θ and n(t) will be neglected when it is obvious from the context.
4A careful consideration of stability requires more care with the definition of these terms, but will
not concern us here. See Caswell (2001) and Cushing (1998) for more details.
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where Is is an identity matrix of order s. The linearization at the equilibrium is
obtained by evaluating M at x = x̂:

M
[
θ , x̂

] =
(
x̂T ⊗ Is

) ∂vecA
[
θ, x̂

]

∂xT
+ A

[
θ , x̂

]
(10.10)

If all the eigenvalues of M are less than one in magnitude, the equilibrium x̂ is
locally asymptotically stable. The linearization also provides valuable information
about short-term transient responses to perturbation; see Sect. 10.2.4.

10.2.2 Sensitivity of Equilibrium

Our goal is to find the derivatives of all the entries of n̂ with respect to all of the
parameters in θ ; these are the entries of the s × p matrix

dn̂

dθT
.

We begin by taking the differential of both sides of (10.4):

dn̂ = (dA)n̂ + A(dn̂). (10.11)

Rewrite this as

dn̂ = Is(dA)n̂ + A(dn̂), (10.12)

where Is is an identity matrix of dimension s. Next apply the vec operator to both
sides, remembering that since n̂ is a column vector, vec n̂ = n̂, and apply Roth’s
theorem, to obtain

dn̂ =
(
n̂T ⊗ Is

)
dvecA + Adn̂. (10.13)

However, A is a function of both θ and n̂, so

dvecA = ∂vecA

∂θT
dθ + ∂vecA

∂nT
dn̂. (10.14)

Substituting (10.14) into (10.13) and applying the chain rule leads to5

dn̂

dθT
=
(
n̂T ⊗ Is

)(∂vecA

∂θT
+ ∂vecA

∂nT
dn̂

dθT

)
+ A

dn̂

dθT
. (10.15)

5It is reassuring to check that the dimensions of all these quantities are compatible:
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Finally, solve (10.15) for dn̂/dθT to obtain

dn̂

dθT
=
(
Is − A −

(
n̂T ⊗ Is

) ∂vecA

∂nT

)−1 (
n̂T ⊗ Is

) ∂vecA

∂θT
(10.16)

where A, ∂vecA/∂θT, and ∂vecA/∂n̂T are evaluated at n̂.
Comparing (10.16) and Eq. (10.10) for the linearization, we see that the sensitiv-

ity of equilibrium can be written

dn̂

dθT
= (Is − M)−1

(
n̂T ⊗ Is

) ∂vecA

∂θT
. (10.17)

The matrix (Is − M) is singular if 1 is an eigenvalue of M; i.e., at a bifurcation
point when the equilibrium n̂ becomes unstable. At that point, quite appropriately,
the sensitivity is not defined because the change in the equilibrium is not continuous.

The following example, applying (10.16) to a simple model, shows the basic
steps and output of the analysis.

Example 1: A simple two-stage model The most basic distinction in the life cycle
of many organisms is between non-reproducing juveniles and reproducing adults.
A model based on these stages (Neubert and Caswell 2000) is parameterized by
the juvenile survival σ1, the adult survival σ2, the growth or maturation probability
γ (the expected time to maturity is 1/γ ), and the adult fertility f . The projection
matrix is

A =
(

σ1(1 − γ ) f

σ1γ σ2

)
. (10.18)

Any of the vital rates could be density-dependent; here we suppose that juvenile
survival σ1 depends on total density:

σ1(n) = σ̃ exp(−1Tn); (10.19)

where 1 is a vector of ones.
Define the parameter vector as θ = (

f γ σ̃ σ2
)T
. To apply (10.16) requires the

derivatives of A[θ,n] with respect to θ and with respect to n. These are

dn̂

dθT︸︷︷︸
s×p

=
(
n̂T ⊗ Is

)

︸ ︷︷ ︸
s×s2

⎛

⎜⎜
⎜
⎝

∂vecA

∂θT︸ ︷︷ ︸
s2×p

+ ∂vecA

∂nT︸ ︷︷ ︸
s2×s

∂n̂

∂θT︸︷︷︸
s×p

⎞

⎟⎟
⎟
⎠

+ A︸︷︷︸
s×s

dn̂

dθT︸︷︷︸
s×p

.
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dvecA
df

= vec

(
0 1

0 0

)

(10.20)

dvecA
dγ

= vec

(−σ1(n) 0

σ1(n) 0

)

(10.21)

dvecA
dσ̃

= vec

(
(1 − γ ) exp(−1Tn) 0

γ exp(−1Tn) 0

)

(10.22)

dvecA
dσ2

= vec

(
0 0

0 1

)

(10.23)

dvecA
dn1

= dvecA
dn2

= vec

(−σ1(n)(1 − γ ) 0

−σ1(n)γ 0

)

. (10.24)

The derivative of A with respect to the θ is the 4 × 4 matrix

∂vecA

∂θT
=

⎛

⎜
⎜
⎝

0 −σ1(n) (1 − γ ) exp(−1Tn) 0
0 σ1(n) γ exp(−1Tn) 0
1 0 0 0
0 0 0 1

⎞

⎟
⎟
⎠ , (10.25)

where each column corresponds to an entry of θ and each row to an element of
vecA. The derivative of A with respect to n is

∂vecA

∂nT
=

⎛

⎜
⎜
⎝

−σ1(n)(1 − γ ) −σ1(n)(1 − γ )

−σ1(n)γ −σ1(n)γ

0 0
0 0

⎞

⎟
⎟
⎠ . (10.26)

Each column corresponds to an entry of n and each row to an element of vecA.
Using some arbitrary parameter values (not unreasonable for humans or other

large mammals)

f = 0.25

γ = 1/15

σ̃ = 0.98

σ2 = 0.95
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leads to an equilibrium population

n̂ =
(
0.1053
0.1109

)
, (10.27)

obtained by iterating the model to convergence.
These patterns reflect the life history, although comparative study of this

dependence has scarcely begun. For example, if the demographic parameters were
more appropriate for an insect, say with high fertility (f = 70), rapid maturation
(γ = 0.9), and low juvenile survival (σ̃ = 0.1), and in which most adults die after
reproducing once (σ2 = 0.01), then the equilibrium would become

n̂ =
(
1.826
0.026

)
(10.28)

with sensitivities

dn̂

dθT
=
(

0.01 1.08 9.86 0.99
−0.0002 0.02 0.14 0.01

)
. (10.29)

In this life history, increases in fertility have very small effects on the equilibrium
population, and the effect of increased fertility on adult density is slightly negative.
Changes in the maturation rate or in juvenile or adult survival have much larger
impacts on juvenile density than on adult density. �

10.2.3 Dependent Variables: Beyond n̂

The equilibrium vector n̂ is usually not the only dependent variable of interest. If
we write m = m(n) for any vector- or scalar-valued transformation of n, then the
sensitivity of m is just

dm̂

dθT
= dm̂

dnT
dn̂

dθT
. (10.30)

The possibilities for dependent variables are, roughly speaking, limited only by
one’s imagination. The following is a list of examples.

1. Weighted population density. Let c ≥ 0 be a vector of weights. Weighted
population density is then N(t) = cTn(t). Examples include total density
(c = 1), the density of a subset of stages (ci = 1 for stages to be counted;
ci = 0 otherwise), biomass (ci is the biomass of stage i), basal area, metabolic
rate, etc. The sensitivity of N̂ is
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dN̂

dθT
= cT

dn̂

dθT
. (10.31)

2. Ratios, measuring the relative abundances of different stages. Let

R(t) = aTn(t)

bTn(t)
(10.32)

where a ≥ 0 and b ≥ 0 are weight vectors. Examples include the dependency
ratio (in human populations, the ratio of the individuals below 15 or above 65
to those between 15 and 65; see Sect. 10.5.3), the sex ratio, and the ratio of
juveniles to adults, which is used in wildlife management; see Skalski et al.
(2005). Differentiating (10.32) gives

dR̂

dθT
=
(
bTn̂aT − aTn̂bT

(
bTn̂

)2

)
dn̂

dθT
. (10.33)

3. Age or stage averages. These include quantities such as the mean age or size in
the stable population or at equilibrium and the mean age at reproduction in the
stable population. Their perturbation analysis is presented in Sect. 10.5.4.

4. Properties of cycles. Nonlinear models may produce population cycles. Attention
may focus on the mean, the variance, or higher moments of the population vector
or of some scalar measure of density, over such cycles. The sensitivity of these
moments is explored in Sect. 10.7.

10.2.4 Reactivity and Transient Dynamics

The asymptotic stability of an equilibrium is determined by the eigenvalues of the
Jacobian matrix M in (10.9), evaluated at that equilibrium. In the short term, how-
ever, perturbations of the population away from the equilibrium can exhibit transient
dynamics that differ from their asymptotic behavior. In particular, perturbations of
stable equilibria, that are destined to eventually return to the equilibrium, may move
(much) farther away before that return. Neubert and Caswell (1997) introduced
three indices, each calculated from M, to quantify these transient responses.6

The reactivity of an asymptotically stable equilibrium is the maximum, over all
perturbations, of the rate at which the trajectory departs from the equilibrium. At any
time following a perturbation, there is a maximum (over all perturbations) deviation

6Because these indices are calculated from M, they are properly considered properties of the
system and its dynamics. Stott et al. (2011) and Stott (2016) have also considered indices of
transient response that reflect the particular initial condition rather than the inherent dynamics
of the system.
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from the equilibrium. This maximum is the amplification envelope. It gives an upper
bound on the extent of transient amplification as a function of time. The phrase “over
all perturbations” in these definitions signals that the transient amplification depends
on the direction of the perturbation. The perturbation that produces the maximum
amplification at any specified time is the optimal perturbation (Verdy and Caswell
2008).7

The transient dynamics of the perturbed system are described by the evolution of
the magnitude of z, as measured by the Euclidean norm ‖z‖ = √

zTz. The reactivity
is the maximum, over all perturbations, of the growth rate of ‖z‖, as t → 0, and is
given by

ν0 =
{

λ1 [H(M)] continuous time

log σ1 (M) discrete time
(10.34)

The matrix H(M) = (
M + MT

)
/2 is the Hermitian part of M and λ1 denotes

the eigenvalue with largest real part (Neubert and Caswell 1997). In discrete time,
reactivity is the log of the largest singular value ofM, which we denote σ1(M).

The amplification envelope is

ρ(t) =
{

σ1
(
eMt

)
continuous

σ1
(
Mt
)
discrete

(10.35)

The optimal perturbation, normalized to length 1, is given by the right singular
vector corresponding to the singular value that defines ρ(t).

Verdy and Caswell (2008) presented a complete sensitivity analysis of reactivity,
the amplification envelope, and the optimal perturbation, in both continuous and
discrete time. Suppose the ξ be one of the indices, and suppose that the model
depends on a parameter vector θ . Changes in θ will change the equilibrium vector,
which will contribute to changes in the Jacobian matrix, so that the sensitivity of ξ

to θ is

dξ

dθT
=
(

dξ

dvec TM

)(
∂vecM

∂θT
+ ∂vecM

∂n̂T
dn̂

dθT

)
(10.36)

The sensitivity of ξ in (10.36) requires four pieces: the linearization M at the
equilibrium, which is given by (10.10), the sensitivity of the equilibrium n̂ to the
parameters, which is given by (10.16), the sensitivity of the Jacobian matrix M to
the parameters, and the sensitivity of the index ξ to the matrix M. The sensitivity

7It is now known that reactivity is a common property of many ecological systems, including
populations described by discrete matrix population models (Neubert and Caswell 1997; Chen
and Cohen 2001; Neubert et al. 2004; Marvier et al. 2004; Caswell and Neubert 2005; Verdy and
Caswell 2008).
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of ξ to M depends on which index, but the calculations involve perturbations of
eigenvalues, singular values, or the matrix exponential, and are given in Verdy and
Caswell (2008). The derivative of the linearization M is obtained by differentiating
all the terms in Eq. (10.10); the result, along with several examples, is given in Verdy
and Caswell (2008, eq. (37)).

10.2.5 Elasticity Analysis

The derivatives in the matrix dn̂/dθT give the results of small additive perturbations
of the parameters. It is often useful to study the elasticities, which give the
proportional result of small proportional perturbations,

εn̂

εθT
= D

(
n̂
)−1 dn̂

dθT
D (θ), (10.37)

The elasticity of any other (scalar- or vector-valued) dependent variable f (n̂) is
given by

εf (n̂)

εθT
= D

(
f (n̂)

)−1 df (n̂)

dθT
D (θ). (10.38)

As usual, elasticities can only be calculated when θ ≥ 0 and f (n̂) > 0.

Example 2: Metabolic population size in Tribolium Flour beetles of the genus
Tribolium have been the subject of a long series of experiments on nonlinear
population dynamics (reviewed by Cushing et al. 2003). Tribolium lives in stored
flour. In addition to feeding on the flour, adults and larvae cannibalize eggs, and
adults cannibalize pupae. These interactions are the source of nonlinearity in the
demography, and are captured in a three-stage (larvae, pupae, and adults) model.
The projection matrix is

A[θ,n] =
⎛

⎝
0 0 b exp(−celn1 − cean3)

1 − μl 0 0
0 exp(−cpan3) 1 − μa

⎞

⎠ (10.39)

where b is the clutch size, cea , cel , and cpa are rates of cannibalism (of eggs by
adults, eggs by larvae, and pupae by adults, respectively), and μl and μa are larval
and adult mortalities (the mortality of pupae, in these laboratory conditions, is
effectively zero). Parameter values from an experiment reported by Costantino et al.
(1997)

b = 6.598

cea = 1.155 × 10−2
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cel = 1.209 × 10−2

cpa = 4.7 × 10−3

μa = 7.729 × 10−3

μl = 2.055 × 10−1

produce a stable equilibrium

n̂ =
⎛

⎝
22.6
18.0
385.2

⎞

⎠ . (10.40)

The sensitivity of n̂ is calculated using (10.16). However, the damage caused
by Tribolium as a pest of stored grain products might well depend more on
metabolism than on numbers. Emekci et al. (2001) estimated the metabolic
rates of larvae, pupae, and adults as 9, 1, and 4.5 μl CO2 h−1, respectively.
We define the metabolic population size as Nm(t) = cTn(t) where cT =(
9 1 4.5

)
, and calculate the sensitivity and elasticity of N̂m using (10.37)

and (10.31).
Figure 10.1 shows the elasticity of n̂ and N̂m to each of the parameters. The

elasticities are diverse and perhaps counterintuitive. Increases in fecundity increase
the equilibrium density of all stages; increases in the cannibalism of eggs by adults
reduces the density of all stages. But increased cannibalism of pupae by adults
increases the density of larvae and pupae, as does an increase in the mortality of
adults.
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Fig. 10.1 Sensitivity analysis of equilibrium for the flour beetle Tribolium in Example 2. (a) The
elasticity of the equilibrium n̂ to the parameters (see Example 2 for definitions). (b) The elasticity
of the equilibrium population respiration rate N̂m to the parameters
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When the stages are weighted by their metabolic rate, the elasticity of N̂m to
fecundity is positive, but the elasticities to all the other parameters (cannibalism
rates and mortalities) are negative. The positive effects of cpa and μa on n̂ disappear
when the stages are weighted according to metabolism. �

10.2.6 Continuous-Time Models

We have focused on discrete-time models throughout this book. An analogous
perturbation analysis can be carried out on continuous-time models of the form

dn
dt

= A [n(t)]n(t) (10.41)

Verdy and Caswell (2008) present a parallel presentation of the continuous and
discrete models. The linearization at n̂ is, once again, given by (10.10). If all the
eigenvalues of M have negative real parts, the equilibrium is locally stable.

The sensitivity of the equilibrium n̂ is

dn̂

dθT
=
{
−A −

(
n̂T ⊗ Is

) ∂vecA

∂nT

}−1 (
n̂T ⊗ Is

) ∂vecA

∂θT
, (10.42)

with A and all its derivatives evaluated at the equilibrium n̂. Substituting (10.10) for
M gives

dn̂

dθT
= −M−1

(
n̂T ⊗ Is

) ∂vecA

∂θT
, (10.43)

and M is nonsingular unless 0 is an eigenvalue of M, which corresponds to a
bifurcation point of the equilibrium.

10.3 Environmental Feedback Models

Environmental (or economic) feedback models write the vital rates as functions of
some environmental variable, which in turn depends on population density. Feed-
back models may be static or dynamic. In static feedback models, the environment
depends only on current conditions, with no inherent dynamics of its own. In
dynamic feedback models, the environment can have dynamics as complicated as
those of the population (e.g., if the environmental variable was the abundance of a
prey species, affecting the dynamics of a predator species). The sensitivity analysis
of dynamic feedback models is given in Sect. 10.8.



212 10 Sensitivity Analysis of Nonlinear Demographic Models

A static feedback model can be written

n(t + 1) = A[θ ,n(t), g(t)] n(t) (10.44)

g(t) = g[θ ,n(t)] (10.45)

where g(t) is a vector (of dimension q × 1) describing the ecological or economic
aspects of the environment on which the vital rates depend. As written here, the
model admits the possibility that the vital rates in A might depend directly on n as
well as on the environment.

At equilibrium

n̂ = A[θ, n̂, ĝ]n̂ (10.46)

ĝ = g[θ , n̂]. (10.47)

Differentiating these expressions gives

dn̂ = A(dn̂) + (dA)n̂ (10.48)

dĝ = ∂ ĝ

∂θT
dθ + ∂ ĝ

∂n
dn̂. (10.49)

Applying the vec operator to (10.48) and expanding dvecA gives

dn̂ =
(
n̂T ⊗ Is

) [∂vecA

∂θT
dθ + ∂vecA

∂gT
dĝ
]

+ Adn̂. (10.50)

Substituting (10.49) for dĝ and rearranging gives

dn̂ =
(
n̂T ⊗ Is

) [∂vecA

∂θT
+ ∂vecA

∂gT
∂ ĝ

∂θT

]
dθ

+
[
A +

(
n̂T ⊗ Is

) ∂vecA

∂gT
∂ ĝ

∂nT

]
dn̂. (10.51)

Solving for dn̂ and applying the identification theorem yields

dn̂

dθT
=
[
Is − A −

(
n̂T ⊗ Is

) ∂vecA

∂gT
∂ ĝ

∂nT

]−1

× (n̂ ⊗ Is
) [∂vecA

∂θT
+ ∂vecA

∂gT
∂ ĝ

∂θT

]
. (10.52)
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In this expansion, A, g, and all derivatives are evaluated at (n̂, ĝ). A comparison
of (10.52) with (10.16) shows that including the feedback mechanism has simply
written dvecA/dnT and dvecA/dθT in terms of g using the chain rule.

The environmental variable gmay be of interest in its own right (e.g., in the food
ratio model of Lee and Tuljapurkar (2008), in which it is a measure of well-being,
measured in terms of food per individual). The sensitivity of ĝ at equilibrium is

dĝ

dθT
= ∂ ĝ

∂θT
+ ∂ ĝ

∂n
dn̂

dθT
(10.53)

where dĝ/dθT is given by (10.49) and (dn̂/dθT) by (10.52).

10.4 Subsidized Populations and Competition for Space

A subsidized population is one in which new individuals are recruited from
elsewhere rather than (or in addition to) being generated by local reproduction.
Subsidy is important in many plant and animal populations, especially of benthic
marine invertebrates and fish. Many of these species produce planktonic larvae that
may disperse very long distances (Scheltema 1971) before they settle and become
sessile for the rest of their lives. Thus a significant part—maybe even all—of the
recruitment at any location is independent of local fertility (e.g., Almany et al.
2007). Subsidized models have been used to analyze conservation programs in
which captive-reared animals are released into a wild or re-established population
(Sarrazin and Legendre 2000). They have been applied to the demography of human
organizations; e.g., schools, businesses, learned societies (Gani 1963; Pollard 1968;
Bartholomew 1982). They are also the basis of cohort-component population
projections that include immigration.

In the simplest subsidized models, both local demography and recruitment are
density-independent. Alternatively, recruitment may depend on some resource (e.g.,
space) whose availability depends on the local population, or the local demography
after settlement may be density-dependent. All three cases can lead to equilibrium
populations.

10.4.1 Density-Independent Subsidized Populations

The model,

n(t + 1) = A[θ]n(t) + b[θ ], (10.54)
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includes a subsidy vector b giving the input of individuals to the population.8 The
parameters θ may affect A or b, or both. If the fertility appearing in A is below
replacement, so that λ < 1, then a stable equilibrium n̂ exists.9 This equilibrium
satisfies

n̂ = An̂ + b (10.55)

= (Is − A)−1 b. (10.56)

Differentiating (10.55) and applying the vec operator yields

dn̂ =
(
n̂T ⊗ Is

)
dvecA + A

(
dn̂
)+ db (10.57)

Solving for dn̂ and applying the chain rule gives the sensitivity of the equilibrium,

dn̂

dθT
= (Is − A)−1

{(
n̂T ⊗ Is

) dvecA

dθT
+ db

dθT

}
. (10.58)

Example 3: The Australian Academy of Sciences Most human organizations are
subsidized; recruits (new students in a school, new employees in a company) come
from outside, not from local reproduction. In an early example of a subsidized
population model, Pollard (1968) analyzed the age structure of the Australian
Academy of Sciences, recruitment to which takes place by election.10 The Academy
had been founded in 1954, and between 1955 and 1963 had elected about 6 new
Fellows each year, with an age distribution (Pollard 1968, Table 2) given by

Age Percent

30–34 0.0

35–39 12.2

40–44 24.5

45–49 26.5

50–54 20.4

55–59 4.1

60–64 10.2

65–69 2.0

8The same model could describe harvest if b ≤ 0 (e.g., Hauser et al. 2006). This form of harvest
produces unstable equilibria, and is not considered further here.
9If λ > 1, the population grows exponentially and the subsidy eventually becomes negligible. The
equilibrium in this case is non-positive (and hence biologically irrelevant) and unstable. If λ = 1
then the population would remain constant in the absence of subsidy; any non-zero subsidy will
then lead to unbounded population growth.
10Pollard’s paper is remarkable for its treatment of both deterministic and stochastic models, but
here I consider only the deterministic case.
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Pollard interpolated this distribution to 1-year age classes, and combined it with a
1954 life table for Australian males (only one woman, the redoubtable geologist
Dorothy Hill in 1956, had been elected to the Academy prior to 1969) to construct a
model of the form (10.54). He calculated the equilibrium size and age composition
of the Academy. Here, I have used the male life table for Australia 1953–1955 in
Keyfitz and Flieger (1968, p. 558) to construct an age-classified matrix A with age-
specific probabilities of survival Pi on its subdiagonal and zeros elsewhere. Were
these vital rates and the age distribution of the subsidy vector to remain constant,
the Academy would reach an equilibrium size of N̂ = 149.5 with an age distribution
n̂ shown in Fig. 10.2a.

As parameters, consider the age-specific mortality rates μi = − logPi , and

define the parameter vector θ = (
μ1 μ2 . . .

)T
. Equation (10.58) then gives the

sensitivity of the equilibrium population to changes in age-specific mortality. The
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Fig. 10.2 Analysis of the equilibrium of a linear subsidized model for the Australian Academy
of Science, based on Pollard (1968). (a) The equilibrium age structure of the Academy, assuming
recruitment of 6 members per year. (b) The sensitivity, to changes in age-specific mortality, of the
number of members. (c) The sensitivity, to changes in age-specific mortality, of the proportion of
members over 70 years old
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sensitivity of the total size of the Academy, N̂ = 1Tn̂, calculated using (10.31), is
shown in Fig. 10.2b. It shows that increases in mortality reduce N̂ (not surprising),
with the greatest effect coming from changes in mortality at ages 48–58.

Because learned societies are often concerned with their age distributions,
Pollard (1968) examined the proportion of members over age 70. At equilibrium,
this proportion is R̂ = 0.26. The sensitivity dR̂/dθT, calculated using (10.33),
is shown in Fig. 10.2c. Increases in mortality before age 48 would increase the
proportion of members over 70, while increases in mortality after age 48 would
decrease it.11 �

10.4.2 Linear Subsidized Models with Competition for Space

Recruitment in subsidized populations may be limited by the availability of a
resource. Roughgarden et al. (1985; see also Pascual and Caswell 1991) presented a
model for a population of sessile organisms, such as barnacles, in which recruitment
is limited by available space. Barnacles12 produce larvae that disperse in the
plankton for several weeks before settling onto a rock surface or other suitable
substrate, after which they no longer move.

Roughgarden’s model supposes that settlement is proportional to the free space
F(t). Thus the subsidy vector is

b(t) = (
φF(t) 0 · · · 0 )T , (10.59)

where φ is the settlement rate per unit of free space, and is determined by the pool
of available larvae. The free space is the difference between the total area A and the
space occupied by the population,

F(t) = A − gTn(t) (10.60)

where g is a vector of stage-specific basal areas. Suppose that all locally-produced
larvae are advected away, so that the first row ofA is zero. Then, substituting (10.60)
into (10.59) and rearranging gives

n(t + 1) = Bn(t) + (
φA 0 · · · 0 )T (10.61)

11It is possible to calculate the average age of the Academy, and its sensitivity, using results to be
introduced in Sect. 10.5.4. The response is very similar to that of the proportion over age 70.
12The temptation to draw analogies between barnacles and the members of learned academies is
almost irresistible.
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where

B =

⎛

⎜
⎜⎜
⎝

−φg1 −φg2 · · · −φgs

a21 a22 · · · a2s
...

...
. . .

...

as1 as2 · · · ass

⎞

⎟
⎟⎟
⎠

. (10.62)

Although it includes competition for space, the model is linear. The equilibrium n̂
of (10.61) is stable if the spectral radius of B is less than one.13 The formula (10.58)
gives the sensitivity of this equilibrium to changes in the vital rates, the settlement
rate, or the individual growth rate. This model might apply to any situation where
the recruitment of new individuals depends on the availability of a resource (space,
jobs, housing) that can be monopolized by residents.

Example 4: Intertidal barnacles Gaines and Roughgarden (1985) modelled a
population of the barnacle Balanus glandula in central California. In one site
(denoted KLM in their paper), they reported age-independent survival with a
probability of Pi = 0.985 per week, i = 1, . . . , 52. The growth in basal area
of an individual barnacle could be described by gx = π(ρx)2, where x is
age in weeks and ρ is the radial growth rate (ρ = 0.0041 cm/wk). The mean
settlement rate was φ = 0.107. The matrix B contains survival probabilities
Pi on the subdiagonal, terms of the form −φgi in the first row, and zeros
elsewhere.

The equilibrium population n̂ has an exponential age distribution (Fig. 10.3a). It
is scaled here relative to total area, so A = 1. The equilibrium proportion of free
space is F̂ = 0.865.

To calculate sensitivities, let the parameters be age-specific survival probabilities,
so that θ = (

P1 · · · P52
)
. Some of the possible sensitivities are shown in Fig. 10.3.

Increasing survival at age j (ages j = 10, 20, 40 are shown) reduces the abundance
of ages younger than j and increases the abundance of ages older than j (Fig. 10.3b).
A perturbation to a parameter, call it ξ , that affects survival at all ages would have
the effect

dn̂
dξ

= dn̂

dθT

dθ

dξ
= dn̂

dθ
1 (10.63)

where 1 is a vector of ones. An increase in overall survival would reduce the
abundance of age classes 1–6 and increase the abundance of older age classes
(Fig. 10.3c).

13Because B contains negative elements, its dominant eigenvalue may be complex or negative,
leading to oscillatory approach to the equilibrium.
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The sensitivity of n̂ to the larval settlement rate φ is obtained from (10.58) by
setting dvecB/dφ = 0s2×1, and

db
dφ

= (
F̂ 0 · · · 0 )T

Not surprisingly, increases in φ increase n̂, with the largest effect on the young age
classes (Fig. 10.3d). The sensitivity of n̂ to the radial growth rate ρ is obtained by
writing

dvecB
dρ

= dvecB

dgT
dg
dρ

(10.64)

This sensitivity is negative, with the greatest impact on young age classes
(Fig. 10.3e).
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Fig. 10.3 Sensitivity analysis of a subsidized population of the intertidal barnacle Balanus
glandula. (a) The equilibrium population n̂ (scaled relative to a unit of area A = 1). (b) The
sensitivity of b̂on to a change in survival at ages j = 10, 20, 40. (c) The sensitivity of n̂ to changes
in overall survival at all ages. (d) The sensitivity of n̂ to the settlement rate φ per unit area. A
sensitivity analysis of a subsidized population of the intertidal barnacle Balanus glandula.
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Fig. 10.3 (continued) (e) The sensitivity of n̂ to the radial growth rate ρ. (f) The sensitivity of the
equilibrium free space F̂ to age-specific survival. (g) The sensitivity of F̂ to changes in overall
survival, settlement rate, and radial growth rate. Based on data of Gaines and Roughgarden (1985)

Finally, the sensitivity of the equilibrium free space is given by

dF̂

dθT
= dF̂

dnT
dn̂

dθT
= −gT

dn̂

dθT
(10.65)

Increases in survival reduce the amount of free space at equilibrium; the effect
is largest for changes in survival of young age classes (Fig. 10.3f). Figure 10.3g
compares the effect on F̂ of changes in overall survival, settlement, and radial
growth rate. It is not surprising that increases in survival or settlement will reduce
free space, but perhaps surprising that increases in the radial growth rate actually
increase F̂ . �

10.4.3 Density-Dependent Subsidized Models

Once individuals arrive in the population, they may experience a variety of density-
dependent effects, that can be incorporated in a model

n(t + 1) = A [θ ,n(t)] n(t) + b. (10.66)
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The sensitivity result (10.58) applies to this model by substituting

dvecA = ∂vecA

∂θT
dθ + ∂vecA

∂nT
dn̂ (10.67)

into (10.57) and solving for dn̂, to obtain

dn̂

dθT
=
(
Is − A −

(
n̂T ⊗ Is

) ∂vecA

∂nT

)−1 {(
n̂T ⊗ Is

) ∂vecA

∂θT
+ db

dθT

}
.

(10.68)
where A, b, and all derivatives of A and b are evaluated at n̂.

10.5 Stable Structure and Reproductive Value

The linear model n(t +1) = An(t) will, ifA is primitive, converge to a stable age or
stage distribution. But while the dynamics of the population vector n(t) are linear,
the dynamics of the proportional population structure are nonlinear (Tuljapurkar
1997). We can take advantage of this to analyze the sensitivity of proportional
structures by writing them as equilibria of nonlinear maps.

10.5.1 Stable Structure

The sensitivity of the stable stage distribution has been approached as an eigenvector
perturbation problem (e.g., Caswell 1982, 2001; Kirkland and Neumann 1994), but
those calculations are complicated. Analysis of the equilibrium of the nonlinear
model (10.69) is much easier.

Let p denote the proportional stage structure vector (p ≥ 0, 1Tp = 1). The
dynamics of p(t) satisfy

p(t + 1) = Ap(t)

‖Ap(t)‖ . (10.69)

The stable stage distribution is an equilibrium of (10.69); it satisfies

p̂ = Ap̂

1TAp̂
(10.70)

where the 1-norm can be replaced by 1TAp̂ because p̂ is non-negative. Differentiat-
ing both sides gives
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dp̂ = 1
(
1TAp̂

)2

[
1TAp̂(dA)p̂ + 1TAp̂A(dp̂) − Ap̂1T(dA)p̂ − Ap̂1TA(dp̂)

]

(10.71)

Note that Ap̂ = λp̂ and 1TAp̂ = λ, where λ is the dominant eigenvalue of A.
Making these substitutions and applying the vec operator to both sides gives

λ dp̂ =
[ (

p̂T ⊗ Is
)

−
(
p̂T ⊗ p̂1T

)]
dvecA +

[
A − p̂1TA

]
dp̂ (10.72)

Solving for dp̂ and applying the chain rule gives

dp̂

dθT
=
(
λIs − A + p̂1TA

)−1 (
p̂T ⊗ Is − p̂T ⊗ p̂1T

) dvecA

dθT
(10.73)

Example 5: A human age distribution As an example, consider the age
distribution of the population of the United States in 1985 (data from Keyfitz
and Flieger 1990). These vital rates yield a declining population (λ = 0.975) and an
age distribution skewed towards older ages (Fig. 10.4). Applying (10.73) yields the
sensitivity of p̂ to age-specific survival probabilities Pi and fertilities Fi , where age
classes i = 1, . . . , 18 correspond to ages 0–5, . . ., 85–90. The overall patterns are
familiar from previous sensitivity analyses of stable age distributions (e.g., Caswell
2001, Figure 9.22). Increasing survival probability at a given age increases the
relative abundance of the next several age classes, at the expense of younger and
older age classes. Increasing fertility at a given age increases the abundance of
young age classes at the expense of older age classes. �

10.5.2 Reproductive Value

A similar approach gives the sensitivity of the reproductive value vector v, given
by the left eigenvector of A corresponding to λ. Reproductive value is customarily
scaled so that v1 = 1. Scaled in this way, v satisfies

v̂T = v̂TA

v̂TAe1
(10.74)

where e1 is a vector with 1 in the first entry and zeros elsewhere. Differentiating
both sides gives

dv̂T = 1
(
v̂TAe1

)2

[
v̂TAe1(dv̂T)A+v̂TAe1v̂T(dA)

−(dv̂T)Ae1v̂TA−v̂T(dA)e1v̂TA
]

(10.75)
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Fig. 10.4 Stable age distribution and sensitivity of stable age distribution to age-specific survival
and fertility. (a) The stable age distribution. (b) The sensitivity of the stable age distribution to
changes in survival (P5) in age class 5. (c) Sensitivity of the stable age distribution to changes in
fertility (F5) in age class 5. Based on life table data for the United States in 1985 (Keyfitz and
Flieger 1990)

But v̂TA = λv̂T and v̂TAe1 = λ. Making these substitutions and applying the vec
operator (remembering that vec vT = v) gives

λdv =
[ (

Is ⊗ v̂T
)

−
(
v̂eT1 ⊗ v̂T

)]
dvecA +

(
AT − v̂eT1A

T
)

dv. (10.76)

Solving for dv and using the chain rule gives

dv̂

dθT
=
(
λIs − AT + v̂eT1A

T
)−1 [ (

Is ⊗ v̂T
)

−
(
v̂eT1 ⊗ v̂T

)] dvecA

dθT
(10.77)

In stable population theory, in the calculation of second derivatives of population
growth rate (Shyu and Caswell 2014), and in the analysis of multitype branching
processes for demographic stochasticity (Caswell and Vindenes 2018), it is neces-
sary to use the sensitivity of v subject to the scaling

vTw = 1. (10.78)
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The resulting derivative is

dv

dθT
=
(
λI − AT + λvwT

)−1

×
([(

I − vwT
)

⊗ vT
]

− λ
(
v ⊗ vT

) dw

dvec TA

)
dvecA

dθT
. (10.79)

(see Caswell and Vindenes 2018 for derivation).

10.5.3 Sensitivity of the Dependency Ratio

The dependency ratio characterizes an age distribution by the relative abundance
of two groups, one assumed to be dependent and the other productive (Keyfitz and
Flieger 1990, p. 32). It is often assumed that persons younger than 15 or older than
65 are dependent on productive individuals between 15 and 65. The dependency
ratio is defined as

D = aTp̂

bTp̂
(10.80)

where a is a vector with ones for the dependent ages and zeros otherwise, and b is
its complement. Applying Eq. (10.33) for the sensitivity of a ratio gives

dD

dθT
=
(
bTp̂aT − aTp̂bT

(
bTp̂

)2

)
dp̂

dθT
. (10.81)

where dp̂/θT is given by (10.73).
This result can be generalized in several ways. The analysis may be performed

separately for the dependent young and the dependent old, by suitable modification
of a and b. These two components are likely to be influenced by different
demographic factors and can respond to perturbations in opposite directions. The
0-1 vectors a and b may be replaced by vectors of weights; e.g., age-specific
consumption and age-specific income (Fürnkranz-Prskawetz and Sambt 2014).
For an example applied to a population projection for Spain, see Caswell and
Sanchez Gassen (2015). The analysis also applies to stage-classified models,
provided that dependent and independent stages can be identified. It also applies
to nonlinear models, with the stable stage distribution p̂ replaced by the equilibrium
population n̂ in (10.81). It can be extended to transient dynamics, where the age
distribution, and thus the dependency ratio, varies over time (Caswell 2007), as
is the case in population projections (Caswell and Sanchez Gassen 2015). Finally,
the sensitivity (10.81) makes it possible to carry out LTRE analyses to decompose
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differences in dependency ratios into components due to differences in each of the
vital rates (see Chaps. 2, 8, and 9).

Example 5: (cont’d) Dependency ratios in human populations The United
States in 1985 had a set of vital rates leading to a low growth rate (λ = 0.975), and a
relatively low dependency ratio, dominated by the old. Kuwait in 1970, in contrast,
had a high growth rate (λ = 1.210) and one of the highest dependency ratios listed
in the compilation of Keyfitz and Flieger (1990), dominated by the young:

U.S.A. 1985 Kuwait 1970
D 0.668 1.025
Dy 0.260 0.956
Do 0.406 0.069

where Dy and Do are the dependency ratios calculated for the young and old
separately. The sensitivities of D, Dy, and Do to changes in age-specific survival
and fertility are shown in Fig. 10.5. The responses of D to changes in the vital rates
differ between the two countries. In the U.S., increases in fertility would reduce
D. In Kuwait, increases in fertility (especially at young ages) would increase D.
In the U.S., increases in survival14 before age 30 reduce D; increases after age 30
increase D. In Kuwait, increases in survival, except at very young and very old ages,
reduce D.

BreakingD into its young and old components helps to explain these differences.
In both countries, there is a crossover in survival effects. Increases in survival at
early ages increase Dy and reduce Do. At later ages, increases in survival reduce
Dy and increase Do. Increases in fertility increase Dy and reduce Do. In the U.S.
population, both these effects are large, with the negative effect on Do larger than
the positive effect on Dy. In the Kuwaiti population, the positive effect on Dy is
much greater than the negative effect on Do. �

10.5.4 Sensitivity of Mean Age and Related Quantities

From an age distribution p̂, it is possible to compute the mean age of any age-specific
property (e.g., production of children, collection of retirement benefits, exposure to
toxic chemicals); see Chu (1998, p. 26) for general discussions. The most familiar
of these is the mean age of reproduction, which is one measure of generation time
(Coale 1972).

Let f be a vector of age-specific per-capita fertilities. The age distribution of
offspring production is then f ◦ p̂, where ◦ is the Hadamard, or element-by-element
product. The mean age of the mothers of these offspring is obtained by normalizing
f ◦ p̂ to sum to 1 and taking the mean over the resulting distribution,

14Or, equivalently, reductions in mortality. For these parameter values, the sensitivity to mortality
is approximately the sensitivity to survival with the opposite sign.
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Fig. 10.5 Sensitivity of the dependency ratio D, and of its old and young components, to age-
specific survival and fertility. Left: calculated from the stable age distribution of the United States in
1985. Right: calculated from the stable age distribution of Kuwait in 1970. (a) and (b): Sensitivity
of D to survival (Pi ) and fertility (Fi ). (c) and (d): Sensitivity of the components of D to survival.
(e) and (f): Sensitivity of the components of D to fertility. Life table data from Keyfitz and Flieger
(1990)
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āf = cT
(
f ◦ p̂

)

1T
(
f ◦ p̂

) (10.82)

where

cT = (
1 2 · · · s

)
,

with s as the last age class.
Now differentiate āf, following the now-familiar rules for ratios. The differential

of the Hadamard product of two vectors is d(a ◦ b) = D (a)db + D (b)da. The
result is

dāf

dθT
=
(
1T
(
f ◦ p̂

)
cT − cT

(
f ◦ p̂

)
1T

(
fTp̂
)2

)(
D (f)

dp̂

dθT
+ D (p̂)

df

dθT

)
(10.83)

where dp̂/dθT is given by (10.73).
This result can be generalized in several ways. Setting f = 1 makes the age-

specific property that of simply being alive, and ā1 = cT1 is then the mean age of
the stable population, the sensitivity of which is

dā

dθT
= cT

dp̂

dθT
(10.84)

The calculations can also be applied to the equilibrium population in a nonlinear
model by substituting n̂ for p̂. They apply directly to stage-classified models with
stages defined on an interval scale (e.g., size classes), in which case they give, e.g.,
the mean size at reproduction. If the stages are not evenly spaced, then c would be
replaced by

cT = (
x1 x2 · · · xs

)
(10.85)

where xi is the value associated with stage i.

Example 5: (cont’d) Mean age of reproduction The mean age of reproduction in
the stable age distribution of the United States in 1985 was āf = 24.02 years (using
the mid-points of the 5-year age intervals as the measure of age). The sensitivities of
āf to changes in age-specific survival and fertility are shown in Fig. 10.6. Increases
in survival prior to age 15 reduce āf. Increases in survival after age 45 have almost
no effect on āf, because fertility is essentially zero after this age. Between age 15
and age 45, increases in survival increase the mean age of reproduction.

Increases in fertility reduce āf if they happen before age 25 and increase āf if they
happen after age 25. These sensitivities are quite large, although this is somewhat
irrelevant since the largest sensitivities are for ages at which fertility is zero and
unlikely to be modified. �
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Fig. 10.6 Sensitivity of the mean age at reproduction to changes in age-specific survival and
fertility, for the life table of the population of the United States, 1985. (Data from Keyfitz and
Flieger 1990)

10.5.5 Sensitivity of Variance in Age

We can also calculate the sensitivity of the higher moments. For example, the
variance in the age at reproduction is

Vf = a2f − (āf)
2 . (10.86)

This variance might, for example, be useful as a measure of the extent of iteroparity.
The sensitivity of Vf to changes in parameters is obtained by writing the first
term as

a2f = (c ◦ c)T
(
f ◦ p̂

)

1T
(
f ◦ p̂

) (10.87)

and then differentiating

dVf = d
(
a2f

)
− 2āf (dāf) . (10.88)

The final result is

dVf

dθT
=
(
1T(f ◦ p̂)(c ◦ c)T − (c ◦ c)T

(
f ◦ p̂

)
1T

(
fTp̂
)2

)

×
(
D (f)

dp̂

dθT
+ D (p̂)

df

dθT

)
− 2āf

dāf

dθT
. (10.89)

where dp̂/dθT is given by (10.73) and dāf/dθT is given by (10.83).
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10.6 Frequency-Dependent Two-Sex Models

In sexually reproducing species, a particular sort of nonlinearity arises from the
dependence of reproduction on the relative abundance of males and females. This
dependence is captured in a marriage function or mating rule (e.g., McFarland 1972;
Pollak 1987, 1990) When the vital rates depend only on the relative, rather than the
absolute, abundance of males and females, then A[θ ,n] is homogeneous of degree
0 in n; i.e.,

A[θ , cn] = A[θ,n] for any c 	= 0. (10.90)

Such models have been called frequency-dependent (Caswell and Weeks 1986;
Caswell 2001) to distinguish them from density-dependent nonlinear models that
do not have this homogeneity property.

Because of the homogeneity of A[θ,n], frequency-dependent models do not
converge to an equilibrium density n̂. Instead, there may exist15 a stable equilibrium
proportional structure p̂ to which the population will converge, at which point it
grows exponentially at a rate λ given by the dominant eigenvalue of A[θ , p̂]. Thus
sensitivity analysis of two-sex models must include both the population structure
and the population growth rate.

Note that matrix models that include Mendelian genetics are also homogeneous
of degree zero, but it is confusing to call them frequency-dependent, because doing
so creates confusion with the genetic phenomenon of frequency-dependent fitness,
which is a different thing altogether (de Vries and Caswell 2018).

10.6.1 Sensitivity of the Population Structure

The equilibrium proportional population structure p̂ satisfies

p̂ = A[θ, p̂] p̂
‖A[θ , p̂] p̂‖ (10.91)

where p̂i ≥ 0 and 1Tp̂ = 1. Differentiating (10.91) gives

dp̂ =
1TAp̂

[
(dA)p̂ + A(dp̂)

]
− Ap̂

[
1T(dA)p̂ + 1TA(dp̂)

]

(
1TAp̂

)2 . (10.92)

15A sufficient, but not necessary, condition for the existence of an equilibrium is that A cannot
map a nonzero vector n directly to zero; necessary conditions are more difficult (Nussbaum 1988,
1989). See also Martcheva (1999).
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Making the substitutions Ap̂ = λp̂ and 1TAp̂ = λ and rearranging gives

λdp̂ = (dA)p̂ + A(dp̂) − p̂1T(dA)p̂ − p̂1TA(dp̂). (10.93)

Applying the vec operator to both sides, expanding dvecA, invoking the chain rule,
and solving for dp̂/dθT gives

dp̂

dθT
=
[
λIs − A + p̂1TA −

[
p̂T ⊗

(
Is − p̂1T

)] ∂vecA

∂pT

]−1

×
[
p̂T ⊗

(
Is − p̂1T

)] ∂vecA

∂θT
(10.94)

where A and all derivatives are evaluated at p̂. Note that (10.94) differs from the
expression (10.73) for the stable stage distribution in the linear model only in the
term involving ∂vecA/∂pT, which of course is zero in the linear model.

10.6.2 Population Growth Rate in Two-Sex Models

Because a population with the equilibrium structure grows exponentially, I once
suggested treating A[θ, p̂] as a constant matrix and applying eigenvalue sensitivity
analysis to it, in order to examine life history evolution in 2-sex models (Caswell
2001, p. 577). This was incorrect, because it ignored the effect of parameter changes
on A through their effects on the equilibrium p̂. A correct calculation obtains the
sensitivity of λ including effects of parameters on both A and p̂.

Note that p̂ is a right eigenvector of A[θ, p̂] corresponding to λ. Let v be the
corresponding left eigenvector, where vTA[θ , p̂] = λvT and vTp̂ = 1. Then

dλ = vT(dA)p̂ (10.95)

Caswell (1978). Apply the vec operator and Roth’s theorem to get

dλ =
(
p̂T ⊗ vT

)
dvecA. (10.96)

Expanding dvecA gives

dλ

dθT
=
(
p̂T ⊗ vT

) [∂vecA

∂θT
+ ∂vecA

∂p̂T
dp̂

dθT

]
(10.97)

where A, v, and the derivatives of A are all evaluated at the equilibrium p̂, and
dp̂/dθT is given by (10.94).

Note that λ is the invasion exponent for this model, and thus the sensitivity of
λ to a parameter gives the selection gradient on that parameter. Tuljapurkar et al.
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Fig. 10.7 Life cycle graph
for the 2-sex model for
passerine birds (Legendre
et al. 1999). Stages 1 and 2
are juvenile and adult
females; stages 3 and 4 are
juvenile and adult males.
Parameters are stage specific
survival probabilities σi ,
stage-specific fertilities Fi ,
and primary sex ratio
(proportion female) ρ
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(2007) used this fact to explore the effect of male fertility patterns on the evolution
of aging; the sensitivity (10.97) could be used to generalize such results. Recent
work by Shyu has coupled these calculations to the methods of adaptive dynamics
to examine the evolution of sex ratios (Shyu and Caswell 2016a,b).

Although two-sex models are an important case of homogeneous models, they
are not the only case. Keyfitz’s (1972) interpretation of the Easterlin hypothesis
describes fertility as dependent on only the relative, not absolute, size of a cohort. A
model based on this premise would be frequency-dependent (homogeneous) and
would lead to an exponentially growing population to which (10.97) would be
applicable.

Example 6: A two-sex model for passerine birds Legendre et al. (1999) used a
frequency-dependent two-sex model to study the introductions of passerine birds
to New Zealand. The life cycle includes two age classes (first year and older) for
females and for males. The life cycle graph is shown in Fig. 10.7. The numbers of
females and males are Nf = n1 + n2 and Nm = n3 + n4, respectively.

Because passerines are typically monogamous within a breeding season, and
assuming that mating is indiscriminate with respect to age, Legendre et al. (1999)
used as a mating function

B(n) = min
(
Nf ,Nm

)
, (10.98)

giving the number of matings as a function of the number of males and females. The
per-capita fertility of a female of age-class i is the number of matings divided by the
number of females and multiplied by the number of surviving offspring per mating.

F(n) = σ0φiB(n)

Nf

(10.99)
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=
{

σ0φi
Nm

Nf
Nf ≥ Nm

σ0φ Nf < Nm

(10.100)

where σ0 is the probability of survival from fledging to age 1 and φi is the clutch size
of age class i. When males are the scarcer sex (the avian equivalent of a marriage
squeeze) fertility is proportional to the ratio of males to females. When females are
the scarcer sex, all females are mated and fertility depends only on fecundity and
neonatal survival.

Births are allocated to females and males according to a primary sex ratio ρ

which gives the proportion female. The resulting two-sex projection matrix is

A[n] =

⎛

⎜⎜
⎝

ρF1(n) ρF2(n) 0 0
σ1 σ2 0 0

(1 − ρ)F1(n) (1 − ρ)F2(n) 0 0
0 0 σ3 σ4

⎞

⎟⎟
⎠ (10.101)

Legendre et al. (1999) assigned typical values for passerine birds of σ0 = 0.2,
φi = 7, and ρ = 0.5. They set male and female survival equal (σ1 = σ3 = 0.35,
σ2 = σ4 = 0.4), but this is a pathological special case in this model, so instead I
consider two cases, one in which male mortality is higher than female mortality, and
one in which the difference is reversed.16 The survival probabilities and equilibrium
population structures are

σ =

⎛

⎜⎜
⎝

0.35
0.5
0.25
0.4

⎞

⎟⎟
⎠ p̂ =

⎛

⎜⎜
⎝

0.320
0.226
0.320
0.134

⎞

⎟⎟
⎠ (10.102)

σ =

⎛

⎜⎜
⎝

0.25
0.4
0.35
0.5

⎞

⎟⎟
⎠ p̂ =

⎛

⎜⎜
⎝

0.320
0.134
0.320
0.226

⎞

⎟⎟
⎠ (10.103)

The elasticities of p̂ to each of the parameters, calculated from (10.94), are
shown in Table 10.1. Regardless of which sex is scarcer, increasing neonatal survival
increases the proportion of young, at the expense of the proportion of adults, in both
sexes. Increasing the sex ratio ρ increases the proportion of females at the expense
of males. Increasing female survival (σ1 or σ2) increases the proportion of adult
females at the expense of all other stages; increasing male survival has the opposite

16In a survey of the literature, adult mortality for female passerines exceeded that for males in 21
out of 28 cases (Promislow et al. 1992). Birds differ from mammals in this respect.
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Table 10.1 Elasticity of p̂ to parameters in two-sex model for passerine birds, under two mortality
scenarios. When male mortality is greater than female mortality, males are rarer than females and
fertility at equilibrium is limited by the mating function. When male mortality is less than female
mortality, females are rare and fertility is not affected by the mating function

Males rare

Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 0.453 −0.226 −0.229 0.000 0.000 0.266 0.189

p̂2 −0.890 1.799 0.774 0.783 −0.398 −0.268 −0.521 −0.369

p̂3 0.455 −1.547 −0.226 −0.229 0.000 0.000 0.266 0.189

p̂4 −0.664 −0.428 −0.226 −0.229 0.669 0.450 −0.389 −0.275

Females rare

Stage σ0 ρ σ1 σ2 σ3 σ4 φ1 φ2

p̂1 0.455 1.547 0.000 0.000 −0.226 −0.229 0.320 0.135

p̂2 −0.664 0.428 0.669 0.450 −0.226 −0.229 −0.467 −0.197

p̂3 0.455 −0.453 0.000 0.000 −0.226 −0.229 0.320 0.135

p̂4 −0.890 −1.799 −0.398 −0.268 0.774 0.783 −0.627 −0.264

effect. However, when females are rare, increasing female survival has no effect on
the proportion of juveniles. When males are rare, increases in male survival have no
effect on the proportion of juveniles. Increasing fecundity increases the proportion
of juveniles, at the expense of adults, in both sexes and for either mortality
pattern.

The elasticity of the population growth rate λ at equilibrium is shown in
Table 10.2, and is compared to the naive calculation that treats A[θ , p̂] as a fixed
matrix. When males are rare, so that fertility is limited by the mating function, the
naive calculations are dramatically wrong. When calculated correctly, increases in
the primary sex ratio ρ reduce λ, because they reduce the availability of males.
Increases in female survival have no effect on λ, because the extra females produced
have no opportunity to reproduce. Increases in male survival increase λ because they
increase female fertility. In each case, the naive calculation leads, incorrectly, to the
opposite conclusion.

When females are rare (which renders the model linear and female-dominant at
equilibrium), the correct and the naive calculations agree. This is a consequence
of using the minimum as a birth function. Some preliminary calculations using the
harmonic mean birth function,

B(n) = 2Nf Nm

Nf + Nm

, (10.104)

in which both males and females influence fertility at all population structures,
suggest that the naive elasticity calculations are always incorrect.

Sometimes the correct calculations lead to apparent paradoxes. Jenouvrier et al.
(2010) developed a two-sex model for the Emperor penguin. It was a periodic model,
with phases defined by events within the breeding cycle (cf. Chap. 8), and included a



10.6 Frequency-Dependent Two-Sex Models 233

Table 10.2 The elasticity of
λ to parameters in the
two-sex model for passerine
birds, under two mortality
scenarios. The correct
calculation is based
on (10.97). The naive
calculation incorrectly treats
A[p̂, θ ] as a fixed matrix,
ignoring the effect of
parameters on the equilibrium
population structure p̂

Males rare Females rare

Correct Naive Correct Naive

σ0 0.669 0.545 0.669 0.669

ρ −0.669 0.545 0.669 0.669

σ1 0 0.226 0.198 0.198

σ2 0 0.229 0.133 0.133

σ3 0.198 0 0 0

σ4 0.133 0 0 0

φ1 0.392 0.319 0.471 0.471

φ2 0.277 0.226 0.198 0.198

mating function applied to adults at the breeding colony. Because Emperor penguins
breed, and share parental care, in the midst of the Antarctic winter,17 they must be
strictly monogamous, and hence Jenouvrier used the minimum as a mating function.

Analysis of the equilibrium growth rate revealed that the sensitivity of λ to adult
female survival was negative. This is impossible in a linear model, but happens in
this frequency-dependent model because increasing adult female survival increases
the proportion of females (already greater than the proportion of males) and thus
decreases mating probability. The negative effect of reduced mating overwhelms the
positive effect of improved adult survival; the net result is a reduction in population
growth rate; see Jenouvrier et al. (2010) for details. �

10.6.3 The Birth Matrix-Mating Rule Model

Pollak (1987, 1990) introduced a powerful conceptual approach to two-sex models,
which he called the birth matrix-mating rule (BMMR) model. This model separates
the processes of mating, birth, and life cycle stage transitions, and treats them as
a periodic process. When generalized to stage-structured models, it contains three
main components:

1. A birth matrix whose entries give the expected number of male and female
offspring produced by a mating of a male of age (or stage) i and a female of
age j .

2. A mating rule function that gives the number of matings uij between males of
age (or stage) i and females of age j .

3. A set of sex-specific mortality schedules, which project surviving individuals to
the next age class, or, in our generalization, include other stage-specific life cycle
transitions.

17Dramatically portrayed in the movie,March of the Penguins.
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A matrix version of the BMMR has recently been developed, using a novel
continuous-time formulation of periodic matrix models (Shyu and Caswell 2018).
The mating, birth, and transition processes are described, respectively, by matrices
U, B, and T. To explore the theoretical consequences of two-sex reproduction, the
matrices are parameterized in terms of continuous-time rates rather than discrete-
time probabilities. In continuous time, the periodic matrix product that would
describe such a process in discrete time converges to a sum of the rate matrices.
The dynamics of the population are given by

dn(t)

dt
= A

[
n(t)

]
n(t) (10.105)

where

A
[
n(t)

] = 1

3

(
T + B + U[n(t)]

)
n(t) (10.106)

That is, the projection matrix is the mean of the three component matrices, and is
nonlinear because of the dependence of union formation (the matrix U) on n. Shyu
and Caswell (2016a,b, 2018) explore this model in the context of sex ratio evolution
and of sex-biased harvesting, deriving the sensitivity of the population growth rate
as a measure of the selection gradient.

10.7 Sensitivity of Population Cycles

Equilibria are not the only attractors relevant in nature (e.g., Clutton-Brock et al.
1997) or the laboratory (Cushing et al. 2003). Cycles, invariant loops, and strange
attractors also occur, and are sensitive to changes in parameters. This section
examines the sensitivity of cycles.

10.7.1 Sensitivity of the Population Vector

A k-cycle is a sequence of population vectors n̂1, . . . , n̂k , satisfying

n̂i+1 = A
[
θ, n̂i

]
n̂i i = 1, . . . , k − 1

n̂1 = A
[
θ, n̂k

]
n̂k. (10.107)

A change in parameters will modify each point in the cycle; the first goal of
perturbation analysis is thus to find the sensitivities
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dn̂1
dθT

, . . . ,
dn̂k

dθT
. (10.108)

The following is the derivation of these sensitivities for a 2-cycle. The extension to
cycles of arbitrary length will follow. To simplify notation, define

Ai ≡ A
[
θ, n̂i

]
. (10.109)

The 2-cycle satisfies

n̂1 = A2n̂2 (10.110)

n̂2 = A1n̂1 (10.111)

Differentiating both equations, applying the vec operator, and expanding
dvecAi/dθT yields a system of equations

dn̂1
dθT

=
(
n̂T2 ⊗ Is

) ∂vecA2

∂θT
+
(
n̂T2 ⊗ Is

) ∂vecA2

∂nT2

(
dn̂2
dθT

)

+A2

(
dn̂2
dθT

)
(10.112)

dn̂2
dθT

=
(
n̂T1 ⊗ Is

) ∂vecA1

∂θT
+
(
n̂T1 ⊗ Is

) ∂vecA1

∂nT1

(
dn̂1
dθT

)

+A1

(
dn̂1
dθT

)
(10.113)

This system can be written in block matrix form. Define Hi ≡ n̂Ti ⊗ Is . Then

d

dθT

(
n̂1
n̂2

)
=
(

0 H2

H1 0

)
⎛

⎜
⎜
⎝

∂vecA1

∂θT

∂vecA2

∂θT

⎞

⎟
⎟
⎠

+

⎡

⎢⎢
⎣

(
0 H2

H1 0

)
⎛

⎜⎜
⎝

∂vecA1

∂nT1
0

0
∂vecA2

∂nT2

⎞

⎟⎟
⎠+

(
0 A2

A1 0

)
⎤

⎥⎥
⎦

× d

dθT

(
n̂1
n̂2

)
(10.114)
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Solving for the sensitivities gives

d

dθT

(
n̂1
n̂2

)
=

⎡

⎢
⎢
⎣I2s −

(
0 H2

H1 0

)
⎛

⎜
⎜
⎝

∂vecA1

∂nT1
0

0
∂vecA2

∂nT2

⎞

⎟
⎟
⎠

−
(

0 A2

A1 0

)
⎤

⎥
⎥
⎦

−1
(

0 H2

H1 0

)
⎛

⎜
⎜
⎝

∂vecA1

∂θT

∂vecA2

∂θT

⎞

⎟
⎟
⎠ (10.115)

where the matrices Ai and the derivatives of Ai are all evaluated at n̂i . The analogy
with (10.16) is apparent.

This calculation can be extended to cycles of any period, in terms of block
matrices as in (10.115). The pattern of the block matrices is clear from a 3-cycle.
Define the following matrices:

N =
⎛

⎝
n̂1
n̂2
n̂3

⎞

⎠ (10.116)

A =
⎛

⎝
0 0 A3

A1 0 0
0 A2 0

⎞

⎠ (10.117)

H =
⎛

⎝
0 0 H3

H1 0 0
0 H2 0

⎞

⎠ (10.118)

C =

⎛

⎜
⎜⎜⎜⎜⎜
⎝

∂vecA1

∂nT1
0 0

0
∂vecA2

∂nT2
0

0 0
∂vecA3

∂nT3

⎞

⎟
⎟⎟⎟⎟⎟
⎠

(10.119)
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D =

⎛

⎜⎜⎜⎜⎜⎜
⎝

∂vecA1

∂θT

∂vecA1

∂θT

∂vecA1

∂θT

⎞

⎟⎟⎟⎟⎟⎟
⎠

. (10.120)

In terms of these matrices, the sensitivity of each point in the 3-cycle is given by

dN

dθT
= [I3s − A − HC]−1

HD. (10.121)

10.7.2 Sensitivity of Weighted Densities and Time Averages

The matrix dN/dθT contains the sensitivity of every stage to every parameter at
every point in the cycle. This potential overload of information can be simplified
by calculating the sensitivities of weighted densities and/or time averages over the
cycle. To do this, it is convenient to write the points in the cycle as an array (of
dimension s × k)

G = (
n̂1 n̂2 · · · n̂k

)
. (10.122)

The block vector N is

N = vecG. (10.123)

Weighted densities. Let c be a vector of weights, and let N̂i = cTn̂i be the
(scalar) weighted density at the ith point on the cycle. Then write

n̂ =
⎛

⎜
⎝

N̂1
...

N̂k

⎞

⎟
⎠ (10.124)

The vector n̂ can be calculated from N as

n̂ = (
cTn̂1 · · · cTn̂k

)T

= vec
(
cTG

)

=
(
Ik ⊗ cT

)
vecG
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=
(
Ik ⊗ cT

)
N dimension = k × 1. (10.125)

Time-averaged population vector. Let b be a probability vector (bi ≥ 0, 1Tb =
1) and define the time-averaged population vector as

n̄ =
k∑

i=1

bi n̂i . (10.126)

Then

n̄ = Gb

=
(
bT ⊗ Is

)
vecG

=
(
bT ⊗ Is

)
N dimension = s × 1 (10.127)

Time-averaged weighted density. Taking the time average of the N̂i gives

N̄ =
∑

i

bicTn̂i

= cTGb

=
(
bT ⊗ cT

)
N (10.128)

Thus the sensitivities of the weighted densities, the time-averaged popula-
tion, and the time-averaged weighted density are obtained by differentiat-
ing (10.125), (10.127), and (10.128) as

dn̂

dθT
=
(
Ik ⊗ cT

) dN

dθT
(10.129)

dn̄

dθT
=
(
bT ⊗ Is

) dN

dθT
(10.130)

dN̄

dθT
=
(
bT ⊗ cT

) dN

dθT
(10.131)

where dN/θT is given by (10.121).

Example 7 A 2-cycle in the Tribolium model A series of experiments on Tri-
bolium reported by Dennis et al. (1995) produced stable 2-cycles by experimentally
manipulating the adult mortality μa . Using the model in Example 2 and the
estimated parameters
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b = 11.677

cea = 1.100 × 10−2

cel = 9.3 × 10−3

cpa = 1.78 × 10−2

μa = 1.108 × 10−1

μl = 5.129 × 10−1

(Dennis et al. 1995, Table 1) leads to a 2-cycle

n̂1 =
⎛

⎝
325.3
8.9

118.5

⎞

⎠ n̂2 =
⎛

⎝
18.2

158.4
106.4

⎞

⎠ , (10.132)

in which the population oscillates between a state dominated by larvae and adults
and a state dominated by pupae and adults.

As an example of the rich sensitivity analyses possible for even such a simple
model, consider the elasticity of the population vector n̂i , of the total population
N̂i = 1Tn̂i , of the total population respiration R̂i = cTn̂i (with c the vector of stage-
specific respiration rates from Example 2), and of the time averages n̄, N̄ , and R̄.
The results are collected in Fig. 10.8.

First, the elasticities of the n̂i differ from stage to stage and from one point on
the cycle to another (Fig. 10.8a). Increases in fecundity, for example, increase the
density of larvae and reduce the density of pupae in n̂1, but have the opposite effects
in n̂2. The elasticities to b, cea , and cel are much larger than those to the other
parameters (cf. the elasticities of the equilibrium n̂ in Fig. 10.1).

The elasticities of total population are similar at the two points in the cycle
(Fig. 10.8b), except that larval mortality μl has a large negative effect on N̂2, but
only a small effect on N̂1. The elasticities of total respiration R̂i , however, are
different at the two points in the cycle (Fig. 10.8c).

The elasticities of the time-averaged population vector n̄ (Fig. 10.8d) are similar
to those of the equilibrium vector in Fig. 10.1 (although they need not be). This
pattern is not predictable from the patterns of the elasticities of the population
vectors n̂1 and n̂2 (Fig. 10.8a).

Finally, the elasticities of the time averages, N̄ and R̄, of the weighted densities
are similar to each other and to the elasticities of the time-averaged population n̄.

The sensitivity analysis of cycles thus depends very much on the dependent
variables of interest. The matrix dN/dθT (Fig. 10.8a) contains 36 pieces of infor-
mation: the effects of 6 parameters on 3 stages at 2 points in the cycle. A focus on
weighted density reduces this to 12 (Fig. 10.8b,c), but the results may depend very
much on the particular weighting vector chosen. A focus on time averages reduces
the information from 36 to 18 numbers (Fig. 10.8d), and the response of the time-
averaged weighted densities finally are described by just 6 numbers. The good news
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Fig. 10.8 Analysis of a 2-cycle in the Tribolium model. (a) Elasticity of the density of each stage,
with respect to each parameter, at n̂1 and n̂2. (b) Elasticity of the total population N̂ at each point
in the cycle. (c) Elasticity of the total respiration R̂ at each point in the cycle. (d) Elasticity of
the time-averaged population n̄. (e) Elasticity of the time-averaged total population N̄ and the
time-averaged total respiration R̄
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is that Eqs. (10.121), (10.125), (10.127), and (10.128) make it easy to compute all
these sensitivities. �

10.7.3 Sensitivity of Temporal Variance in Density

The variance over a cycle in a weighted density N̂ can be written

V (N̂) = E(N̂2) −
[
E(N̂)

]2
(10.133)

where E(N̂) = N̄ = cTGb and

E(N̂2) =
k∑

i=1

bi

(
cTn̂i

)2
(10.134)

= (c ◦ c)T(G ◦ G)b (10.135)

Taking the differential of E(N̂2) and applying the vec operator gives

dE(N̂2) = 2
[
bT ⊗ (c ◦ c)T

]
D (N) dN. (10.136)

Combining this with the differential of E(N̂)2 gives the sensitivity of V (N̂):

dV (N̂)

dθT
= 2

{[
bT ⊗ (c ◦ c)T

]
D (N) − N̄

(
bT ⊗ cT

)} dN

dθT
(10.137)

where dN/dθT is given by (10.121). The extension to higher moments, should one
want to know, say, the sensitivity of the skewness of population size over a cycle, is
possible.

10.7.4 Periodic Dynamics in Periodic Environments

Periodic environments (e.g., seasons within a year) are described by periodic
products of matrices. If the environmental cycle contains p phases, then matrices
A1, . . .Ap describe the dynamics at each phase, and the periodic product Ap · · ·A1
projects the population over an entire cycle. Nonlinear periodic models permit the
Ai to depend on the population vector at any point in the cycle, including delayed
dependence (e.g., the reproductive success of an individual plant in the fall may
depend on the density it experienced in the spring). A fixed point on the inter-annual
time scale is a p-cycle on the seasonal time scale. A k-cycle on the inter-annual
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scale corresponds to a kp-cycle on the seasonal time scale. The sensitivity analysis
of these models is given by Caswell and Shyu (2012) and presented here in Chap. 8.
For an application to the dynamics of an invasive plant population, see Shyu et al.
(2013).

10.8 Dynamic Environmental Feedback Models

The commonly encountered forms of density dependence are usually a shorthand
for a feedback between a population and some aspect of its environment.18 The
static feedback model of Sect. 10.3 begins to incorporate environmental feedback,
but assumed that the environmental variable g(t) had no inherent dynamics of its
own. A more general, dynamic environmental feedback model can be written

n(t + 1) = A[θ ,n(t), g(t)]n(t)

g(t + 1) = B[θ ,n(t), g(t)]g(t) (10.138)

allowing for n(t) to depend on both the environment and on its own density, and
likewise for the environmental factor.

The sensitivity of the equilibrium of (10.138) can be found using an approach
similar to that applied above to cycles. At equilibrium,

n̂ = A[θ, n̂, ĝ]n̂ (10.139)

ĝ = B[θ, n̂, ĝ]ĝ (10.140)

Differentiating both sides of each equation, expanding dvecA and dvecB, and
applying the vec operator gives

dn̂ = A
(
dn̂
)+

(
n̂T ⊗ Is

)(∂vecA

∂θT
dθ + ∂A

∂nT
dn̂ + ∂A

∂gT
dĝ
)

(10.141)

dĝ = B
(
dn̂
)+

(
ĝT ⊗ Iq

)(∂vecB

∂θT
dθ + ∂B

∂nT
dn̂ + ∂B

∂gT
dĝ
)

. (10.142)

Applying the identification theorem and the chain rule gives

18Early writers even interpreted the simple logistic equation as an interplay between a biotic
potential for exponential growth and an environmental resistance due to lack of resources or
interaction with predators (e.g., Chapman 1931). Incorporating a fully dynamic feedback greatly
expands the range of phenomena that can be explained (see de Roos and Persson (2013) for an
extensive development of this approach).



10.8 Dynamic Environmental Feedback Models 243

dn̂

dθT
= A

dn̂

dθT
+ (

n̂ ⊗ Is
) ∂vecA

∂θT
+ (

n̂ ⊗ Is
) ∂vecA

∂nT
dn̂

dθT

+ (n̂ ⊗ Is
) ∂vecA

∂gT
dĝ

dθT
(10.143)

with a similar expression for dĝ/dθT. All matrices and their derivatives are
evaluated at the equilibrium (n̂, ĝ). This system can be written in block matrix form
by defining

H ≡
(
n̂T ⊗ Is

)
(10.144)

J ≡
(
ĝT ⊗ Iq

)
(10.145)

Then define

A =
(
A 0
0 B

)
(10.146)

H =
(
0 H
J 0

)
(10.147)

C =

⎛

⎜⎜
⎝

∂vecB

∂nT
∂vecB

∂gT

∂vecA

∂nT
∂vecA

∂gT

⎞

⎟⎟
⎠ (10.148)

D =

⎛

⎜⎜
⎝

∂vecA

∂θT

∂vecB

∂θT

⎞

⎟⎟
⎠ (10.149)

N =
(
n̂
ĝ

)
(10.150)

In terms of these matrices,

dN

dθT
= HD + (A + HC)

dN

dθT
. (10.151)

Solving for dN/dθ t r gives the sensitivity of both the population and the environ-
mental factor,
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dN

dθT
= (

Is+q − A − HC
)−1

HD. (10.152)

10.9 Stage-Structured Epidemics

The transmission of infectious diseases is a source of nonlinearity because the
rate of transmission depends on the abundance of infected and non-infected
individuals. When demographic structure is added to the picture, the models can
become complicated because the transmission process, the recovery process, and
the consequences of infection may all vary among age classes or stages.

Klepac and Caswell (2011) developed a general framework for stage-classified
epidemics, using the vec-permutation formulation (e.g., Chaps. 5 and 6). Individuals
were jointly classified by stage and infection category, and nonlinearity was intro-
duced by the disease transmission process. Klepac and Caswell (2011) calculated
sensitivities and elasticities of equilibria and cycles of the stage× infection dis-
tribution and, of stage-specific prevalence, to parameters specifying demographic,
infection, and recovery processes.

Coupling demography and epidemiology requires attention to time scales.
Suppose that the demographic processes operate on one time scale: say, years. For
some diseases, the infection/recovery process might operate on a much longer time
scale (decades). Or the disease might play out on a much shorter time scale (weeks).
When the disease time scale is shorter than the demographic time scale, the matrices
in Klepac’s model that define disease transmission operate many times within a
single year; the result is a periodic model on the infection time scale. See Klepac
and Caswell (2011) for details.

10.10 Moments of Longevity in Nonlinear Models

The statistics of longevity (e.g., life expectancy) are traditionally calculated from
linear age-classified models (see Chap. 4) or from linear stage-classified models (see
Chap. 5). In a nonlinear model at equilibrium, the projection matrix is constant and
an individual experiences a fixed schedule of vital rates, from which all the usual
statistics of longevity can be calculated. Write the density-dependent projection
matrix as

A[θ ,n] = U[θ ,n] + F[θ ,n] (10.153)

where U contains the transition probabilities for individuals already present in the
population and F describes the production of new individuals by reproduction. The
matrix U is the transient matrix of an absorbing Markov chain, with death as an
absorbing state. The fundamental matrix of this chain at equilibrium is
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N[θ, n̂] =
(
Is − U[θ , n̂]

)−1
(10.154)

where the inverse is guaranteed to exist if the spectral radius of U is less than 1.
The (i, j) element of N is the expected time spent in stage i, before death, by an
individual in stage j .

As in Chap. 4, the vector η1 containing the mean longevity of each age class or
stage is given by

ηT1 = 1Ts N[n̂]. (10.155)

The moments of longevity and other indices are calculated from N
(
θ , n̂

)
just as in

the linear case. All the sensitivity results of Chaps. 4 and 5 apply directly, except that
the derivative of N

(
θ , n̂

)
must include both the direct effects of θ and the indirect

effects through n̂. For convenience, write N̂ and Û for the matrices at equilibrium.
Then

dvec N̂ =
(
N̂T ⊗ N̂

)
dvec Û (10.156)

=
(
N̂T ⊗ N̂

)
[

dvec Û

dθT
dθ + dÛ

dn̂T
dn̂

]

(10.157)

where Û, N̂, and the derivatives of U are all evaluated at equilibrium and dn̂/dθT is
given by (10.16). Comparing this with equation (4.34) shows that the nonlinearity
adds an extra term, capturing the way that changes in θ affect the vital rates through
changes in equilibrium density.

This approach can be used to generalize the results for higher moments of
longevity (Chaps. 4, 5, and 11) to the nonlinear case.

10.11 Summary

Table 10.3 lists the perturbation analysis results in this chapter; they comprise
a fairly complete analysis for nonlinear demographic models. The nonlinearities
may arise from density dependence, frequency dependence, environmental feed-
back, proportional population structure calculations, or recruitment subsidy. The
sensitivity calculations accommodate a wide range of dependent variables and the
calculation of both sensitivity and elasticity with respect to any kind of demographic
parameters.

As in other chapters, most of the results in this chapter follow a straightforward
method:

1. Write the model, specifying the dependence of the vital rates on θ and n.
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2. Write a matrix expression for the demographic outcome of interest (e.g., the
equilibrium population).

3. Differentiate this expression.
4. Use the vec operator and Roth’s theorem to obtain an expression that involves

only the differentials of vectors.
5. Use the chain rule for total differentials to expand the operators (e.g., dvecA)

that are functions of both θ and n, as in (10.14).
6. Use the first identification theorem and the chain rule to extend the results

to sensitivities of any desired dependent variable with respect to any set of
parameters
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