Skip to main content

Molding a Shape-Memory Polymer with Programmable Matter

  • Conference paper
  • First Online:
Distributed Autonomous Robotic Systems

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 9))

  • 1283 Accesses

Abstract

The design phase of a car development is a long and tedious process requiring a lot of trials and errors. In this paper, we introduce a new concept aiming at making this process easier and more interactive. Our solution mixes self-reconfigurable autonomous robots forming programmable matter and a shape-memory polymer surface that produces an interactive model of the desired object. We propose a global algorithm to manage the interactions with the users and the self-reconfiguration of programmable matter to mold the polymer surface. We detail the technical aspects used to define the new shape of the programmable matter to better approach a goal surface described by a Non-Uniform Rational Basis Splines (NURBS) using a dichotomy algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://projects.femto-st.fr/programmable-matter/.

References

  1. Behl, M., Lendlein, A.: Actively moving polymers. Soft Matter 3(1), 58–67 (2007)

    Article  Google Scholar 

  2. Bourgeois, J., Piranda, B., Naz, A., Boillot, N., Mabed, H., Dhoutaut, D., Knychala Tucci, T., Lakhlef, H.: Programmable matter as a cyber-physical conjugation. In: 2016 IEEE International Conference on Systems, Man, and Cybernetics (SMC 2016). IEEE, Oct 2016. https://publiweb.femto-st.fr/tntnet/entries/13257/documents/author/data

  3. Han, X.J., Dong, Z.Q., Fan, M.M., Liu, Y., Li, J.H., Wang, Y.F., Yuan, Q.J., Li, B.J., Zhang, S.: pH-induced shape-memory polymers. Macromol. Rapid Commun. 33(12), 1055–1060 (2012)

    Article  Google Scholar 

  4. Hu, J., Zhu, Y., Huang, H., Lu, J.: Recent advances in shape-memory polymers: structure, mechanism, functionality, modeling and applications. Prog. Polym. Sci. 37(12), 1720–1763 (2012)

    Article  Google Scholar 

  5. Lankinen, J.: 3D Surface Modeling Using Point Clouds (2009)

    Google Scholar 

  6. Lendlein, A., Jiang, H., Jünger, O., Langer, R.: Light-induced shape-memory polymers. Nature 434(7035), 879 (2005)

    Article  Google Scholar 

  7. Lendlein, A., Kelch, S.: Shape-memory polymers. Angew. Chem. Int. Ed. 41(12), 2034–2057 (2002)

    Article  Google Scholar 

  8. Liu, C., Qin, H., Mather, P.: Review of progress in shape-memory polymers. J. Mater. Chem. 17(16), 1543–1558 (2007)

    Article  Google Scholar 

  9. Mather, P.T., Luo, X., Rousseau, I.A.: Shape memory polymer research. Annu. Rev. Mater. Res. 39, 445–471 (2009)

    Article  Google Scholar 

  10. Piegl, L., Tiller, W.: The NURBS Book, 2nd edn. Springer, New York, NY, USA (1996)

    Google Scholar 

  11. Piranda, B.: VisibleSim: your simulator for programmable matter. In: Algorithmic Foundations of Programmable Matter (Dagstuhl Seminar 16271), July 2016

    Google Scholar 

  12. Piranda, B., Bourgeois, J.: Geometrical study of a quasi-spherical module for building programmable matter. In: DARS 2016, 13th International Symposium on Distributed Autonomous Robotic Systems, London, United Kingdom, Nov 2016

    Google Scholar 

  13. Prasantha, H., Shashidhara, H., Balasubramanya Murthy, K.: Comparative analysis of different interpolation schemes in image processing. In: International Conference on Advanced Communication Systems (ICACS), India, pp. 17–24 (2007)

    Google Scholar 

  14. Saniee, K.: A simple expression for multivariate Lagrange interpolation. In: SIAM Undergraduate Research Online (SIURO), July 2008

    Article  Google Scholar 

  15. Sun, L., Huang, W.M., Ding, Z., Zhao, Y., Wang, C.C., Purnawali, H., Tang, C.: Stimulus-responsive shape memory materials: a review. Mater. Des. 33, 577–640 (2012)

    Article  Google Scholar 

  16. Tucci, T.K., Piranda, B., Bourgeois, J.: Coding 3D scene for distributed self-reconfiguration algorithms. In: 32nd ACM SIGAPP Symposium on Applied Computing (SAC17), pp. 256–261, Marrakesh, Morocco. ACM, 6–9 Apr 2017

    Google Scholar 

  17. Zhao, Q., Zou, W., Luo, Y., Xie, T.: Shape memory polymer network with thermally distinct elasticity and plasticity. Sci. Adv. 2(1), e1501297 (2016)

    Article  Google Scholar 

Download references

Acknowledgements

This work was partially supported by the ANR (ANR-16-CE33-0022-02), the French Investissements d’Avenir program, ISITE-BFC project (ANR-15-IDEX-03), Labex ACTION program (ANR-11-LABX-01-01) and the Mobilitech project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Florian Pescher .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Pescher, F., Piranda, B., Delalande, S., Bourgeois, J. (2019). Molding a Shape-Memory Polymer with Programmable Matter. In: Correll, N., Schwager, M., Otte, M. (eds) Distributed Autonomous Robotic Systems. Springer Proceedings in Advanced Robotics, vol 9. Springer, Cham. https://doi.org/10.1007/978-3-030-05816-6_5

Download citation

Publish with us

Policies and ethics