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Abstract. Resilience/fault-tolerance has become a key challenge for large-scale
parallel systems. To ensure reliability of high performance computing systems,
various kinds of techniques have been proposed, such as hardware-level fault-
tolerance, checkpointing, replication, algorithm-base fault-tolerance, etc. There
are also many software systems to monitor and handle system-failures, e.g.
management and job-scheduling system of HPC systems. To evaluate the
effectiveness of these systems, it is necessary to provide some kind of tool to
inject failures in a HPC system. This paper proposes HPC-SFI, a system-level
fault injection tool for HPC systems. Basically, HPC-SFI can generate three
kinds of system-failures in a HPC system including in-node faults, failure in the
interconnection network and failure of storage/parallel-file system. In addition,
HPC-SFI can inject system-faults in pseudo-random model according to pre-
defined parameters and probabilities. Preliminary experimental results demon-
strate effectiveness of the tool.

1 Introduction

With the scaling up of high performance computers in recent years, resilience, or fault-
tolerance, has become a key challenge. Currently, top-ranking supercomputers gener-
ally have tens of thousands of processors, e.g. the Summit [1] has 8,712 processors and
26,136 GPUs, while the number of processors in the Sunway TaihuLight [1] is 40,960.
Along with the increasing of system scale, hardware/software-failures occur more
frequently. Statistics show that the MTBF (mean time between failure) of current most
powerful supercomputers has reduced to several hours.

To ensure reliability of high performance computing systems, various kinds of
techniques have been proposed, such as hardware-level fault-tolerance, checkpointing,
replication, algorithm-base fault-tolerance, etc. There are also many software systems
to monitor and handle system-failures, e.g. management and job-scheduling system of
HPC systems. To evaluate the effectiveness of these systems, it’s necessary to provide
some kinds of tools to generate various kinds of failure in HPC systems. However,
current fault injection tools either focus on injection of soft-errors and their influences
over high-level applications, or inject system-level failure in emulated environments
(e.g. virtual machines) to guarantee flexible control over the system.

This paper proposes HPC-SFI, a system-level fault injection tool for HPC systems.
Unlike current fault injection tools, our HPC-SFI inject hardware/software-failures in
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real physical systems. Therefore is more suitable for machine vendors and developers
of fault-tolerant-related system software to evaluate the effectiveness of their fault-
tolerant mechanisms.

Main characteristics of HPC-SFI include:

(1) HPC-SFI can inject three kinds of failure to a HPC system: in-node faults, failure
of the interconnection network and failure in storage/parallel-file-system. Typical
in-node faults include processor halt, memory error, network interface/disk failure
as well as the system halts.

(2) HPC-SFI cannot only inject deterministic failure in a HPC system, but also
generate failure in pseudo-random model according to pre-set parameters and
probabilities, which are more approximate to actual systems.

(3) The injected failure can be recovered after a predefined time period.
The rest of this paper is organized as follows. Section 2 discusses our methods of
fault-injection; Sect. 3 introduces architecture of the system and implementation
detail. Section 4 presents preliminary experimental results; Sect. 5 discusses
related work and the paper is concluded in Sect. 6.

2 Approaches

2.1 Types of Failures

Possible hardware/software faults or failure in high performance computer systems are
diverse. To make things simple, our HPC-SFI focuses on system-level failure, which
means under this kind of failure, part or entirely of the system cannot work correctly.
These failure either occur inside computing nodes, or outside the nodes, i.e. in inter-
connection network or storage system.

Based on the above discussion, our HPC-SFI considers three kinds of failures,
described as follows:

(1) In-node faults/failures
In-node faults/failures can be further divided into faults/failures in a different

component of the node, e.g. processors, memory, network interface card, etc. In
addition, crash-down of an entire node should also be considered.

(2) Failure of interconnection network
This kind of failure either occurs in network cable or in switches. Obviously it will

cause communication errors in multiple nodes.

(3) Failure of storage or parallel file system
Current high performance computers generally use dedicated storage systems

together with parallel file systems to provide high-throughput I/O and shared storage to
parallel applications running in different nodes, while the in-node hard-disk just used as
system startup. Failure of storage or parallel file system may occur in various com-
ponents of the storage system or dedicated I/O nodes, and will influence file-accesses of
computing nodes.
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2.2 Injection Methods

Different HPC systems have different hardware configurations, and generally come
from different vendors. As a software tool, it is difficult for HPC-SFI to obtain controls
over dedicated equipment such as interconnection switch or RAID array. In other
words, some kinds of failures cannot be generated directly, as a substitution, we
generate “effect” of the corresponding failure, e.g. failure of a switch will cause
communication interruptions on all the nodes that connected to the switch, failure of
storage or parallel file system will cause the corresponding file volume mounted to file
systems of each node unable to access.

Table 1 shows phenomenon and injection methods of failure supported by HPC-
SFI. As shown in the table, the in-node fault injection acts as the basis of the system,
because the other two types of failures, the failure of interconnection network and
storage system, are implemented upon the in-node fault injection, that is, inject failures
in multiple specific nodes simultaneously.

As for in-node fault injection, actually most of the in-node faults/failures can be
generated using Linux shell commands except memory-fault injection, which is
implemented in two forms: i. a kernel module which can access entire memory space;
ii. a user-level interface which can be invoked by applications to modify its own data.

Another problem that needs to be solved is the recovery after the failure injection.
Considering the system scale of current HPC systems, it is impractical to reboot each
node after it is injected faults/failures, instead, the node must be recovered to its
original state after a fault injection. Due to that most failures are generated using shell

Table 1. Failure phenomenon and injection methods

Kind of
failures

Component Phenomenon Injection method

In-node
fault/failure

Entire node System halt Halt the system by shell
commands

Processor 1-n processor (cores) stop
working

Process forcibly consumes
processor resources

Memory Contents of memory units error Modify the specified
memory content

Network
interface

Communication error Disable HBA card by shell
commands

In-node
fixed-disk

Disk error Destroy the super block of
the disk partition

File
volume
access

Volume access error Destroy the disk file
resources

Failure of interconnection
network

Communication interruptions in
all of the related nodes

Disable HBA cards in all
of the related nodes

Failure of storage or
parallel file system

File volume access error in all
of the related nodes

Destroy parallel file
system
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commands, it is easy to recover under the control of the system. The only one failure
that need special treatment is the network-related failures, after the HBA card or NIC
card is disabled, the node becomes isolated and cannot receive later recovering com-
mands, in this situation, the node must be self-recovered, which is implemented using a
shell script working in sequence of “disable-delay-enable”.

2.3 Deterministic vs. Pseudo-random Fault Injection

To approximate actual failure in HPC systems, the HPC-SFI supports two fault-
injection model: the deterministic fault-injection and pseudo-random fault-injection.

(1) Deterministic fault injection
Generate determined failures according to the specified parameters, such as a node,

time, and the fault type.

(2) Pseudo-random fault injection
The fault probability is specified by setting the node range and the number of faulty

nodes, the time range, and the fault type range. The fault can be generated according to
the fault model, so as to simulate the actual running of HPC systems.

In actual HPC systems, the occurrence of faults/failures is non-deterministic and
generally unpredictable. We define a four-tuple of fault-injection pseudo-random prob-
ability model for HPC systems to describe the probability of fault-injection execution:

Pinjec ¼ T ;R;NUM;Fh i ð1Þ

Where T indicates that within a certain time range, R is the range of the nodes to be
tested, NUM is the specified number of injection nodes, and F is the type range of the
fault. The above parameters are defined, and a fault injection model is generated by a
pseudo-random probability model. Such fault injection is more approximate to the
occurrence of faults in real systems and can be used to evaluate the effectiveness of
fault-tolerant diagnostics.

HPC-SFI tool failure is generated by the model, and the user can generate a fault
parameter configuration by specifying a description file. In the configuration file pro-
vided by the tool, the user sets the relevant parameters according to requirements to
define the four-tuple of fault injection probability model.
The process is as follows:

select NODE[R]
while NUM
NUM --; 
rand(f); rand(k);
while Time
inject FAULT[f] to NODE[k];
Time --; 

end
end. 
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This program generates a corresponding fault injection model based on the fault
description to implement fault injection control.

3 System Architecture and Implementation

Figure 1 shows the architecture of HPC-SFI. The HPC-SFI tool mainly consists of two
parts: the first part is the master running in a control node; the second part is the node-
part running on each node of the target HPC system.

In each node, an application process, named HPC-SFI broker, runs in the back-
ground waiting for commands from the master. On receiving a fault injection com-
mand, the HPC-SFI broker invokes the In-node injection module to generate
corresponding faults/failures in the node. The master communicates with the HPC-SFI
brokers via management network of the target HPC system. The In-node injection
module can also be invoked by other application processes, at this time, the master is
overridden and fault injection is controlled by the user-defined application.

In the master, the model-generation module parses the failure description file
defined by the user, generates the fault parameter profile based on the description file,
and uses these fault parameters to determine the type and time of a fault injection. In
order to assess the effectiveness of fault injection, we measure reliability parameters
such as test coverage and latency when performing the appropriate fault injection.

Node 0 Node 1 Node n-1

…

Interconnection network

Storage system

Target HPC system

Node 1

Node n-1

HPC-SFI
broker

In-node injection 
module

Linux

Node 0

ConfigurationFailure 
description file

Commands / 
Feedbacks

Other APs
model-generation 

module

HPC-SFI 
Master

Fig. 1. Architecture of the system.
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HPC-SFI realizes three types of failure of HPC system: in-node faults, failure of
interconnection network, and failure of storage or parallel file system. Because the
failure of the interconnection network and the failure of the storage parallel file system
are generated based on the node fault, various faults of the traditional physical machine
have been realized: memory faults, processor faults, network communication faults and
disk faults.

Memory failure can be injected with a single bit or multiple byte error. The
memory-fault injection program requires a scheme to modify the specified memory
content, partially or completely setting. The virtual address of the process is converted
into a physical address, and the process code segment data are directly modified in the
memory according to the physical address, so as to achieve the purpose of fault
injection. The Linux kernel module mechanism is introduced to obtain the privilege of
modifying any specified memory location.

As mentioned in Sect. 2.2, failure of the interconnection network and storage
system are implemented on the basis of in-node fault injection. For instance, when user
specifies a switch-failure in the fault description file, the model-generation module
parses the description, looks for the nodes that connects to the failure switch according
to the configuration of the target system, then determines the nodes that need to be
injected a network interface failure, after that, multiple fault-injection commands are
sent to the nodes simultaneously.

4 Experiment Results

4.1 Methodology

We evaluate the HPC-SFI in a cluster environment with four nodes. The experimental
target node is an Intel CPU-based computer system running Linux operating system
Ubuntu16.04 with 1 GB of memory and 4.13 kernel versions. Unlike current fault
injection tools, our HPC-SFI inject hardware/software-failures in real physical systems.
So application-level workloads do not affect HPC-SFI fault injection. For the experi-
ment to clearly show the effectiveness of fault injection, we use matrix multiplication as
the workload, which consists of multiple loop of the initialization step of input matrix
data and the multiplication step.

In our experiments, firstly, we run the workload on the target system and start the
HPC-SFI fault injection tool; the user then generates a fault of the specified type by
configuring the relevant parameters; after that, the master node sends the message
parsing package to the target node, and performs fault injection on the target node.
After the fault-injection, the main control node waits for a specific time interval to
observe the response of the target system, collect and analyze the fault response
records. Specifically, we measure fault injection latency as well as the probabilistic
distribution under pseudo-random mode. The fault-injection latency is the elapsed time
from the sending of a fault/error injection command in the master to the completion of
fault-injection in the specified node.
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4.2 Experiment Results

In the experiment, we mainly test the probability of node failure injection and the
coverage of the test between nodes. Tables 2 and 3 show the statistical analysis results
of fault injection data. Each table provides specific information about the behaviors of
the fault injection system. From the system perspective, HPC-SFI can effectively inject
the faults to the system node. Further influence of the running state of the application,
and diagnose the effectiveness of fault injection through the abnormal behaviors of the
application. In the experiment, we realize three types of fault injection. At the same
time, we also test the tool from the three directions: fault injection probability, node
coverage range and fault delay.

The date in Table 2 is based on the single-node fault injection, and is capable of
verifying the validity of injecting memory and processor faults. To better simulate the
random generation of node failure in a cluster. We set the trigger probability in the
model-generation module. In the single-node memory fault injection experiment, we
set the trigger probability to be 50% and 100% respectively. Through the fault injection
of the tool, it can be found that the fault can be injected into the specified position
accurately. By observing the system log and processor behavior, and testing the cor-
responding injection delay, the validity of the tool can be proved. In the process of the
memory fault injection, different injection locations and injection time affect different
system behaviors. Since the data required to execute the partial loader code has been
loaded into the cache, subsequent data does not have to interact with memory, so the
fault diagnosis is delayed and the fault is not fully reflected in the application process,
but the system log file can reflect the effective injection of the fault.

Table 2. Results of injecting memory and processor faults on the single node.

Faulty
component

Failure
activation
probability

Monitoring
information

Times
of fault
node
detected

Detected
probability

Average
fault-
injection
latency
(ms)

Phenomenon

Memory
(Injection
times
T = 20)

100% System log 20 100% 163.67 The system log
shows that the
memory contents
have been rewritten.
The process
interrupts an error
and sets the SIGNAL

Processor 19 95%
50% System log 11 55% 226.67

Processor 11 55%

Processor
(Injection
times
T = 20)

100% System
status

20 100% 35.71 The process is
forcibly stopped; or
the node crashes and
needs to be restarted

Processor
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The failure model of the fault injection tool is generated by the user through the
configuration description file. The tool defines the fault injection probability model by
setting relevant parameters according to the specific fault injection requirements.
According to the four-tuple of fault injection pseudo-random probability model, we set
the test node range R to 4, the specified injection node number NUM is 2 and 3
respectively, and the F fault type is a disk fault. We test the fault injection for parallel
file systems with the node coverage, and the results are shown in Table 3. Through the
fault injection of the tool, it is proved that the setting of the node parameter can be

Table 3. Results of injecting disk faults on the nodes in the cluster.

Faulty
component

Number
of fault
nodes

Node Selected
times

Detected
probability

Average
fault-
injection
latency
(ms)

Phenomenon

Disk
(Injection
times
T = 50;
Node = 4)

2 Node 1 35 48% 41.09 A partition that is not
mounted cannot be
mounted properly and
displays a disk error; the
partition being mounted
cannot be read or written
properly

Node 2 39 50% 50.67
Node 3 41 46% 49.29
Node 4 35 56% 45.45

3 Node 1 24 70% 46.14
Node 2 25 78% 53.17
Node 3 23 82% 50.81
Node 4r 28 70% 49.17

Fig. 2. Latency of the communication between nodes.
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applied to the fault model, and the fault injection probability conforms to the parameter
setting. This kind of fault injection tool based on pseudo-random probability model can
be more close to the actual system environment in the choice of fault injection.

We affect normal node communication through the fault injection tool, and the
impact of the failure is reflected in the latency of node information interaction. In the
HPC system, it is necessary for the fault injection tool to restore part of the fault and
maintain communication, and at the same time, tries not to cause permanent failure to
nodes to ensure the experiment. As showed in Fig. 2, when the fault is being injected,
the message transmission delay between nodes changes dramatically and is much
greater than the normal time. After a certain time, the fault will recover itself and
normal communication between nodes will resume.

5 Related Work

Fault injection technique provides the capacity of evaluating the risibility of HPC
system with synthetic failure occurring in hardware, system, as well as applications. To
emulate the effect of failure in HPC, extensive studies have been conducted to explore
different fault injection methods. Generally, current work fall into three categories:
hardware-implemented fault injection, software implemented fault injection, and sim-
ulator and virtual machine based fault injection.

Hardware-implemented fault injection works by triggering errors in hardware with
specialized device, such as setups producing electromagnetic interference and radiation
[2, 3], or changing the voltage or current of target circuit board [4]. This type of method
can mimic failure caused by environmental factors. However, it increases the risk of
damage to the target hardware. Furthermore, it is difficult to control the fault location
and triggering time.

Software-implemented fault injection method, on the other hand, generates emu-
lated fault effect by inserting instruction into the application or triggering specific
system command. Compared with the hardware-implemented counterpart, this type of
method provides more flexibility and controllability. Therefore, many existed fault
injection tools are implemented in software. For instance, Han et al. [5] proposed
DOCTOR, a software implemented fault injection tool that injects hardware and
software fault for distributed real-time system. Taking advantage of function available
in the operation system, DOCTOR is able to inject architecture-independent hardware
errors e.g., memory, CPU and communication fault and their combination, as well as
system-level error. What’s more, DOCTOR introduces temporal types and probability
distribution for fault injection, which empowers the function of injecting realistic
errors. Carreira et al. [6]. presented Xception, which injects realistic system and
application faults in software by programming the debugging hardware available in
modern processors. Based on the hardware feature, faults injected by Xception can
affect any process running on the target system. Since software implemented fault
injection dependent on the available function in target operation system and hardware,
the variety of fault may be limited.
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Simulator and virtual machine based fault injection, which emulates fault by
revising the instruction of a virtual machine or serves as a module of full-system
simulator, e.g., Gem5 [7], is eligible for performing various kinds of synthetic faults to
HPC. Since this type of method is independent of hardware architecture and easy to
control triggering time and location, there has become an increasing amount of liter-
ature focus on virtualization-based fault injection. For example, Guan et al. [8] pro-
posed a fine-grained fault injector on top of QEMU [9] that emulates both software
error and hardware failure by intercepting and corrupting instruction issued by an
application before they be sent to the host kernel. Levy et al. [10] designed a virtu-
alization based fault injection framework that mimics hardware errors both in indi-
vidual node and across nodes in HPC system. By integrating error executor running on
a virtual machine monitor in each node with error scheduler for dispatching deter-
ministic and stochastic errors across HPC system, their framework is able to mimic
more realistic faults in HPC. The main disadvantage of the simulator and virtual based
fault injection method is the performance overhead, especially those work in full-
system simulator.

6 Conclusion

In this paper, we propose a system level fault injection tool called HPC-SFI for HPC
system. It utilizes software implemented fault injection to inject hardware/software
failure into actual physical systems, and is intended for validation and evaluation of
high-performance computing systems. We implemented a fault injection tool, HPC-
SFI, which injected HPC systems with three types of failure: in-node faults, inter-
connection network failure, and storage/parallel file system failure. It can generate
faults according to the parameters and probability, making it closer to the actual sys-
tem. To avoid some irreversible damage to the node, it can be recovered after a
specified time period. HPC-SFI was implemented on a linux cluster system, and
extensive experiments were conducted, demonstrating its power and utility. We are
also exploring the issues about the specification of fault injection and more extensive
fault coverage. After these extensions, we will conduct more practical experiments.
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