
GPU-Accelerated Clique Tree
Propagation for Pouch Latent Tree

Models

Leonard K. M. Poon(B)

The Education University of Hong Kong, Hong Kong SAR, China
kmpoon@eduhk.hk

Abstract. Pouch latent tree models (PLTMs) are a class of proba-
bilistic graphical models that generalizes the Gaussian mixture models
(GMMs). PLTMs produce multiple clusterings simultaneously and have
been shown better than GMMs for cluster analysis in previous studies.
However, due to the considerably higher number of possible structures,
the training of PLTMs is more time-demanding than GMMs. This thus
has limited the application of PLTMs on only small data sets. In this
paper, we consider using GPUs to exploit two parallelism opportunities,
namely data parallelism and element-wise parallelism, for PTLMs. We
focus on clique tree propagation, since this exact inference procedure is
a strenuous task and is recurrently called for each data sample and each
model structure during PLTM training. Our experiments with real-world
data sets show that the GPU-accelerated implementation procedure can
achieve up to 52x speedup over the sequential implementation running
on CPUs. The experiment results signify promising potential for further
improvement on the full training of PLTMs with GPUs.

Keywords: GPU acceleration · Clique tree propagation
Pouch latent tree models · Parallel computing
Probabilistic graphical models

1 Introduction

Clustering [7,18] is a fundamental problem in machine learning. For soft cluster-
ing, the Gaussian mixture models (GMMs) are often used [23]. However, a GMM
contains only one latent variable and can produce only a single clustering. This
limitation may make GMMs not suitable for modern clustering applications,
especially when the data sets contain many attributes and are multifaceted.

The pouch latent tree models (PLTMs) [28,29] have been proposed as a gener-
alization of GMMs to allow multiple latent variables. They can produce cluster-
ings on multiple facets and are more versatile for data of higher dimensions. They
have been evaluated on several real-world data sets and have been shown better

c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 90–102, 2018.
https://doi.org/10.1007/978-3-030-05677-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_8&domain=pdf
http://orcid.org/0000-0002-8394-1492
https://doi.org/10.1007/978-3-030-05677-3_8


GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 91

than GMMs in terms of model quality and clustering performance [27,29]. How-
ever, the structure learning of PLTMs can be more time-demanding than GMMs
due to the considerably larger number of possible model structures. For GMMs,
the structure learning typically involves only the estimation of the number of
the mixture components. In contrast, the structure learning of PLTMs involves
determining the number of latent variables, the cardinalities of the latent vari-
ables, and the connections among the latent variables and the observed variables.
The onerous structure training of PLTMs may pose a serious challenge for apply-
ing PTLMs on large data sets. Consequently, previous studies considered data
with less than 100 attributes and 2000 samples [27,29]. Those sizes of data sets
may be regarded as at most moderate in the Big Data Era.

In recent years, graphical processing units (GPUs) have become more preva-
lent in scientific computing. They have been demonstrated to achieve significant
speedup in different artificial intelligence applications that involve high dimen-
sional data, such as those in the fields of computer vision [16,33], constraint
satisfaction [5,15], and clustering [1,4,25,31].

In this paper, we consider the possibility of using GPUs to accelerate the
training of PLTMs. We focus on the clique tree propagation algorithm for per-
forming exact inference during the training process. The inference task is used
for computing the likelihood and marginal probabilities on a data set during
training. It is the most strenuous one and needs to be called recurrently for
each data sample and each model structure. To evaluate the performance of the
GPU-accelerated inference procedure, we use it to compute likelihood of a given
PLTM on a given data set. This computation requires running inference on each
data sample and exhibits resemblances to the other computationally intensive
steps for PLTM training. Our study thus constitutes an important first step
for using GPUs to accelerate the whole training process of PLTMs to make it
feasible for application on larger data sets.

The rest of the paper is organized as follows. First, we review PLTMs and the
inference procedure in Sects. 2 and 3. Then, we describe the GPU-accelerated
inference procedure in Sect. 4. Next, we evaluate the performance of the proce-
dure in Sect. 5. After that, we discuss related work in Sect. 6 and conclude the
paper in Sect. 7.

(a) (b)

Fig. 1. (a) An example of PLTM. The observed variables are shown in shaded nodes.
The numbers in parentheses show the cardinalities of the discrete variables. (b) A
GMM depicted as a PLTM.



92 L. K. M. Poon

2 Pouch Latent Tree Models

A pouch latent tree model [28,29] is a tree-structured probabilistic graphical
model. In the model, each internal node represents a latent variable, and each leaf
node represents a set of observed variables. All the latent variables are discrete,
whereas all the observed variables are continuous. A leaf node, also called pouch
node, may contain a single observed variable or several of them. An example is
shown in Fig. 1a. In the example model, X1–X9 are continuous observed variables
and Y1–Y4 are discrete latent variables. For technical convenience, PLTMs are
often treated as Bayesian networks [26].

Consider a PLTM with observed variables X and latent variables Y . The
dependency of a discrete latent variable Y on its parent Π(Y ) is characterized
by a conditional discrete distribution P (y|π(y)). Let W ⊆ X be the variables
of a pouch node with a parent node Y = Π(W ). The models assume that,
given a value y of Y , W follows the conditional Gaussian distribution P (w |y) =
N (w |μy,Σy), with mean vector μy and covariance matrix Σy. Denote the sets
of pouch nodes and latent nodes by W and Y, respsectively. The whole model
defines a joint distribution over all observed variables X and latent variables Y

P (x ,y) =
∏

W∈W
P (w |π(W ))

∏

Y ∈Y
P (y|π(Y )). (1)

Given a model structure m, the parameters can be estimated by the EM-
algorithm [13], which is well-known for estimating parameters of models with
latent variables. When the model structure is unknown, a greedy search that
aims to maximize a model selection score can be used [29].

The GMMs can be considered as a special case of the PLTMs. This is illus-
trated by the example GMM depicted in Fig. 1b. In the figure, all the observed
variables X1–X9 in the GMM are drawn as a pouch node, which has a multi-
variate normal distribution conditional on its parent latent variable Y1.

Similar to GMMs, PLTMs can be used for clustering. After training PLTMs
on a given data set, the data can be partitioned using each of the latent variables
Y . Each data point d can be classified to one of the states of Y by computing
the posterior probability P (y|d) based on the joint distribution defined by Eq. 1.

3 Clique Tree Propagation

Suppose the values of some variables E ⊆ X are observed in a data sample.
Inference refers to the computation of the posterior probability P (q |e), where
q are the values of some variables Q ⊆ X ∪ Y .

Inference is a core computation task for PLTMs. It is used in the E-step of the
EM-algorithm to estimate the values of the unobserved variables. It is also used
to compute the cluster assignments after training PLTMs for cluster analysis.
The inference task is time-demanding. It is a strenuous task and is recurrently
called for each data sample and each model structure during PLTM training.
Therefore, it is the first target of optimization for streamlining PLTM training.



GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 93

Inference can be done on PLTMs similarly as the clique tree propagation (also
known as belief propagation or junction tree algorithm) on conditional Gaussian
Bayesian networks [20]. We describe the main steps of the inference algorithm
and the numerical operations below. Readers are referred to [29] for more details
on inference on PLTMs and to [11,12,20] for the general clique tree algorithm.

Construction of Clique Trees. Clique tree propagation requires converting the
original model to a structure called clique tree T to organize the computation.
Construction of clique trees is simple due to the tree structure of PLTMs. To
construct T , a clique C is added to T for each edge in M , such that C =
V ∪ {Π(V )} contains the variable(s) V of the child node and variable Π(V )
of its parent node. A separator node is added for discrete node in the PLTM. It
is used to connect the two clique nodes containing the separator variable. The
resulting clique tree contains two types of cliques: discrete cliques with at most
two discrete variables and mixed cliques with a discrete variable and multiple
continuous variables.

Propagation. After a clique tree is constructed, propagation can be carried out
on it. The clique tree propagation consists of four main steps: initialization of
cliques, incorporation of evidence, message passing, and normalization.

Step 1 initializes the clique tree with the model parameters. The mean vectors
and the covariance matrices of a pouch node are copied to its corresponding
mixed clique. Similarly, the conditional probability table of a discrete node is
copied to the corresponding discrete clique. Note that the root node does not
have a corresponding clique. Its marginal probability is multiplied to one of the
cliques corresponding to its child variables.

Step 2 incorporates the evidence (observed values) in the potentials. For
brevity, here we consider only the case where there is no missing value in the
data. Consider a pouch node with variables W and with observed values e .
Furthermore, denote its parent variable by Y . This step involves computing the
probability values P (y|W = e) = N

(
e |μy ,Σy

)
, where N

(
·|μy ,Σy

)
denote

the normal distribution conditional on the value of Y .
Step 3 performs a series of computations, each on a small part of the clique

tree, as represented by the process of message passing. Since the clique tree does
not contain any loop, exact inference can be performed by message passing in
two phases. In the first phase, messages are passed from the leaf clique nodes to
the clique corresponding to the root node of the PLTM. We denote that clique as
pivot. In the second phase, messages are passed from the pivot along the opposite
direction back to the leaf nodes.

For the mixed cliques, the messages to be sent from the mixed cliques have
already been computed in step 2. The message passing between discrete cliques
requires performing multiplication and division between potential tables of two
variable and message of one variable. It also requires marginalizing out a variable
to compute the message of one variable from a potential table with two variables.



94 L. K. M. Poon

After message passing is completed, the likelihood for a data sample can
be determined from the pivot clique. The likelihood is equal to the sum of the
potential entries of the pivot clique.

Step 4 normalizes the clique potentials by multiplying each entry by a par-
ticular constant. It converts the potential values to proper probability values.
This entails dividing each entry of the potential tables by the likelihood value.

Complexity. Let n be the number of nodes in a PLTM, c be the maximum
cardinality of a discrete variable, and p be the maximum number of variables in
a pouch node. The time complexity of the inference is dominated by the steps
related to message passing and incorporation of evidence on continuous variables.
The message passing step requires O(nc2) time, since each clique has at most two
discrete variables due to the tree structure. Incorporation of evidence requires
O(ncp3) time. Although the tree structure of PLTMs allows tractable inference,
with time complexity linear to the number of nodes, the inference can still needs
much time as it has to be performed many times during PLTM training.

Table 1. Data units for performing inference for each data sample. p denotes the
number of variables in a pouch node. c and c′ denote the cardinalities of the variables
of the node and its parent node, respectively, in the PLTM.

Node type in PLTM Node type in
clique tree

Data type Number of entries

Continuous node Mixed clique Mean vector p× c′

Covariance matrix p2 × c′

Discrete node Discrete
clique

Potential table c× c′

All node Separator Message to parent c′

Message to children c

4 Implementation for GPUs

In this section, we describe how to adapt the inference of PLTMs for running
efficiently on GPUs. We refer to the CPU as host and the GPU as device below.

Data Representation. The original implementation of PLTMs1 used the object-
oriented approach to represent the data units as objects. This poses a challenging
for GPU programming. Instead, we represent the data units as arrays for easy
access by the GPU kernel functions. The data units required for performing
inference are shown in Table 1. Each node in a PLTM has a corresponding clique

1 https://github.com/kmpoon/pltm-east.

https://github.com/kmpoon/pltm-east


GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 95

node and a separator node in the clique tree.2 The third column describes the
type of data associated with each clique node. The fourth column indicates the
number of entries for each type of data.

Device Memory. The data units in Table 1 are used to store interim computation
results during inference. Therefore, a clique tree (with cliques and separators)
has to be allocated for each data sample. The data units are allocated at the
beginning of likelihood computation so that they are available for the inference
on multiple data samples in parallel. The memory is allocated in a single batch
to minimize the number of API calls. We also allocate an array on the device
for storing the likelihood results computed during inference.

Host-Device Memory Transfer. In the first step of inference, the clique tree needs
to be initialized by the parameters of the model. We perform initialization on the
host and then transfer the array data representing the initialized clique tree to
the device. We transfer only the data corresponding to one instance of the clique
tree. The data is then copied to the arrays representing the other instances of
clique trees for all data samples on the device. This process saves the amount of
data needed to be transferred between host and device. It also simplifies the way
to transfer the model parameters to the device as the parameter values are now
contained in an array rather than in objects. Besides, the data units representing
the clique tree, the data matrix is also transferred to device in a single batch at
the beginning to minimize the number of transfers.

Parallelism. Most computation of clique tree propagation for PLTMs is done
during the two steps for incorporating evidence and message passing. Such com-
putation involves the calculating multiple entries in a target potential or message.
Those entries of a potential or message can be calculated in parallel. We refer
to this parallelism as element-wise parallelism [36].

However, due to the tree structure of PLTMs, the number of entries of a
potential or message is usually small compared to general Bayesian networks.
The parallel computation of those entries may not be sufficient to utilize all
GPU cores. For example, suppose the latent variables in a PLTM has at most
10 states. Then, the number of entries of a message is at most 10. This is much
smaller than the number of cores on a GTX 1080 Ti GPU (3584).

To fully utilize the massive computation power in GPUs, we need to consider
other parallelism opportunities. When the likelihood is being computed, the
clique tree propagation is performed on each sample independently. Hence, they
can be performed in parallel. This form of parallelism is referred to as data
parallelism. As a comparison, the number of samples we used in the experiments
can be at most 2310. With both data parallelism and element-wise parallelism,
the GPU cores can be better utilized.

2 An exception is that the root node sometimes does not have a separate clique node.



96 L. K. M. Poon

Host-Device Coordination. Compared with CPUs, GPUs can perform parallel
computation very efficiently. However, they have fewer programming language
support and programming on them can be tedious. Therefore, we program on
the CPUs to mainly determine the sequence of computation and to delegate the
highly parallelizable tasks to GPUs. For example, message passing is conducted
one node at a time since the message computation needs to follow the aforemen-
tioned scheme of flow. We use the host to determine the sequence of the message
passing and then invokes the kernel calls for computing the messages for each
node. The kernel call is run with multiple threads on different data samples and
different elements of messages in parallel.

Device-Host Memory Transfer. The computed likelihood values of the data sam-
ples are stored in an array on the device after the clique tree propagation. The
array is transferred to the host and the values are then multiplied together on
the host to obtain the final likelihood value on the whole data set.

It is worthwhile to note that the data structure storing the interim results
do not need to be transferred back and forth between the host and the device.
This reduces the transfer cost. The same situation also applies for the EM-
algorithm. Only the final parameter estimates need to be transferred back to
the host. The intermediate values can be kept in the device memory during
the different iterations of EM steps. This show one resemblance between the
inference procedure and the full PLTM training.

Implementation. We implemented the inference method based on the CUDA
framework [30]. We used the Scala language for host programming and the JCuda
package3 as Java bindings for CUDA. The Java ecosystem was used to reduce
the coding effort since the original implementation was written in Java.

Table 2. Descriptions of real-world data sets from the UCI repository used in the
experiments.

Data set #Attributes #Classes #Samples

glass 9 6 214

image 18 7 2310

ionosphere 33 2 351

vehicle 18 4 846

wdbc 30 2 569

wine 13 3 178

yeast 8 10 1484

zernike 47 10 2000

3 http://www.jcuda.org.

http://www.jcuda.org


GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 97

5 Experiments

To evaluate the performance of the GPU-accelerated inference method, we use it
to compute likelihood of a given PLTM on a given data set. We ran it using real-
world data sets in our experiments. We used the same models and data sets in
[29] to estimate the actual improvement in practice. Table 2 show the properties
of the data sets used. The EAST algorithm [29] were used to train PLTMs on
those data sets.

Three different implementations of the clique tree propagation were used in
the experiments. The first implementation runs sequentially on CPUs. It serves
as a baseline for comparison. The second one performs inference on different
data samples in parallel on CPUs. The last one uses the GPUs for acceleration
as described previously. The experiments were conducted on a Linux computer
with a Xeon E3-1245 v5 CPU and a GeForce GTX 1080 Ti GPU. The CPU has
fours cores (eight threads) running at a base frequency of 3.5 GHz. The GPU has
28 streaming multiprocessors with 3584 CUDA cores running with a maximum
clock rate of 1.6 GHz.

Table 3. Average elapsed wall time in milliseconds (ms) for computing the likelihood of
PLTMs on real-world data sets using different implementations of clique tree propaga-
tion, including the sequential version running on CPUs, the parallel version running on
CPUs, and the accelerated version running on GPUs. The speedups over the baseline
sequential version are shown in parentheses.

Average running time (ms)

CPU-sequential CPU-parallel GPU

glass 8.62 3.89 (2x) 1.42 (6x)

ionosphere 48.37 14.67 (3x) 2.76 (18x)

image 1421.30 290.14 (5x) 27.52 (52x)

vehicle 169.90 41.54 (4x) 4.89 (35x)

wdbc 143.04 37.77 (4x) 3.28 (44x)

wine 7.54 2.94 (3x) 1.44 (5x)

yeast 50.74 15.06 (3x) 2.07 (25x)

zernike 2655.91 576.26 (5x) 97.75 (27x)

We measure the performance of the three implementations using the elapsed
wall time for likelihood computation. We report the time averaged over 100
repetitions. The experiments first ran 20 repetitions at the beginning to allow the
just-in-time compiler of the Java Runtime to come into force. Those repetitions
were not included for time reporting.

Table 3 reports the average running time for one likelihood computation in
milliseconds. The results show that the GPU acceleration could achieve 5x to
52x speedups over the baseline sequential version. It also attained 2x to 12x



98 L. K. M. Poon

speedups over the parallel version running on CPUs. The higher speedups over
the sequential version were obtained on data sets with larger number of samples
(e.g. image, vehicle, wdbc, yeast, and zernike). This can be explained by the
fact that the larger number of samples provide better opportunity for exploiting
data parallelism by GPUs.

The considerable speedups shown above has demonstrated that the GPUs
can be effective in accelerating the inference task. Since the other computation-
ally intensive tasks in the PLTM training procedure show similar parallelism
opportunities as the likelihood computation task, our results signify the promis-
ing potential for further improvement on the full training of PLTMs with GPUs.

Table 4. Proportion of GPU activities and overall running time used for the incorpo-
ration of evidence routine.

% of GPU activities % of Overall time

glass 64.81% 3.02%

ionosphere 82.46% 8.07%

image 98.94% 86.13%

vehicle 97.10% 46.26%

wdbc 84.92% 15.74%

wine 71.70% 3.32%

yeast 32.71% 1.49%

zernike 99.60% 94.25%

To identify possible bottlenecks of the current GPU implementation, we used
the tool nvprof provided in the CUDA Toolkits to profile different kernel calls.
Table 4 lists the proportion of GPU activities and overall running time spent on
the incorporation of evidence routine. We see that this task constituted most of
the GPU activities except on the yeast data set. It even accounted for 86% and
94% of the overall running time on image and zernike, respectively. The two
data sets happened to take the longest running time.

To understand this phenomenon, recall that the incorporation of evidence
routine for a pouch node has a time complexity linear to the cardinality of its
parent variable and cubic to the number of the variables in the pouch node. We
compare the model properties on four data sets with similar number of attributes
in Table 5. We see that the models for image and zernike both have a large
pouch node with 10 and 16 variables, respectively. The problem is exacerbated
by the high cardinality of the parent variables of those two pouch nodes. The
PLTM for wdbc also has a large pouch node with 10 variables. However, that
node has a smaller parent cardinality and the model has small pouch size on
average. Hence, the incorporation of evidence routine was less significant on
wdbc. Future study may consider how to tackle this bottleneck to make PLTMs
more efficient on larger data sets.



GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 99

Table 5. Properties of PLTMs on four data sets. The average and maximum number of
variables in a pouch node are listed in the second and third columns, and the cardinality
of the parent variable of the pouch node with maximum size in the fourth column.

Average
pouch size

Maximum
pouch size

Parent
cardinality

ionosphere 4.6 7 3

image 3.6 10 11

wdbc 3.0 10 5

zernike 7.8 16 6

6 Related Work

Several works used GPUs to speed up the EM-algorithm for parameter esti-
mations [3,19,22]. They exploited the innate data parallelism due to the inde-
pendent computation for different data samples. However, they considered only
GMMs. The inference procedure on GMMs is simpler than PLTMs.

Some works used GPUs for belief propagation on Bayesian networks.
Element-wise parallelism and arithmetic parallelism was exploited for infer-
ence [36] and a statistical model was further proposed for optimizing the GPU
parameters [37]. Another work formulated the inference procedure in terms
of operations on sparse matrices [6]. Existing matrix packages utilizing GPU
computation (e.g. PyTorch) were then used to run the inference. Some stud-
ies used better memory layout and better scheduling among memory transfers
and works to improve the inference performance on GPUs [5,15]. Some works
studied belief propagation on Markov Random Fields used for stereo processing
on GPUs [14,17,33]. They considered an approximate inference method that
requires passing messages to the same nodes multiple times.

The above methods on inference usually achieve significant speedup only
when the potential tables have a large number of entries. However, due to the
tree structure in PLTMs, the parallelism exploited by those methods may not
be as effective on PLTMs. Besides, our work considered data parallelism that
were not available as those methods ran inference on only a single data sample.

PLTMs were proposed as a generalization of the latent tree models (LTMs).
The LTMs [34] have discrete observed variables, in contrast to the continu-
ous observed variables in PLTMs. The LTMs have found numerous applications
such as density estimation, multidimensional clustering, spectral clustering, and
topic modeling [24,35]. Attempts have been made to speed up the training of
LTMs. Spectral methods [2] and Progressive EM [9] have been proposed for
faster parameter estimation. Heuristics were proposed to guide the structure
learning [10,21,32] and Stepwise EM was used to reduce the number of samples
involved in computation [8]. Those attempts did not utilize any parallelism for
GPUs. On the other hand, their acceleration techniques can possibly be com-
bined with our proposed method to achieve higher speedups.



100 L. K. M. Poon

7 Conclusion

In this paper, we show how to use GPUs to accelerate the clique tree propaga-
tion algorithm for PLTMs. We use the likelihood computation task to evaluate
the performance of the inference procedure. The experiment results demonstrate
that substantial speedups (up to 52x) can be achieved. As the other computa-
tionally intensive tasks in the PLTM training procedure show similar parallelism
opportunities as the likelihood computation task, our results signify promising
potential for further improvement on the full training of PLTMs with GPUs. The
GPU acceleration techniques discussed in this paper can be crucial in applying
PTLMs on massive data sets.

Acknowledgement. Research on this article was supported by the Education Univer-
sity of Hong Kong under grant RG70/2017-1018R, the Top-up Fund of Dean’s Research
Fund, and the Small Research Grant of the Department of Mathematics and Informa-
tion Technology.

References

1. Al-Ayyoub, M., Abu-Dalo, A.M., Jararweh, Y., Jarrah, M., Sa’d, M.A.: A GPU-
based implementations of the fuzzy C-means algorithms for medical image seg-
mentation. J. Supercomput. 71(8), 3149–3162 (2015)

2. Anandkumar, A., Chaudhuri, K., Hsu, D., Kakade, S.M., Song, L., Zhang, T.:
Spectral methods for learning multivariate latent tree structure. In: Advances in
Neural Information Processing Systems, vol. 24, pp. 2025–2033 (2012)

3. Araújo, G.F., Macedo, H.T., Chella, M.T., Estombelo Montesco, C.A., Medeiros,
M.V.O.: Parallel implementation of expectation-maximisation algorithm for the
training of Gaussian mixture models. J. Comput. Sci. 10(10), 2124–2134 (2014)

4. Arefin, A.S., Riveros, C., Berretta, R., Moscato, P.: kNN-MST-agglomerative: a
fast and scalable graph-based data clustering approach on GPU. In: 7th Interna-
tional Conference on Computer Science Education, pp. 585–590 (2012)

5. Bistaffa, F., Bombieri, N., Farinelli, A.: An efficient approach for accelerating
bucket elimination on GPUs. IEEE Trans. Cybern. 47(11), 3967–3979 (2017)

6. Bixler, R.M.: Sparse matrix belief propagation. Master’s thesis, Virginia Tech
(2018)

7. Bouveyrona, C., Brunet-Saumard, C.: Model-based clustering of high-dimensional
data: a review. Comput. Stat. Data Anal. 71, 52–78 (2014)

8. Chen, P., Zhang, N.L., Liu, T., Poon, L.K.M., Chen, Z., Khawar, F.: Latent tree
models for hierarchical topic detection. Artif. Intell. 250, 105–124 (2017)

9. Chen, P., Zhang, N.L., Poon, L.K.M., Chen, Z.: Progressive EM for latent tree
models and hierarchical topic detection. In: Proceedings of the Thirtieth AAAI
Conference on Artificial Intelligence, pp. 1498–1504 (2016)

10. Choi, M.J., Tan, V.Y.F., Anandkumar, A., Willsky, A.S.: Learning latent tree
graphical models. J. Mach. Learn. Res. 12, 1771–1812 (2011)

11. Cowell, R.G., Dawid, A.P., Lauritzen, S.L., Spiegelhalter, D.J.: Probabilistic Net-
works and Expert Systems. Springer, New York (1999). https://doi.org/10.1007/
b97670

https://doi.org/10.1007/b97670
https://doi.org/10.1007/b97670


GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models 101

12. Darwiche, A.: Modeling and Reasoning with Bayesian Networks. Cambridge Uni-
versity Press, Cambridge (2009)

13. Dempster, A.P., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. R. Stat. Soc. Ser. B (Methodol.) 39(1), 1–38 (1977)

14. Eslami, H., Kasampalis, T., Kotsifakou, M.: A GPU implementation of tiled belief
propagation on markov random fields. In: Eleventh ACM/IEEE International Con-
ference on Formal Methods and Models for Codesign, pp. 143–146 (2013)

15. Fioretto, F., Pontelli, E., Yeoh, W., Dechter, R.: Accelerating exact and approx-
imate inference for (distributed) discrete optimization with GPUs. Constraints
23(1), 1–43 (2018)

16. Grauer-Gray, S., Kambhamettu, C., Palaniappan, K.: GPU implementation of
belief propagation using CUDA for cloud tracking and reconstruction. In: IAPR
Workshop on Pattern Recognition in Remote Sensing, pp. 1–4 (2008)

17. Grauer-Gray, S., Cavazos, J.: Optimizing and auto-tuning belief propagation on the
GPU. In: Cooper, K., Mellor-Crummey, J., Sarkar, V. (eds.) LCPC 2010. LNCS,
vol. 6548, pp. 121–135. Springer, Heidelberg (2011). https://doi.org/10.1007/978-
3-642-19595-2 9

18. Jain, A.K., Murty, M.N., Flynn, P.J.: Data clustering: a review. ACM Comput.
Surv. 31(3), 264–323 (1999)

19. Kumar, N.S.L.P., Satoor, S., Buck, I.: Fast parallel expectation maximization for
Gaussian mixture models on GPUs using CUDA. In: 11th IEEE International
Conference on High Performance Computing and Communications, pp. 103–109
(2009)

20. Lauritzen, S.L., Jensen, F.: Stable local computation with conditional Gaussian
distributions. Stat. Comput. 11, 191–203 (2001)

21. Liu, T.F., Zhang, N.L., Chen, P., Liu, A.H., Poon, L.K.M., Wang, Y.: Greedy
learning of latent tree models for multidimensional clustering. Mach. Learn. 98(1–
2), 301–330 (2015)

22. Machlica, L., Vanek, J., Zajic, Z.: Fast estimation of Gaussian mixture model
parameters on GPU using CUDA. In: 12th International Conference on Parallel
and Distributed Computing, Applications and Technologies, pp. 167–172 (2011)

23. McLachlan, G.J., Peel, D.: Finite Mixture Models. Wiley, New York (2000)
24. Mourad, R., Sinoquet, C., Zhang, N.L., Liu, T., Leray, P.: A survey on latent tree

models and applications. J. Artif. Intell. Res. 47(1), 157–203 (2013)
25. Pangborn, A.D.: Scalable data clustering using GPUs. Ph.D. thesis, Rochester

Institute of Technology (2010)
26. Pearl, J.: Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kaufmann Publishers, San Mateo (1988)
27. Poon, L.K.M.: Clustering with multidimensional mixture models: analysis on world

development indicators. In: Cong, F., Leung, A., Wei, Q. (eds.) ISNN 2017. LNCS,
vol. 10261, pp. 153–160. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-59072-1 19

28. Poon, L.K.M., Zhang, N.L., Chen, T., Wang, Y.: Variable selection in model-
based clustering: to do or to facilitate. In: Proceedings of the 27th International
Conference on Machine Learning, pp. 887–894 (2010)

29. Poon, L.K.M., Zhang, N.L., Liu, T., Liu, A.H.: Model-based clustering of high-
dimensional data: variable selection versus facet determination. Int. J. Approx.
Reason. 54(1), 196–215 (2013)

30. Sanders, J., Kandrot, E.: CUDA by Example: An Introduction to General-Purpose
GPU Programming. Addison-Wesley Professional, Boston (2010)

https://doi.org/10.1007/978-3-642-19595-2_9
https://doi.org/10.1007/978-3-642-19595-2_9
https://doi.org/10.1007/978-3-319-59072-1_19
https://doi.org/10.1007/978-3-319-59072-1_19


102 L. K. M. Poon

31. Shalom, S.A.A., Dash, M., Tue, M.: Graphics hardware based efficient and scalable
fuzzy c-means clustering. In: Proceedings of the 7th Australasian Data Mining
Conference, vol. 87, pp. 179–186 (2008)

32. Wang, Y., Zhang, N.L., Chen, T.: Latent tree models and approximate inference
in Bayesian networks. J. Artif. Intell. Res. 32, 879–900 (2008)

33. Xu, Y., Chen, H., Klette, R., Liu, J., Vaudrey, T.: Belief propagation implemen-
tation using CUDA on an NVIDIA GTX 280. In: Nicholson, A., Li, X. (eds.) AI
2009. LNCS (LNAI), vol. 5866, pp. 180–189. Springer, Heidelberg (2009). https://
doi.org/10.1007/978-3-642-10439-8 19

34. Zhang, N.L.: Hierarchical latent class models for cluster analysis. J. Mach. Learn.
Res. 5, 697–723 (2004)

35. Zhang, N.L., Poon, L.K.M.: Latent tree analysis. In: Proceedings of the Thirty-
First AAAI Conference on Artificial Intelligence, pp. 4891–4897 (2017)

36. Zheng, L., Mengshoel, O.: Exploring multiple dimensions of parallelism in junction
tree message passing. In: Proceedings of the 2013 UAI Application Workshops: Big
Data meet Complex Models and Models for Spatial, Temporal and Network Data
(2013)

37. Zheng, L., Mengshoel, O.: Optimizing parallel belief propagation in junction
treesusing regression. In: Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, pp. 757–765 (2013)

https://doi.org/10.1007/978-3-642-10439-8_19
https://doi.org/10.1007/978-3-642-10439-8_19

	GPU-Accelerated Clique Tree Propagation for Pouch Latent Tree Models
	1 Introduction
	2 Pouch Latent Tree Models
	3 Clique Tree Propagation
	4 Implementation for GPUs
	5 Experiments
	6 Related Work
	7 Conclusion
	References




