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Abstract. The development of next-generation sequencing (NGS) tech-
nology presents a considerable challenge for data storage. To address
this challenge, a number of compression algorithms have been devel-
oped. However, currently used algorithms fail to simultaneously achieve
high compression ratio as well as high compression speed. We propose an
algorithm STrieGD that is based on a trie index structure for improv-
ing the compression speed of FASTQ files. To reduce the size of the
trie index structure, our approach adopts a sampling strategy followed
by a filtering step using quality scores. Our experiment shows that the
compression ratio of our algorithm increased by approx. 50% over GZip,
while being nearly equal to that of DSRC. Importantly, the compression
speed of the STrieGD is 3 to 6 times faster than GZip and about 55%
faster than DSRC. Moreover, with the increase of compressors, the com-
pression ratio remains stable and the compression speed is nearly linear
scalable.
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1 Introduction

Analysis of large DNA sequencing datasets is extensively applied to a wide range
of research areas, including genetic engineering, medical diagnosis, and forensic
biology [1]. Importantly, with the development of next-generation sequencing
(NGS) technology, the cost of DNA sequencing has decreased considerably. DNA
sequencing data has grown rapidly and had gotten to the petabyte scale until
2017 [2], presenting a considerable challenge for data storage, content access and
transfer [3]. Compressing DNA data is an effective way to solve these problems.

In addition, DNA data generated by mainstream high-throughput sequencing
platforms, including the SOLiD sequencer independently developed by Illumina
GA and ABI [4], are generally stored in the FASTQ format [5]. Therefore, com-
pression of FASTQ is important for computational biology. FASTQ files consist
c© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018
F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 27–38, 2018.
https://doi.org/10.1007/978-3-030-05677-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_3&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_3


28 Y. Gao et al.

of records, each record has four lines as shown in Fig. 1: title line, genomic
sequence, “+” and quality scores. Genomic sequence is the nucleotide sequence
obtained by sequencing, containing only five different kinds of characters. The
character which is not identified as A, C, G and T, is expressed as the “N”.
The quality score is the probability of the character being incorrectly identi-
fied, which means that the length of Quality scores is the same as that of the
genomic sequence. In addition, the length of the title line is shorter than that
of the genomic sequence. Therefore, the genomic sequence occupies one-third
or more of the entire file, which means that compressing genomic sequence is
important for the FASTQ file.

Fig. 1. Format of the FASTQ file

Based on the FASTQ file described above, one can draw a conclusion that
compressing four parts of FASTQ data can naturally be processed (almost) inde-
pendently. Great efforts have been put towards improving compression of gene
data with FASTQ format. However, currently used algorithms fail to simulta-
neously achieve a high compression ratio as well as high compression speed.
General compression algorithms do not consider the feature of the FASTQ file,
causing a low compression ratio. However, special compression algorithms add
judging operations to achieve a high compression ratio, causing a low compres-
sion speed. Here, we propose an algorithm STrieGD that is based on trie index
structure for improving the compression speed. To reduce the size of the trie
index structure, our approach adopts a sampling strategy followed by a filtering
step using quality scores, simultaneously aiming at high compression ratio and
high compression speed.

The following sections: Sect. 2 describes the related works in compression
algorithms. Section 3 describes our algorithms. Section 4 describes the details
about the implementation of the distributed compression system. Section 5
presents the evaluation we conducted in the distributed compression system.
The last chapter summarizes the paper.

2 Related Research

Genomic sequence occupies one-third or more of FASTQ file. It is redundancy,
which dues to the simple structure, great depth of sequencing and large simi-
larity between the same species [6]. How to take full advantage of the peculiar
redundancy of genomic sequence is the key to improve compression ratio and
compression speed. In recent years, scholars had done in-depth research on the



STrieGD: A Sampling Trie Indexed Compression Algorithm 29

characteristics of genes data and proposed various compression algorithms for
the FASTQ file.

G-SQZ algorithm [7] constructs the unit <bases, Quality scores> and adopts
the Huffman algorithm to compress. G-SQZ is too simple. The compression ratio
and speed are only slightly better than GZip.

The DSRC algorithm [8] moves the character “N” to the quality stream and
uses the LZ algorithm [9] to compress the remainder. For the quality scores, the
DSRC algorithm records the place of “#” that means the character “N” appears
in the genomic sequence and uses RLE algorithm to compress the characters
that are repeated with a continuously high rate. However, it achieves a high
compression ratio but low compression speed.

KungFQ [10] stores a single bit flag and up to three base calls or a run length
for repetitions longer than four bases. The bit flag is necessary to discriminate
between these two cases. The quality scores are directly compressed with RLE
[11]. This method achieves a high compression ratio, but low compression speed.
Moreover, KungFQ wastes space on encoding “N”.

LFQC algorithm [2] splits the sequences into non-overlapping l −mers with
an empirically decided l − value and counts the frequency of distinct quality
scores in each l − mer. Assume that the quality score qi has a frequency of fi
in l − mer. LFQC picks the quality score qi with the largest frequency fi in
Lj∀j . Lj goes to the qthj bucket. l − mers where none of the symbols showed a
majority of occurrences go to a special bucket called generic bucket BG. The file
is also compressed using Huffman Encoding. The encoding method of genomic
sequence is similar to that of the quality score. LFQC is able to achieve a high
compression ratio. However, the process of separating buckets slows down the
overall compression speed.

Using GZip as a benchmark (compression ratio and compression speed are
all set to 1), the compression ratio and compression speed of various compression
algorithms are shown in Fig. 2. We found that the compression speed is inversely
proportional to compression ratio, which means that to further improve the
compression ratio requires more CPU time and memory space. Therefore, it is
important to maintain a balance between compression ratio and compression
speed in the compressing process.

Fig. 2. Comparison of FASTQ file compression algorithms
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3 A Trie Index Structure Based Compression Algorithm

Fragments of genomic sequence are highly repeatable in a FASTQ file. How to
fully replace repeatable fragments is the key to improve the effect of compression.
The most ideal method is to store the repeatable fragment only once. Therefore,
we need an index structure to index the repeatable fragments. The index struc-
ture is better to support to quickly query and insert data. However, all of the
existing algorithms adopted hash table to index data, which needs to traverse all
strings before searching. Therefore, to improve the compression speed, we adopt
a trie structure to index strings.

3.1 Trie Index Structure

Trie is a tree structure, which only saves the same prefix once. The first step of
compressing involves searching a fixed-length sub-string in the trie index struc-
ture. If the same fragment is found, the position and length of the matching
fragment are recorded. Otherwise, the sub-string will be added into the trie
index structure. Query and insert contribute most of the overhead among all the
operations. Although the time complexity of the hash table and trie both are
O(n), only a trie is able to avoid the collision and support partial matching, thus
reducing unnecessary string comparing.

Trie index structure is able to achieve partial matching, which is different
from the hash table. If we search string “TCCTA” in the trie shown in Fig. 3, we
will obtain the best matching sub-string with the length of four. This matching
process reduces the unnecessary character comparison by trie index structure. If
we search string “TTACG” in the same trie shown in Fig. 3, we will fail to match
the best sub-string on the third character “A” of the string. It is not necessary
to match the other characters, which is helpful to query efficiently.

Fig. 3. Trie constructed by the string “GGGTTTTCCTGAAA” with the sub-string’s
length 5.

Trie is a typical space-time trade-off data structure, which means trie have
to consume more memory to achieve efficient query. As the scale of data grows,
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if the hardware cannot provide enough memory, a query will be less efficient
as data will exchange frequently between memory and disk. If the trie index
structure only occupies limited memory, the subsequent string will not be added
to the index structure, thus decreasing the successful matching rate. In order
to reduce excessive memory occupied by the trie, we propose two optimization
strategies.

3.2 Optimization of Trie Tree

In order to describe the characteristics of the genomic sequence, we propose
two concepts: String coverage calculated by formulas (1), SubString coverage
calculated by formulas (2), shown in Fig. 4. As the length of the string grows,
the SubString coverage drops from 50% to 27% and the String coverage increases
to 82%, indicating that the repeated substring is relatively concentrated.

Fig. 4. String coverage and substring coverage.

Mlength indicates the number of substring types whose length is length, NMi

indicates the number of substrings Mi, Sum (Mlength) indicates the number of
substrings that are generated in length, Coverstr indicates the coverage of the
string and CoverSubStr indicates the coverage of the substring.

CoverSubStr =
∑Mlength

i=1 a

Mlength
, NMi

>
sum(Mlength)

Mlength
(1)

CoverStr =
∑Mlength

i=1 NMi

sum(Mlength)
, NMi

>
sum(Mlength)

Mlength
(2)

Therefore, it is not necessary to store all the strings to obtain a higher com-
pression ratio in the trie. However, how to choose the right string to save and
how many strings to save are problems.

Sampling. Sampling is mainly used to reduce the scale of referenced objects
to a certain size that is covered by the processing system. We still take the
string in Fig. 3 as an example. Several strings are inserted into the trie structure
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when the sampling rate is 1/3. Figure 5(a) shows substrings and Fig. 5(b) shows
the trie. The occupied space greatly reduces. However, the sampling rate has
a great influence on matching. If the sampling rate is too high, the problem
of excessive memory space will still exist. If the sampling rate is too low, the
matching will often fail, causing the compression ratio to decrease. Therefore,
when we select the sampling rate, we need to consider occupied memory space
and the compression ratio.

The trie is a perfect structure for a partial matching. For the Trie struc-
ture in Fig. 5, we obtain the best matching sub-string with the length of 4 to
compress the string of “TCCTA”. This matching reduces unnecessary character
comparisons as much as possible and achieves efficiently query.

Fig. 5. String coverage and substring coverage.

However, not all substrings are inserted into the trie structure, causing a
problem in the matching process. For the string “GTTTT”, the matching length
is one (matching to the insert string one) and the matching length is too short. If
we ignore the first character “G” and starts to match from the second character
“T”, we will obtain a matching length of four (matching to the insert string 2).
In the actual process, the normal matching will be done first. If the substring
is not completely matched, the first character will be ignored. Then compare
the two ways and select a longer matching length. This process is called “lazy
match”.

Filtering by Quality Scores. The quality score is the probability of the base
being incorrectly identified. It is known that if a sequence’s quality score is too
low, it indicates that the accuracy of the sequence obtained by sequencing is low,
meaning that the sequence is next to impossible to be matched in the future.
Therefore, the quality score is used to decide whether the string deserves to
be inserted into the trie index structure. Strings with low quality score will be
filtered out, which ensures high speed.
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4 Implementation of Distributed Compression System

4.1 Compression of Quality Portion and Identification Portion

Each identification field of the record is highly similar. Therefore, we divide the
identification field into four fields according to the feature of each field.

1. The data remains unchanged in different record. (Field 1)
2. Integer values vary monotonically over consecutive records. (Field 2)
3. Integer values vary in a certain range. (Field 3)
4. The data does not belong to any of the above-mentioned types. (Field 4)

StrieGD stores Field 1 only once and uses RLE algorithm to encode Field
2. In addition, StrieGD stores Field2 with a minimum of bits and stores Field 4
without compressing.

4.2 Compression of Quality Portion

Since the quality scores range from 33 to 126, it is possible to restore the char-
acter of “N” according to its Quality scores during the decompression process.
Therefore, we add the score 128 representing “N” of sequence portion to the
quality scores, achieving to delete the character of“N” from sequence portion.
Although the length of the quality scores is equal to that of the sequence portion,
quality scores contain much more variety of characters than sequence portion,
causing that to improve the compression performance of the quality score is
more difficult. Therefore, we did not take much effort to improve the compres-
sion performance of the quality score. Our STrieGD adopts the RLE algorithm
to encode characters with high repeatable and Huffman algorithm to encode
others. STrieGD stores a single bit flag to discriminate between these two cases.

4.3 Implementation of Distributed Compression System

It is impractical to support compressing a large volume of DNA files for a single
server. To compress large-scale genetic data, we designed and implemented a
distributed compression system, Dic-DNA. Dic-DNA includes client, server and
compressor shown in Fig. 6.

Fig. 6. String coverage and substring coverage.
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In the distributed system, the client asks to write (compress), read (decom-
press), search, and delete genomic sequence. In addition, the client will send the
genomic sequence to the server if the server allows the client to write.

The server plays a bridge role, connecting the client and the Compressor and
maintains a request queue to receive requests. The server extracts the request
from the queue and selects the appropriate processing according to the type of
request. In addition, requests of compression and decompression are forwarded to
the compressed node. The server maintains a file-block map that stores file-block
mapping information, including block offsets, target compression nodes and other
useful information. The server make it possible to compress and decompress the
same file in different clients.

The compressor compresses and decompresses the files. Each compressor
employs individual block-location to map information, thus the distributed sys-
tem is more scalable.

5 Evaluation

The distributed system includes eight clients, four servers and eight compressors.
Each node runs on 64-bit CentOS 6.3 operating system with 16-core 2.00 GHz
Intel(R) Xeon(R) CPU and memory 16 G. The test data is from the NCBI, ENA
and other sites. The size of files ranges from 3 GB to 15 GB and the length of
each sequence is between 45 and 120.

5.1 Performance of Compressing Single FASTQ File

In order to verify whether our optimization strategy is effective, we evaluated
the compression speed and compression ratio in different sampling rates and
different thresholds of quality scores.

Firstly, Fig. 7 shows compression speed and compression ratio at different
sampling rates. The compression ratio is the highest when the sampling rate is
1. However, the compression speed is very slow, only 1 MB/s or so, due to that
the size of the trie structure is quite large. With the decrease of the sampling rate,
the compression ratio gradually decreases but without great fluctuation, because
the repeated fragments are relatively concentrated. In addition, with the decrease
of the sampling rate, the compression speed increases. When the sampling rate
is 1/8, the compression speed reaches the maximum value. As the sampling rate
further decreases, both the compression speed and the compression ratio begin to
decrease quickly. The lower sampling rate, the more sub-string adopts Huffman
encoding, affecting the compression speed and compression ratio. Therefore, the
data shows that our sampling strategy considerably improves the compression
speed and simultaneously obtain a high compression ratio.

Secondly, we evaluated compression speed and compression ratio at different
threshold values shown in Fig. 8. Only the sequence, whose the average value
of quality scores reaches the threshold, was inserted into the Trie. With the
increase of the threshold, the compression speed increases, because a number of



STrieGD: A Sampling Trie Indexed Compression Algorithm 35

strings with the lower quality score than the threshold are filtered out. When
the threshold value is 62, the compression speed reaches the maximum. As the
threshold further increase, less and less strings are inserted into the trie structure,
causing that many strings are encoded with Huffman and compression speed and
compression ratio decrease. Therefore, the data shows that our filter strategy
considerably improves the compression speed and simultaneously obtain a high
compression ratio.

Fig. 7. Effects of different sampling rates trie index structure for compression speed
and compression ratio.

Fig. 8. Trie indexing structures of different effects on the quality scores threshold speed
and compression ratio values.

Moreover, in order to compare our STrieGD with other compression algo-
rithms, we evaluated the compression speed and compression ratio of four algo-
rithms: GZip, Bzip2, DSRC and STrieGD. The compression speeds and com-
pression ratios of two files (SRR608881 and ERR217195) are respectively shown
in Figs. 9 and 10.

Compared to other compression algorithms, the compression speeds of both
test files in STrieGD are the highest and reach 40 MB/s or more shown in Fig. 9.
However, the compression speeds of two general algorithms (GZip, Bzip2) are
both below 10 MB/s and the compression speeds of the DSRC algorithm are
below 30 MB/s. Therefore, our STrieGD achieves a high compression speed. In
addition, we found that the compression speed fluctuates greatly in different
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files, due to that the levels of file redundancy are different. Moreover, we found
that the compression ratio of our STrieGD is 50% higher than that of GZip,
18% higher than that of Bzip2 and nearly equal to that of DSRC shown in
Fig. 10. Therefore, our STrieGD is able to achieve high compression speed and
high compression ratio.

Fig. 9. FASTQ file compression speed comparison stand-alone case.

Fig. 10. FASTQ file compression ratio vs. stand-alone case.

5.2 Performance of System

In order to test the scalability of our STrieGD, we evaluated the compression
speed and compression ratio at 1–8 different compressors. The testing environ-
ment includes eight clients, four servers with four threads. As shown in Fig. 11,
with the number of compressors increases, the compression ratio linearly grows
and the compression ratio is stable, which shows that the distributed system has
a good scalability.

Moreover, we test the bandwidth of the system with the number of com-
pressors from one to eight. As shown in Fig. 12, the system bandwidth is about
200 MB/s when the compressed node is 1, because the system spent many sources
in compressing, causing the actual disk write rate in the compressor is much lower
than the rate of data received. With the number of node increasing, the system’s
bandwidth linearly grows. Therefore, our data shows that our STrieGD is highly
scalable.
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Fig. 11. FASTQ file compression ratio vs. stand-alone case.

Fig. 12. FASTQ file compression ratio vs. stand-alone case.

6 Conclusions

The advance of NGS produces huge volume of data, presenting a big challenge
for gene data storage. To address this challenge, we proposed a sampling trie
indexed compression algorithm to compress FASTQ files. It adopts tried indexed
structure to accelerate compression speed, and employ a sampling strategy to
reduce the size of tried index structure to support large scale gene data. Through
evaluation on our distributed compression system, the results show that STrieGD
is able to gain a high compression ratio as well as the highest compression speed
compared with other related works. With its features of high compression speed
and high compression ratio, STrieGD is able to be used on the filed of online
processing for gene data.
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