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Abstract. Many distributed key-value storage systems employ the sim-
ple and effective Raft protocol to ensure data consistency. They usually
assume a homogeneous node hardware configuration for the underlying
cluster and thus adopt even data distribution schemes. However, today’s
distributed systems tend to be heterogeneous in nodes’ I/O devices due to
the regular worn I/O device replacement and the emergence of expensive
new storage media (e.g., non-volatile memory). In this paper, we propose
a new data layout scheme called Adaptive Layout Optimization of Raft
groups (ALOR), considering the hardware heterogeneity of the cluster.
ALOR aims to optimize the data layout of Raft groups to achieve a
better practical load balance, which leads to higher performance. ALOR
consists of two components: leader migration in Raft groups and skewed
data layout based on cold data migration. We conducted experiments on
a practical heterogeneous cluster, and the results indicate that, on aver-
age, ALOR improves throughput by 36.89%, reduces latency and 99th
percentile tail latency by 24.54% and 21.32%, respectively.

1 Introduction

Due to the excellent scalability and efficiency, key-value (KV) stores have been
widely adopted by many big data systems (e.g., Cassandra and HBase). Many
distributed KV storage systems employ the Raft [1] protocol to ensure data
consistency because it is easy to be implemented in practical systems. These
distributed KV systems coupled with Raft are usually designed for homoge-
neous systems. However, today’s distributed systems tend to be heterogeneous,
especially for nodes’ I/O devices. The reason lies in the following two aspects:

– The annual disk replacement rates in large-scale distributed systems are typ-
ically 2–4% and can be up to 13% in some systems [2]. The replacement
rates of Solid State Drives (SSDs) are usually higher than disks due to the
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limited write endurance of Flash chips. That is to say, in a large-scale dis-
tributed KV system, I/O devices are regularly replaced with new generations
of I/O products, and these new products usually have higher performance
and cost-efficiency than the old ones.

– The emerging storage devices (e.g., SSDs or non-volatile memory (NVM)
[3]) have obvious performance advantages over the traditional ones. However,
these new devices are usually much more expensive, so we usually deploy
them in only a subset of the clusters for cost efficiency.

In distributed storage systems, the Raft protocol is usually adopted to ensure
data consistency by defining the different behaviors of the only leader and the
other followers for the same data segment. In consequence, the Raft protocol has
the inherent heterogeneous feature, i.e., the leader in a Raft group usually takes
more jobs and has greater impact on the performance than the followers do. In a
heterogeneous distributed KV storage system based on the Raft protocol, if many
leaders locate on slow nodes, the performance of the entire system will be slowed
down, because the result is not returned to the client until the corresponding
leader completes applying the log into the data set (see Sect. 2.1 for more details).
Considering this feature of Raft, the hardware heterogeneity is not necessarily a
negative factor. Instead, if we can adapt heterogeneity of Raft to the hardware
heterogeneity of distributed KV systems through data layout optimization of
Raft groups, the system performance can be improved.

In this paper, we propose a new scheme called Adaptive Layout Optimization
of Raft groups (ALOR) to match the data layout with the hardware heterogene-
ity of distributed KV systems for higher performance. ALOR consists of two
components: leader migration in Raft groups (Sect. 3.1) and skewed data layout
based on cold data migration (Sect. 3.2). The experiments based on a practical
heterogeneous cluster indicate that, on average, ALOR improves throughput by
36.89%, reduces the average latency by 24.54%, and reduces 21.32% tail latency.
Furthermore, if we construct hybrid devices with two kinds of different devices
(e.g., NVM and SSDs) on each node of the cluster, ALOR can still achieve a
28.57% higher write throughput compared with this homogeneous hybrid device
solution coupled with the same hardware resources.

The rest of this paper is organized as follows. Section 2 introduces the back-
ground and related work. The detailed design of our proposed ALOR is presented
in Sect. 3, followed by the evaluations in Sect. 4. Finally, Sect. 5 concludes this
paper with a summary of our contributions.

2 Background and Related Work

2.1 The Raft Protocol

Traditionally, Paxos [4] is a classical protocol to ensure data consistency in dis-
tributed systems. However, Paxos was particularly difficult to understand and
implement. In this case, the Raft protocol [1], which is readily comprehensible
and realized, has been quickly adopted by many practical distributed systems
like Etcd [5], TiKV [6], and PolarDB [7] since it was proposed in 2014.
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Fig. 1. The main process of serving requests according to Raft.

According to Raft, the main process of serving read and write requests can
be found in Fig. 1. We assume a Raft group contains three copies located in
three different nodes in the cluster, i.e., one and only one elected leader and two
followers.

When a write request arrives at the leader from users, the leader both
appends the new contents to the local log and forwards them to the two fol-
lowers. After more than half of the nodes (i.e., two in this case, including the
leader itself) have accomplished the logging action successfully, the leader will
proceed to apply the request log, i.e., insert/update the new data into the struc-
tured key-value store. Then, the user can get the response of this write request
from the leader.

In addition, all read requests are served by the leader alone to ensure the
data consistency. In order to ensure linear consistency, Raft will ensure that all
the previous logs have been applied before the read request is served.

2.2 Related Work

Raft/Paxos Improvements. In order to reduce the high latency of the Paxos
protocol, Wang et al. proposed APUS [15], the first RDMA-based Paxos protocol
that aims to be fast and scalable to client connections and hosts. PolarFS [16]
implements a parallel Raft to allow parallel submission of logs, breaking Raft’s
strict limitation that log has to be continuous, with the benefit of increasing
concurrency. In order to reduce the latency of distributed systems, Guerraoui
et al. proposed Incremental Consistency Guarantees (ICG) [17]. In addition,
Alagappan et al. [18] proposed correlated crash vulnerabilities to ensure data
security in distributed systems.

Heterogeneous Systems. Zhang et al. developed Mega-KV [19], a high-
performance distributed in-memory key-value store system on a heterogeneous
CPU-GPU cluster. Dey et al. [20] proposed an approach that gives multi-item
transactions across heterogeneous data stores. Strata [21] and OctopusFS [22]
designed file systems for heterogeneous storage devices on a single node.

Therefore, few research works consider the heterogeneous I/O performance
among nodes in a cluster. This paper will focus on the performance optimization
in heterogeneous distributed key-value storage systems.
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3 The Design of ALOR

In this section, we will present the detailed design of our proposed Adaptive
Layout Optimization of Raft groups (ALOR) scheme, which aims to improve the
performance of distributed key-value storage systems in case of heterogeneous
situations. The two main components of ALOR will be introduced in Sects. 3.1
and 3.2, respectively.

3.1 Leader Migration in Raft Groups

According to the Raft protocol, the performance of service nodes does not affect
the leader election. In this case, the leader and the followers in a Raft group
are usually randomly and evenly distributed among all the service nodes for
the sake of load balance no matter the underlying system is homogeneous or
heterogeneous. For example, as Fig. 2 shows, we assume that there are four Raft
groups and each group contains three copies of data in a distributed KV storage
system with six nodes. According to the original Raft protocol, the data blocks
and the leaders are evenly distributed.

Fig. 2. Raft groups are usually evenly distributed among nodes for load balance.

However, the leader in a Raft group plays the most important role in affecting
the performance (e.g., users always read data from leaders and write requests
are not confirmed until the leader applies the log). If the leader is placed on a
slow node, the performance of accessing this Raft group will be slowed down.
Therefore, ALOR gradually migrates leaders to the node with the best perfor-
mance in Raft groups. The larger the performance gap among the nodes in a
Raft group is, the higher priority of migration the corresponding leader will be
given in ALOR, as illustrated in Fig. 3. Furthermore, as long as a follower catches
up the same status of logging and applying data as the leader, it can be easily
set as the new leader with negligible overhead.

For write operations, the leaders and the followers perform the same work
(i.e., writing the log first and then applying it). In this case, although the nodes
with higher performance undertake more leaders, their average loads are the
same as each other. In fact, ALOR just fully utilizes the fast processing of high-
performance nodes in a heterogeneous system to reduce the process time of users’
write requests.
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Fig. 3. ALOR migrates the leaders in Raft groups to the faster node as far as possible
for higher performance.

For read operations, according to ALOR, the nodes with high performance
usually store more leaders than the nodes with low performance. Because users
always read data from leaders for strong consistency, the high-performance nodes
serving most read requests can reduce the response time of read request process-
ing in most cases. Although the high-performance nodes will undertake more
read requests, the read request processing is much more lightweight than the
write requests in a key-value storage system due to the significant write ampli-
fication of the KV indexes (e.g., B-tree, LSM-tree, etc.).

For a read-write mixed workload, write operations will slow down read oper-
ations, because Raft ensures linear consistency, i.e., read operations must be per-
formed after all the previous write operations have been completed. So speeding
up the write operations is critical for improving system performance.

3.2 Skewed Data Layout Based on Cold Data Migration

Skewed Data Layout. The idea of promoting system performance in a hetero-
geneous distributed store is to put appropriate load on nodes according to their
ability. Although the aforementioned leader migration mechanism in ALOR puts
more leaders on the strong nodes, this is not enough. We should further optimize
the data amount distribution during the disk-filling process, i.e., putting more
data on the high-performance nodes. The skewed data layout in ALOR can fully
utilize the fast processing speed of the high-performance nodes for higher system
performance.

However, it also causes two issues: (1) How to set an appropriate data-filling
speeds according to the performance of a node? (2) Assuming all nodes have
the same storage capacity, some high-performance nodes will be full ahead of
others due to the different data-filling speed setting. Thus how to process the
new arrival data after some nodes are full is a problem. The solutions to these
two problems in ALOR will be presented in the following parts.

Disk-Filling Speed Setting. In ALOR, the disk-filling speed of nodes is set
to be proportional to the average performance of writing key-value pairs into
the KV store in the node. For example, shown as Fig. 4, assuming there are six
nodes and their KV accessing performance is 3:3:2:2:1:1, the proportion of data
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that they get is similar to this ratio. In this case, the load on a node matches its
key-value pairs processing ability.

The next problem is how to estimate the key-value accessing performance of
the nodes. The difficulty lies in that a distributed key-value store usually does
not supply a KV accessing interface on a single node. Our solution is to automat-
ically measure the I/O performance of a node during its initialization process
by calling tools like fio [23]. However, the I/O performance is not linear with
the node’s KV accessing performance. Thus we measured both the I/O and the
KV performance of several representative nodes and construct their relationship
beforehand. Then we can fit the KV performance of the nodes through their
measured I/O performance (See Fig. 10 in the experimental part for reference).

Fig. 4. The distribution of Raft groups in ALOR.

Cold Data Migration. In ALOR, the skewed data layout is achieved through
the specially designed data migration mechanism. An important weight, i.e.,
Data Weight, is employed to control the data migration among nodes. The con-
dition of migrating some data in node A to node B can be expressed as Eq. 1,
where SA and SB are the data volume of node A and B respectively, and SM is
the size of the to-be-migrated data.

SA − SM

DataWeightA
>

SB + SM

DataWeightB
(1)

If the nodes A and B have the same data weights, Eq. 1 aims to balance the
stored data amount between them through data migration. In a heterogeneous
system, the strong nodes should have larger data weight values to undertake
more data and more requests than weak nodes. In order to reach the above
disk-filling speed setting, the data weight values of nodes can be set according
to their key-value accessing performance.

When the data volume of a node reaches a specified threshold (e.g., 95% of its
capacity), we need to migrate some cold data in this node to others, thus making
room for the new arrivals. Then the node’s data weight will be set to a very small
value (e.g., 10−6), some of its cold data will be migrated to other nodes. When
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its data volume is lower than the threshold again, the data migration of this
node is stopped, avoiding introducing too much overhead.

The advantage of the cold data migration mechanism in ALOR is to promote
the hotness of the stored data in high-performance nodes (e.g., Node 0 in Fig. 4),
whose side-effect lies in the additional overhead of data migration among nodes.
However, the overhead of migrating data is small, because sequential read and
write operations of key-value pairs are performed during the data migration
process, which are much faster than random GET/PUT operations from users.

4 Implementation and Evaluation

We implemented ALOR based on TiDB [8], one of the most widely used open
source NewSQL databases similar to Google Spanner [9]. TiDB is mainly com-
posed of three projects: TiDB (i.e., the SQL Layer), TiKV (i.e., a distributed
key-value storage system based on Raft), and the Placement Driver (PD), which
is the managing component of the cluster. PD consists of 480K LOC of Go and
TiKV consists of more than 84K LOC of Rust. TiKV has become one of the
largest open source projects in the Rust community. To implement ALOR, we
have added 200+ LOC of Rust in TiKV and 400+ LOC of Go in PD. The source
codes of our implementation of ALOR are on Github now (https://github.com/
vliulan/ALOR).

4.1 Experimental Setup

We will compare our proposed ALOR scheme with the widely used scheme which
evenly distributing (ED) all the data and leaders of Raft groups in distributed
systems. The experiments were performed in a cluster of eight physical nodes;
each of them is coupled with Linux Centos 7 3.10.0, 16 GB DRAM and a 16-GB
non-volatile memory (NVM) block device, where NVM is emulated by DRAM.
Nodes can be equipped with two kinds of Solid State Drives (SSDs), i.e., a 280 GB
version of Intel Optane 900p PCIe SSD (a.k.a, high-end SSD) or a 256 GB Intel
SATA SSD (a.k.a, plain SSD). Six of the nodes serve as TiKV node, one node
as PD, and one node runs the benchmark tool, i.e., go-YCSB [10].

Go-YCSB is a Go language version of the widely used YCSB benchmark
[11]. In the experiments, the workloads we selected include Load (insert-only),
Workload A (50:50 read/update), Workload B (95:5 read/update), and Workload
C (read-only) of YCSB. Other configurations of the workloads can be found in
the specification [12]. Each key-value pair contains a 16-B key and a 1-KB value,
and each data block has three copies in TiKV. Although the performance of the
storage devices is heterogeneous, the data capacities of all the TiKV nodes are
set to be the same (5 GB by default).

In the following experiments, we adopt the system throughput (operations
per second, i.e., ops/sec), the average latency, and the 99th percentile latency to
evaluate the system performance.

https://github.com/vliulan/ALOR
https://github.com/vliulan/ALOR
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4.2 Overall Results

In the overall experiments, among the six TiKV nodes in the cluster, one node
equips the fastest NVM block device, two node equip the high-end SSDs, and the
slowest plain SSDs are deployed in the other three nodes. We first load 10 GB
of data to fill the cluster (i.e., 30 GB data considering the replicas), and then
perform workloads A, B, and C, respectively, accessing 10 GB of data each.

As Fig. 5 plots, ALOR achieves higher throughput than ED in most cases, i.e.,
72.6% higher in Load, 61.5% higher in Workload A, and 13.7% higher in Workload
B. On average, ALOR promotes the throughput by 36.89%. Compared with the
traditional even distribution (ED) solution, which is appropriate in homogeneous
distributed systems, ALOR puts properly more data and more leaders on the
fast nodes according to nodes’ heterogeneous ability. In fact, the practical load
balance of a heterogeneous system is improved coupled with ALOR, leading to
a higher throughput.

For read operations, ALOR concentrates more leaders, which serve all the
read requests, on fast nodes. The benefit is to boost the processing of read
requests; the disadvantage lies in that when the load of fast nodes is too high,
some requests have to wait a moment. So in the read-only Workload C, the
throughput of ALOR is a bit lower than, but very close to ED.

For write operations, ALOR certainly boosts the request processing. The
reason lies in two aspects: (1) Since a leader has to log and apply the written
data before replying the user, the faster nodes can boost these actions of leaders.
(2) More than half nodes have to log the written data before replying the user,
and more data segments (leader or follower) in a Raft group have the possibility
to locate on faster nodes because of the skewed data layout in ALOR.

Fig. 5. Overall throughput results. Fig. 6. Overall write latency results.

Figures 6 and 7 exhibit the results of the average latency and the 99th percentile
latency. One average, ALOR reduces the latency by 24.54% compared with ED.
The average read latency improvement of ALOR in Workload C is slightly larger
than ED, but those of ALOR Workload A and Workload B are smaller than ED,
because reducing the write processing time leads to less waiting time of read oper-
ations in read-write mixed workloads. For both read and write operations, ALOR
reduces the tail latency, i.e., 21.32% on average compared with ED.
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Fig. 7. Overall read latency results. Fig. 8. Throughput during the data
loading process.

Figures 8 and 9 plot the changes of throughput and latency during the data
loading process. In the very beginning, three copies of data are written into
the three fast nodes first for both ALOR and ED, so the performance of the
front ALOR and ED is almost the same. Then, the performance of ALOR and
ED both decreased due to the filled cache, but ED dropped more. The overall
performance of ALOR is much higher than ED during the whole data loading
process in all the aspects of throughput, average latency, and tail latency.

4.3 KV Performance Estimation

Recall Sect. 3.2 that we estimate key-value accessing performance according to
I/O performance. The KV engine used by TiKV is RocksDB [13], a famous open
source KV engine based on LSM tree developed by Facebook. The granularity
of RocksDB writing is megabytes (e.g., 8 MB). Therefore, we first utilize fio to
measure the I/O performance of randomly writing 8-MB blocks.

We selected three typical devices: NVM block device (emulated by DRAM),
high-end SSD, and plain SSD in the measurements, and performed multiple
single-point I/O performance tests based on fio and KV performance tests based
on go-YCSB and RocksDB on the single node. Then we can build the estimated
relationship between the two factors through polynomial function fitting.

The measured I/O and KV performance results and the curve of the fitted
function are shown in Fig. 10. Taking the red box in the figure as an example, if
the disk performance measured by fio is 2 GB/s, we can estimate the nodes’ KV
performance as 22 MB/s.

4.4 Impacts of Different Heterogeneous Configurations

In this part, we will evaluate ALOR under different heterogeneous configura-
tions, including two high-end SSDs and four plain SSDs (i.e., 2H4P), one NVM
block device, two high-end SSDs and three plain SSDs (i.e., 1N2H3P), two NVM
block devices, two high-end SSDs and two plain SSDs (i.e., 2N2H2P), and three
NVM block devices, two high-end SSDs and one plain SSD (i.e., 3N2H1P). For
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Fig. 9. Latency during the data load-
ing process.

Fig. 10. Relationship between I/O and
KV performance.

different settings, we all loaded 10GB data into the cluster to measure the sys-
tem throughput, latency, and tail latency of ALOR and ED, as shown in Figs. 11
and 12, respectively.

The performance of ALOR is improved compared with ED, but the 2N2H2P
and 3N2H1P configurations’ enhancements are not as much as the other two.
The reason lies in that the heterogeneous situations in the 2N2H2P and 3N2H1P
configurations are not as significant as the other two ones.

Fig. 11. Throughput under different
heterogeneous configurations.

Fig. 12. Latency under different het-
erogeneous configurations.

4.5 Impacts of System Scale

In order to evaluate the scalability of ALOR, we performed experiments on
clusters with different counts of TiKV nodes (i.e., 4, 5, or 6 TiKV nodes). The
configuration of the 4 TiKV nodes is one high-end SSD and three plain SSDs,
that of the 5 TiKV nodes is one NVM block device, one high-end SSD, and
three plain SSDs, and the configuration of the 6 TiKV nodes is one NVM block
device, two high-end SSDs, and three plain SSDs.

For the 6 TiKV nodes, we wrote 10 GB data into the cluster; proportionally,
we wrote 8.33 GB data into the 5 TiKV nodes, and 6.67 GB data into the 4
TiKV nodes. The throughput and latency results of ALOR and ED are shown
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in Figs. 13 and 14, respectively. As the cluster’s node count increases, the per-
formance of ALOR and ED both increase. ALOR exhibits stable performance
advantage compared with ED under various system scales.

4.6 Analysis of ALOR Components

Recall Sect. 3 that ALOR has two components, i.e., the leader migration and
the skewed data layout based on cold data migration. In this part, we will eval-
uate how much the two components of ALOR contribute on the performance
improvement. Therefore, we constructed a special version of ALOR with only
the leader migration module, i.e., Leader Migration Only (LMO). The compar-
ison among ED, LMO, and ALOR can show us the performance contributions
of ALOR’s two components.

Fig. 13. Throughput under different
system scales.

Fig. 14. Latency under different sys-
tem scales.

As Figs. 15 and 16 plot, we first load (insert-only) 10 GB data to fill the
cluster, and then perform Workload C (read-only) by reading 10 GB data. The
experimental results show that the load performance of LMO is 22.85% higher
than ED and ALOR is 40.53% higher than LMO. That means within the 72.64%
throughput improvement of ALOR compared with ED, the leader migration
module contributes about 31.45% of it, while the skewed data layout contributes

Fig. 15. Throughput comparison
among ED, LMO, and ALOR.

Fig. 16. Latency comparison among
ED, LMO, and ALOR.
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about 68.55%. The average latency and the tail latency of writing are both
improved by ALOR’s two modules.

The read throughput and average latency of ED, LMO and ALOR are very
close to each other, indicating the two modules of ALOR both do not affect the
read performance much.

4.7 ALOR vs. Homogeneous Hybrid Device Solution

When both fast storage devices and slow devices are deployed in a distributed
system, an alternative solution is to distribute the fast devices evenly among
all the nodes and to construct hybrid devices, in which a fast device acts as
the cache of a slow device. In this case, although different devices are in the
system, the resources and configurations on each node are homogeneous. We
use Flashcache [14] to combine NVM block devices and plain SSDs into hybrid
devices on each node. The homogeneous hybrid device solution consumes exactly
the same resources as ALOR.

In this part, the experiments were performed on 4 TiKV nodes. Both ED and
ALOR are deployed in a cluster with one NVM device and three plain SSDs,
each of which can hold up to 5 GB data. For the Flashcache solution, it requires
four plain SSDs and 4 NVM devices. In order to guarantee the fairness, each
plain SSD for Flashcache can only store 3.75 GB data (i.e., 3*5 GB/4), and each
NVM device can hold 1.25 GB data (i.e., 5 GB/4).

We first loaded 5GB data into the cluster (i.e., 15GB including replicas),
and then performed Workload C to read 5GB data. The experimental results
are shown in Figs. 17 and 18. Although the Flashcache solution achieves higher
write performance compared with ED due to better utilization of fast devices,
the write throughput of ALOR is 28.57% higher than Flashcache. This indicates
that ALOR coupled with heterogeneous node performance configuration is more
appropriate for Raft than the homogeneous hybrid device solution.

Fig. 17. Throughput comparison
among ED, Flashcache, and ALOR.

Fig. 18. Latency comparison among
ED, Flashcache, and ALOR.
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5 Conclusion

In this section, we conclude this paper with a summary of our contributions:

(1) We found and verified that by matching the inherent heterogeneity of Raft
groups and the hardware heterogeneity of distributed key-value stores, the
system performance could be promoted.

(2) We proposed a new optimized data layout scheme called ALOR, which
achieves an appropriate layout of data and Raft leaders in a heterogeneous
distributed key-value storage system through the leader migration and the
skewed data layout mechanisms.

(3) The experiments based on a practical heterogeneous cluster indicate that
ALOR can promote the write throughput by up to 72.6% than the even
data distribution solution, while achieving similar read performance.
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