®

Check for
updates

Systolic Array Based Accelerator
and Algorithm Mapping for Deep
Learning Algorithms

Zhijie Yang, Lei Wang®™), Dong Ding, Xiangyu Zhang, Yu Deng,
Shiming Li, and Qiang Dou

College of Computer, National University of Defense Technology,
Changsha, China
Leiwang@nudt.edu.cn

Abstract. As the depth of DNN increases, the need for DNN calcula-
tions for the storage and computing power of the underlying computing
platform is increasing. In this work, we implement an accelerator on
FPGA for deep learning algorithms (CNN and RNN). The core comput-
ing module of the accelerator is a 32 * 32 systolic array of PEs. A mapping
method for variable size of CNN and RNN algorithms is proposed. The
experiment result shows that the maximum power consumption of the
accelerator is 7.5W@100Mhz, the peak performance is 0.2Tops/s, and
the real performance is 7.6Mops@100Mhz when running the 1st layer of
LeNet-5.

Keywords: Accelerator - Systolic array - DNN - Data mapping

1 Introduction

At present, almost all large companies are developing their own artificial intel-
ligence chips. Facebook’s hardware is optimized for its Caffe2 framework [1].
Amazon is building an ecosystem of cloud infrastructure by AWS [2]. The most
notable example of deep learning algorithm accelerators is Google’s TPU [3].
Google Data Center has been using TPU to accelerate Al services such as image
recognition and language translation.

Compared with CPUs and GPUs, TPU can provide high performance and
high energy efficiency. For example, TPU1 can provide 92Top/s with 8-bit inte-
ger [3]. Google’s TPU brings systolic design, which is an old hardware archi-
tecture [4], back to the face of architecture designers. The core computing unit
of the TPU is a 256 * 256 systolic array of MACs. The systolic array structure
can effectively support the memory intensive and computing intensive features

© IFIP International Federation for Information Processing 2018
Published by Springer Nature Switzerland AG 2018

F. Zhang et al. (Eds.): NPC 2018, LNCS 11276, pp. 153-158, 2018.
https://doi.org/10.1007/978-3-030-05677-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05677-3_16&domain=pdf
https://doi.org/10.1007/978-3-030-05677-3_16

154 Z. Yang et al.

of deep learning algorithms. Google introduced some details of TPU1 in a paper
published at ISCA 2017 [3]. However, Google did not disclose much detail about
TPU2 and TPU3 until now.

Therefore, in order to design deep learning accelerators based on the systolic
array, we need to solve the following problems: How to implement a deep learning
accelerator using a systolic array and map different deep learning algorithms to
it? The main contributions of this paper are:

(1) An RTL design of the accelerator architecture whose core computing unit is
a 32 * 32 systolic array and necessary peripheral modules.

(2) We propose a method for mapping arbitrary size convolution and matrix
multiplication operations to the fixed-sized systolic array to accelerate CNN
and RNN computation.

We synthesis the accelerator to Xilinx’s FPGA V7 690T, and perform detailed
functional verification and performance, power and area analysis. The experi-
ment results show that the inference process of the CNN model and RNN model
can be run correctly on this accelerator and be accelerated. The real performance
is 7.6Mops@100Mhz when running the first layer of LeNet-5.

2 Related Work

In addition to google [3] and microsoft work [6], the Cambricon designed a new
generation of edge intelligent processor Cambricon 1M. Farabet et al. proposed
an extensible data flow hardware architecture for running the generic vision
algorithm neuFlow on Xilinx V6 FPGA platform [5]. Chen et al. made a custom
multi-chip machine-learning architecture [7]. Alwani et al. constructed a fused-
layer CNN accelerator for the first five convolutional layers of the VGGNet-E
network [8]. Li et al. designed an 8-Bit fixed-point CNN hardware inference
engine [9].

3 Systolic Array Design

Figure 1 shows the overall architecture of the proposed accelerator design. It
contains the systolic array, input memory, output memory, weight memory, con-
troller, and an AXI interface for data exchange with the host computer.

3.1 Processing Element Design

Figure2 shows the module diagram of the processing element (PE). The PE
contains input registers, part sum registers, weight registers, and the counter.
The input register is used for receiving an incoming data at each cycle from
the upper computing unit or input memory for MAC and transferring input
data to lower PE. The weight register is used for storing weights and forward
weights to the right PE. The part sum register is responsible for keeping the

Systolic Array Based Accelerator and Algorithm Mapping 155

temporary result and continuously accumulate with the new result. The counter
is used for counting the cycles, because, for some algorithm, it will take several
cycles to propagate the result to the adjacent PEs. When the counter reaches
the specified threshold, the final result is transmitted to the upper unit or the
output memory.

ht - input »>—output

Tnput/Output SRAM

& ..
uﬁ}“@2
. T8
S
Host I::> AXT
Computer [rE} (& [mter-
T .z I | face
i
Fig.1. Overall design of Fig. 2. Systolic array PE. Fig.3. Two-dimensional
the accelerator. systolic array’s data flow.

(Color figure online)

3.2 Array Structure and Data Flow

As shown in Fig. 3, the structure of a two-dimensional systolic array has the
following data flow. In the systolic array, the input data flow, represented by
the green dotted solid arrow, is input into the systolic array from the top and
propagates to the bottom until the bottommost PE discards it after use. The
weight data flow, represented by the blue dot-shaped hollow arrow, is similar to
the input data flow but it propagates from the left to the right. The output data
flow, represented by the black solid black arrow, is output from each PE and it
propagates from the bottom to the top.

3.3 Controller Design

The controller module has the following functions. It controls the data to be read
into the memory from the buffer, starts the computation, controls the data to
flow into the array, and controls the results to flow out of the array and to write
back to memory. Finally, it controls the results to be returned to the buffer to
be taken by the host computer.

4 Data Mapping Method

4.1 Mapping of CNN Algorithm

We only discussed the computation of convolution layer at this section. FC layers
mapping to the systolic array is similar to RNN algorithm’s mapping.

156 Z. Yang et al.

The convolutional layer receives IV feature maps as input. Each input feature
map is convolved by a K*K size kernel to generate one pixel in one output feature
map. The stride is S. M output feature maps will be the set of input feature
maps for the next conv layer. Figure4 shows the mapping to an ideal systolic
array, assuming that the size of the systolic array is M x (C x R) and the stride is
1. The horizontal axis input is the kernel, the first row is weight[0][t;][*][*], ; is
from 0 to N — 1. The second row is weight[1][¢;][*][*] and so on. The data in the
second row is provided one cycle later than the element of the same position in
the first row, and so on. The vertical axis input is the data block corresponding
to the input feature map, as shown in Fig. 4. The input feature map’s data flows
as similar as the kernel’s data flow.

The last point of the first row of the systolic array is completed in K x N +
R xC —1 cycles. Each PE in the first row saves the output feature map of output
channel 0. Assuming that the 1st PE of the 1st row can read the first point|0, 0]
of the output channel 0 of output feature map and in K x N and at K x N + 1,
it can read the second point[0, 1]. In this way, the last point[C' — 1, R— 1] is read
at K X N+ R x C' —1 cycles. And so forth, the point in time at which each PE
completes the operation is represented as an anti-diagonal line as shown in the
Fig. 4. After completing the operation, all results are transmitted vertically.

Assume that the size of the systolic array is A x B. The ideal systolic size
of the algorithm is M x C' x R. It can be seen as a box with the size of A x B,
overlaid on the ideal systolic array layout, and filled with zeros where there is
no data at the boundary.

N: Number of input feature map RXC: Size of output feature map :
M: Number of output feature map KxK: Kernel size S: Stride 3

e

T URK T KxK

O
) o
< KxK
Iesa" lem
——>

a au ez az bo| b b1z bz | _ | cwo en
bao| a1 by bay ex ey
bso| b1 bsy bsg

((bw b bor b»s) (o

ax ay axn ax

asg az a3 agm e C31

1
—
KxK
I
Paikia
KxK

RxC ago X boo | | @ X bro | |@o2 X bao | | ass X bso ':\‘>

, R
K K Ko ==
J ok o Toa | |ZELPELPE] < ‘""'““"' \®/ \®/ w an a o
MR systolié aryid i
L/K},H K K S e] - ® o
o o e [ZELRETPE] A Lo channeis Y e
Fig.4. A CNN ideal mapping algo- Fig.5. A RNN mapping algorithm.

rithm.

4.2 Mapping of RNN Algorithm

The core operation of RNN is matrix multiplication used by forwarding prop-
agation. And matrix multiplication’s operation method is very suitable for the
systolic array. Both of them use a row to multiple a column.

Thus, as shown in Fig. 5, the left matrix is input in rows of the systolic array
and the right matrix in the columns of the systolic array. Then the matrix prod-
uct from the corresponding position of the systolic array can be got. Consider a

Systolic Array Based Accelerator and Algorithm Mapping 157

matrix multiplication A x B = C and a systolic array of size M x N. The size of
A isr x s, the size of Bis s xt and size of C is r xt. When r <= M, t <= N, the
matrix multiplication can be operated by the systolic array in one pass. While
if r > M ort > N, it is necessary to split r or t. Separate the rows of matrix
A into parts and divide the columns of matrix B into parts. When the result is
not an integer, PEs not used in the array are filled with zeros.

5 Experimental Result

5.1 Implementation

The accelerator is implemented in Verilog RTL. Vivado 2017.04 is used for syn-
thesis and implementation. The implementation platform is Xilinx’s FPGA V7
690T. This paper implements a one-dimensional 1 % 24 systolic array, 22, 4 x4,
8 %8, 16 * 16 and 32 * 32 systolic arrays, and compares the results. The clock
frequency is set to 100 MHz. Its power consumption is about 7.5 W. The compar-
ison of power consumption of different size systolic array is shown in Fig. 6(a).
As shown in the Fig. 6(b), the on-chip resource consumption ratios of the various
size of systolic arrays are compared.

5.2 Performance Evaluation

In the design, the operand of each PE unit is 32-bit fixed-point, and the clock
frequency is set to be 100MHz. Because the performance metrics are limited by
the size of the specific problem, our metrics in subsequent performance eval-
uations are subject to the above conditions. Peak Performance: The peak
performance is 0.2Tops@100Mhz when the data is completely filled with the
array. Throughput: The peak throughput of the 32* 32 systolic array is 1600
Mresults/s. The real throughput rate calculated is 60.3 Mresults/s when running
the 1st layer of LeNet-5. Performance/Area Ratio: As shown in Fig. 6(c), as
the array grows, the performance/area ratio decreases. This also shows that as
the number of computing units increases, the performance (throughput) revenue
per PE tends to decrease.

Reported Power FPGA Resources Utilization Ratio 1800 Perfomance Analysis
100 1600 —N

- ~
Z 1w

S £ 1200
Z 1m0
40 2 s00
) ==l == =n =ull oMl LHE 5 5 £ o0

1924 272 474 88 16*16 32732 1 1 1 I 1 I 1 £ 400
1 - —m =l z

0331 0326 0328 0332 0.346 0416 0 & 200
1724 272 474 88 16716 32732

0.305 0.063 0.174 0514 1.730 7.056 . 0
Array Size y

ower 0.635 0.389 0.502 0.846 2.076 7.473 1PE 1"24 22 44 88 16*16 32732

Array Size =BRAM =10 =FF =LUT mDSP ——Throughout —e=Throughout/PE

(a) Power consumption (b) Resources utilization (¢) Throughout and
evaluation Throughout/PE

AN wemaa®

Performance/Area(Mresults/PE)

Fig. 6. Comparison of high level synthesis results of the systolic array of different sizes.

158 Z. Yang et al.

6 Conclusion and Future Work

This work proposes the implementation of a DNN accelerator based on a 32 x
32 systolic array. Then the data mapping method for mapping variable sizes
of CNNs and RNNs to the systolic array is proposed. In the future, we will
enlarge the systolic array and design an instruction set in order to satisfy the
requirements of the controller so that the accelerator can achieve more complex
functions.

Acknowledgment. This project is supported by HGJ2017Z2X01028103.

References

1. Hazelwood, K., Kalro, A., Law, J., Lee, K., Lu, J., Noordhuis, P., et al.: Applied
machine learning at Facebook: a datacenter infrastructure perspective. In: IEEE
International Symposium on High Performance Computer Architecture, pp. 620—
629. IEEE Computer Society (2018)

2. Tang, B., S.O. Information, Y.N. University: Case study of the application of field
programmable gate array FPGA in the smart skill. Application of IC (2018)

3. Jouppi, N.P., Young, C., Patil, N., Patterson, D., Agrawal, G., Bajwa, R., et al.:
In-datacenter performance analysis of a tensor processing unit, pp. 1-12 (2017)

4. Kung, H.T., Leiserson, C.E.: Systolic arrays (for VLSI). In: Proceedings of Sparse
Matrix Conference, pp. 256-282 (1978)

5. Farabet, C., Martini, B., Corda, B., Akselrod, P.: NeuFlow: a runtime reconfig-
urable dataflow processor for vision. In: Computer Vision and Pattern Recognition
Workshops, vol. 9, pp. 109-116. IEEE (2011)

6. Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill,
T., et al.: Serving DNNs in real time at datacenter scale with project brainwave.
IEEE Micro 38(2), 8-20 (2018)

7. Chen, Y., Sun, N., Temam, O., Luo, T., Liu, S., Zhang, S., et al.: DaDianNao:
a machine-learning supercomputer. In: IEEE/ACM International Symposium on
Microarchitecture, vol. 5, pp. 609-622. IEEE (2014)

8. Alwani, M., Chen, H., Ferdman, M., Milder, P.: Fused-layer CNN accelerators. In:
IEEE/ACM International Symposium on Microarchitecture, pp. 1-12. IEEE (2016)

9. Li, Z., et al.: Laius: an 8-bit fixed-point CNN hardware inference engine. In: 2017
IEEE International Symposium on Parallel and Distributed Processing with Appli-
cations and 2017 IEEE International Conference on Ubiquitous Computing and
Communications (ISPA/IUCC). IEEE (2017)

	Systolic Array Based Accelerator and Algorithm Mapping for Deep Learning Algorithms
	1 Introduction
	2 Related Work
	3 Systolic Array Design
	3.1 Processing Element Design
	3.2 Array Structure and Data Flow
	3.3 Controller Design

	4 Data Mapping Method
	4.1 Mapping of CNN Algorithm
	4.2 Mapping of RNN Algorithm

	5 Experimental Result
	5.1 Implementation
	5.2 Performance Evaluation

	6 Conclusion and Future Work
	References

