
Chapter 3
Didactics of Mathematics
in the Netherlands

Marja Van den Heuvel-Panhuizen

Abstract This chapter highlights key aspects of the didactics of mathematics in
the Netherlands. It is based on the Dutch contribution to the Thematic Afternoon
session on European didactic traditions in mathematics, organised at ICME13 in
Hamburg 2016. The chapter starts with a section in which mathematics education
in the Netherlands is viewed from four perspectives in which subsequently attention
is paid to the role of mathematics and mathematicians, the role of theory, the role
of design, and the role of empirical research. In all these themes Hans Freudenthal
has played a key role. Hereafter, the focus is on two Dutch mathematics educators
(Adri Treffers for primary school and Jan de Lange for secondary school) who each
left an important mark on how the didactics of mathematics has developed in the
last half century and became known as Realistic Mathematics Education (RME). To
illustrate the principles of this domain-specific instruction theory a concrete task is
worked out in the section “Travelling to Hamburg”. The chapter concludes with five
sections featuring voices from abroad in which mathematics educators from other
countries give a short reflection on their experiences with RME.
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3.1 Mathematics Education in the Netherlands Viewed
from Four Perspectives

Marja van den Heuvel-Panhuizen

3.1.1 The Role of Mathematics and Mathematicians
in Mathematics Education in the Netherlands

When mathematics became a compulsory subject in primary and secondary school
in the Netherlands at the start of the 19th century, professional mathematicians were
not much involved. Furthermore, the Dutch government took a somewhat restrained
position on what mathematics was taught and particularly on how it was taught.
Decisions regarding the curriculum were considered an internal school affair. In
1917 this policy was formalized in the Dutch Constitution as Freedom of Education.
In practice, this meant that changes in the school mathematics curriculum were usu-
ally discussed by teacher unions, or special committees of teachers, then approved
by the school inspectors and only after that ratified by the government. Professional
mathematicians played hardly any formal part in this process. They sometimes par-
ticipated in secondary education final examinations, by acting as assessors in the
oral examinations and checking the grading of students’ work on the written exam-
inations, but they were not responsible for these examinations, which were devised
by a selected group of teachers and approved by school inspectors. Furthermore,
professional mathematicians were scarcely involved in the production of textbooks
for secondary and primary mathematics education, which were mainly written by
teachers. The government left the production of textbooks to the market. Schools
were free to choose those books they liked most. Although there is currently more
government involvement in the ‘what’ of teaching through formulating standards
and a series of compulsory tests, the freedom regarding textbooks still exists.

Professional mathematicians’ interest in school mathematics began to grow in
the first half of the 20th century. For example, in 1924 a mathematics journal was
extended by an addendum in which didactical questions could be discussed; this
addendum later became the still existing journal Euclides. The first issue of this
journal paid attention to the argument between the mathematician Dijksterhuis and
the physicist Ehrenfest-Afanassjewa. The latter had also studied mathematics in
Göttingen with Klein and Hilbert. While Dijksterhuis insisted on keeping to the
traditional approach to teaching school geometry, which was based on the formal
characteristics of the discipline, Ehrenfest argued formakinguse of students’ intuitive
knowledge and startingwith concrete activities in three-dimensional space. However,
Ehrenfest’s ideas and those of her discussion group on teaching mathematics which
was to become theMathematicsWorking Group in 1936, did not find much response
from mathematicians. Even the famous Dutch mathematician Brouwer did not have
any affinity with teaching mathematics in school.
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Yet, from 1950 onwards,more attentionwas paid tomathematics educationwithin
the community of mathematicians. This was reflected, for example, in the estab-
lishment in 1954 of the Dutch Education Commission for Mathematics, an ICMI
subgroup, in which mathematics teachers and mathematicians cooperated. Freuden-
thal became chair of the group shortly after its foundation. Although in those days
more mathematicians felt that mathematics teaching needed modernisation, it was
Freudenthal in particular who had a genuine and deep interest in the didactics of
mathematics. So, it is no wonder that, after World War II, he had also joined Ehren-
fest’s group.

In 1961, the Dutch government appointed the Commission Modernisation of the
Mathematics Curriculum (CMLW),whichwas a newphenomenon in the long history
of government that was rather aloof with respect to curriculum issues. The founding
of this new commission, consisting of professional mathematicians and teachers,
was a direct consequence of the Royaumont conference. The Dutch government
became convinced of the urgency of the modernization of mathematics education.
Freudenthal was the most outstanding mathematician in this commission and he was
also the only one who was heavily involved in the didactics of mathematics. He
convinced the other commission members to focus on the teaching of mathematics
instead of on the content of the curriculum and he also moved the attention of the
commission to the lower grades of schooling. Later on, in 1971, IOWO (Institute
for Development of Mathematics Education) was established with Freudenthal as its
first director. The opening of the institute was the beginning of a long period of over
forty years in which mathematics teachers and educators worked on the design and
research of mathematics education in primary and secondary school and teacher edu-
cation. The instructional designs and the underlying theory of Realistic Mathematics
Education (RME) developed at this institute have changed the Dutch mathematics
curriculum and the approach to teachingmathematics, and this happenedwithout any
government interference. Characteristic of this approach is that it starts with offer-
ing students problems in meaningful situations, from which contexts can gradually
evolve into models that can be used to solve a broader scope of problems; through
the process of progressive schematisation, students eventually end up understanding
mathematics at a more formal level.

Until the late 1990s, RME was generally accepted for primary and secondary
education. Also university mathematicians were involved in secondary education
reform projects such as HEWET and PROFI. However, after 2000 some university
mathematicians started to blame RME for the lack of basic mathematical skills of
their first-year students. They wanted to return to the way of teaching mathematics
that (in their view) was common some forty years ago. For primary school mathe-
matics education, the Ministry of Education and the Netherlands Royal Academy of
Sciences (KNAW) appointed a commission to arbitrate this Dutch Math War. The
commission’s conclusion was that there was no evidence that students’ achievements
would be better with either RME or the mechanistic back-to-basics approach. This
conclusion resulted in RME being less in the firing line, and it became possible
again to have a professional discussion among all stakeholders about primary school
mathematics education. In the area of secondary education, the Ministry of Educa-
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tion appointed the Commission Future Mathematics Education (cTWO), consisting
of mathematicians, mathematics education researchers and mathematics teachers, to
revise the mathematics curriculum for upper secondary mathematics education. In
addition, Regional Support Centres (Bètasteunpunten) were established to facilitate
connections between secondary schools and universities. Also, the Mathematical
Society and the mathematics teachers’ association (NVvW), set up Platform Math-
ematics Netherlands, a new organisation for collaboration, which included, among
other things, a commission for mathematics education. This commission only covers
secondary mathematics education and not the teaching of mathematics in primary
school.

Background information about the role of mathematics and mathematicians in
mathematics education in the Netherlands can be found in Goffree, Van Hoorn, and
Zwaneveld (2000), La Bastide-van Gemert (2015) and Smid (2018), for example.

3.1.2 The Role of Theory in Mathematics Education
in the Netherlands

Mathematics education is not just about the process of teachingmathematics, but also
encompasses ideas and knowledge about how students learnmathematics, about how
mathematics can best be taught and what mathematical content should be taught and
why. Finding answers to these questions is the main goal of the scientific discipline
that in the Netherlands—in line with the European tradition—is called the didactics
of mathematics.

At the beginning of the 19th century when the first textbooks were published in
the Netherlands, the prefaces of these textbooks showed the initial efforts towards a
theory of mathematics education that contributed to the development of the didactics
of mathematics as a scientific discipline. A next step forward came in 1874 when the
Dutch schoolteacherVersluys published his book onmethods for teachingmathemat-
ics and for the scientific treatment of the subject. However, a decisive move towards
a theoretical basis of mathematics education in the Netherlands was Freudenthal’s
unfinished manuscript Rekendidactiek (Arithmetic Didactics), written in 1944, but
never published. Freudenthal’s interest in mathematics education in primary school
was triggered during World War II when he was teaching arithmetic to his sons, and
observed their learning processes. He also carried out an extensive literature review
of the didactics of arithmetic. A further advancement in Freudenthal’s thinking about
mathematics education occurred at the end of the 1950s when he worked with the
Van Hieles and became familiar with the theory of levels. Inspired by this, he devel-
oped the very important didactic principle of guided reinvention in which decisions
about guidance should be informed by analysing learning processes. For Freuden-
thal, the ‘re’ in reinvention points to students’ learning processes, and the adjective
‘guided’ to the instructional environment. Viewing learning as guided reinvention
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means striking a subtle balance between the students’ freedom of invention and the
power of the teachers’ guidance.

Freudenthal’s intention of givingmathematics education a scientific basis resulted
in the publication of Weeding and Sowing in 1978, which he called a preface to a
science of mathematics education. In this book, he introduced the didactical phe-
nomenological analysis ofmathematics, an approachwhichwas further elaborated in
Didactical Phenomenology of Mathematical Structures, published in 1983. Accord-
ing to Freudenthal, thorough analysis of mathematical topics is needed in order to
show where the student might step into the learning process of mankind. In other
words, a didactical phenomenology, rather than a pure epistemology of what con-
stitutes mathematics, is considered to inform us on how to teach mathematics. This
phenomenology includes how mathematical ‘thought objects’ can help organising
and structuring phenomena in reality, which phenomena may contribute to the devel-
opment of particular mathematical concepts, how students can come into contact
with these phenomena, how these phenomena beg to be organised by the mathe-
matics intended to be taught, and how students can be brought to higher levels of
understanding.

Although mathematics plays a central role in these analyses, Freudenthal rejected
the idea of taking the structure of mathematics or the expert knowledge of mathe-
maticians as his point of departure. The goal wasmakingmathematics accessible and
understandable for students by taking their learning processes seriously. Freudenthal
viewed working on the design of education and experience with educational prac-
tice as necessary requirements for making theory development possible. His work
at IOWO, which was founded in 1971, and particularly his collaboration with the
Wiskobas group around Treffers, and later with the Wiskivon group for secondary
education, which both did a great deal of work with students and teachers in schools,
was therefore crucial for Freudenthal’s thinking.

At the same time, however, Freudenthal’s involvementwas important for IOWOas
well. In addition to promoting mathematisation and mathematics as a human activity
that is connected to daily life or an imagined reality, and emphasizing that students
and even young children can generate a large amount of mathematical thinking—yet
in an informal context-connected way—Freudenthal’s participation was essential for
another reason too. Being an authority in the field of mathematics as a discipline,
Freudenthal legitimised thework done at IOWOfrom the perspective ofmathematics.

Although the activities at IOWO, due to its focus on designing education, could be
characterised as engineering work rather than as research, IOWO produced ‘valuable
splinters’ which could be counted as research output. Freudenthal saw this approach
as paradigmatic for how theory development must take place: from designing educa-
tional practice to theory. The theory that evolved from this work at IOWO was later
called Realistic Mathematics Education (RME) and was initially described by Tre-
ffers in 1978, and published in 1987 in his book Three Dimensions. The principles
of this domain-specific instruction theory have been reformulated over the years,
including by Treffers himself, but are presently still seen as leading for RME.

The first principle, the activity principle, follows from the interpretation of mathe-
matics as a human activity, and implies that students are treated as active participants
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in the learning process. The reality principle arises from considering mathemat-
ics as based in reality and developing from it through horizontal mathematisation,
and entails that mathematics teaching provides students with meaningful problems
that can be mathematised. The level principle highlights the idea that students pass
through several stages of understanding, from informal, context-connected to for-
mal mathematics. In this process, didactical models serve a bridging function and
vertical mathematisation is stimulated. This level principle is also reflected in the
procedure of progressive schematization. The intertwinement principle states that
the mathematics curriculum is not split into isolated strands, but that, following the
mathematisation of reality, the focus is on the connection and coherence ofmathemat-
ical structures and concepts. The interactivity principle signifies the social-cognitive
aspect of learning mathematics, and entails that students are offered opportunities to
share their thinkingwith others in order to develop ideas for improving their strategies
and to deepen their understanding through reflection. The guidance principle refers
to organising education in such a way that guided reinvention is possible, through
a proactive role of the teacher and educational programs based on coherent long-
term teaching-learning trajectories that contain scenarios which have the potential to
work as a lever to effect shifts in students’ understanding. Several local instruction
theories focusing on specific mathematical topics have been developed which align
with these general principles of RME.

RME is not a fixed and finished theory of mathematics education and is still
in development. Over the years the successors of IOWO—OW&OC (Research of
Mathematics Education & Education Computer Centre), the Freudenthal Institute
and the lately established Freudenthal Group1—have made different emphases. As
a result of collaboration with researchers in other countries, RME has also been
influenced by theories from abroad such as social constructivist approaches which
contributed to the interaction principle of RME and provided RME with a lens for
investigating classroom discourse. More recently, elicited by the use of new tech-
nology in mathematics education, approaches inspired by instrumentation theory
have connected with RME to achieve a better understanding of how tool use and
concept development are related. Finally, a further new avenue is the revitalisation
of the activity principle of RME through the incorporation of embodied cognition
and perception-action theories in which the focus is also on how students’ concept
development and deep learning can be understood and fostered.

However, whenworking on the further development ofRME through integrating it
with other theories, it is still important that mathematics should maintain its central
place. Developing mathematics education and investigating learning and teaching
processes should always be grounded in mathe-didactical analyses which unpack
mathematics in didactic terms and take into account phenomenological, genetic-
epistemological, and historical-cultural perspectives.

1In 2012 the Freudenthal Institute was split into two. The research and design work in early child-
hood, primary education, special education, and intermediate vocational education were moved to
the Faculty of Social and Behavioural Sciences (FSW) and carried out by the Freudenthal Group.
The research and designwork in secondary education have remained part of theFreudenthal Institute
in the Faculty of Science.
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Background information about the role of theory in mathematics education in the
Netherlands can, for example, be found in De Lange (1987), Freudenthal (1991),
Treffers (1987a), and Van den Heuvel-Panhuizen and Drijvers (2014).

3.1.3 The Role of Design in Mathematics Education
in the Netherlands

Making things work, looking for pragmatic solutions and being creative and inno-
vative are typical features of Dutch culture and they occupy an important place in
Dutch society. This emphasis on design can also be recognized in mathematics edu-
cation and can be considered the most significant characteristic of the Dutch didactic
tradition in the past half century.

The reform movement in mathematics education that started in the Netherlands
at the end of the 1960s was all about designing ‘new’ education, which in those days
meantworking on an alternative to themechanistic approach to teachingmathematics
that was prevalent in the Netherlands at the time. This approach, which still has
some followers today, is characterised by teaching mathematics at a formal level
from the outset, an atomized and step-by-step way of teaching in which the teacher
demonstrates how problems must to be solved, and the scant attention paid to the
application ofmathematics. At the same time that the need arose for an alternative for
this mechanistic approach, two new approaches from abroad appeared: the empiricist
trend in which students were set free to discover a great deal by themselves and were
stimulated to carry out investigations, and the structuralistic trend propagated by the
New Math movement in which the mathematics to be taught was directly derived
from mathematics as a discipline. However, neither of these new approaches was
well received in the Netherlands.

Therefore, at the end of the 1960s the Wiskobas group started to think about
another way to improve teaching mathematics in primary school. From 1971 on this
took place at the newly-established IOWO, which some time later was extended
to include the Wiskivon group that had been formed to design a new approach to
teachingmathematics in secondary education. All staffmembers of these two groups,
except Freudenthal, had experience in school practice either as amathematics teacher
or as a mathematics teacher educator. This meant that their work was very practice-
oriented. The theory developmentwhich resulted inRMEwas considered a derivative
of this practical work and would later serve as a guide for further design activities.
Because of the focus on the practice of teaching, it is not surprising that Freudenthal
often stated that IOWO was not a research institute, and IOWO staff members did
not regard themselves as researchers, but as producers of instruction, as engineers
in the educational field. As implied by the latter term, this work was not done in
isolation, but carried out with teachers and students in classrooms. Moreover, there
was a strong collaborationwithmathematics teacher educators, counsellors at teacher
advisory centres, and textbook authors with whom the materials were discussed and
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who also contributed to their development. In this way, the implementation of the
reform happened more or less naturally without specific government interference.
By having these strong networks of people and institutions involved in mathematics
education, new ideas for teaching mathematics could immediately be used in pre-
service teacher education, in-service courses, and above all in textbooks. Of all the
possible change agents, textbooks have played a key role in the reformofmathematics
education in the Netherlands. For primary school mathematics, the same is also true
for the mathematics education infrastructure that evolved from these networks. For
secondary mathematics education a teachers’ association (NVvW) had already been
founded in 1925 and for primary school mathematics the infrastructure came into
being later. In 1981 Panama was set up, which has come to involve a collaboration
of institutions for pre-service and in-service mathematics teacher education, and in
1982 NVORWO was established as an association for primary school mathematics.
The main purpose of the infrastructure as a whole was, and still is, to inform the
mathematics education community in the Netherlands through national mathematics
education conferences, professional journals, in-service courses and websites and to
support national mathematical events for students.

The educational designs that have been produced over the years by IOWO and its
respective successors, are multifaceted, ranging from tasks containing opportunities
formathematisation and paradigmatic contexts that evolve into level-shifting didacti-
cal models, to tasks for mathematics days and competitions for students, to elaborate
teaching sequences for particular mathematical domains. Among other things, the
design work in primary school mathematics led to helpful contexts such as the pizza
context in which students could produce fractions by themselves through fair sharing
activities, and the bus context in which students were encouraged to reason about
passengers entering and exiting and so invent their own symbolic notations of what
happens at a bus stop. The design work for primary school also resulted in some
very powerful didactical models that can be found in most current textbooks in the
Netherlands, such as the empty number line, the arithmetic rack, the percentage bar
and the ratio table. With respect to upper secondary education, new programs were
developed in the 1980s and 1990s for Mathematics A (preparing students for stud-
ies in the social sciences) and Mathematics B (preparing students for studies in the
natural sciences). Additionally, at the turn of the century new RME-based modules
on calculus and geometry were developed for Mathematics B in the upper grades of
pre-university secondary education. A prominent design project that was carried out
with the University of Wisconsin involved the development of a complete textbook
series Mathematics in Context for Grade 5–8 of the U.S. middle school. This project
began in the mid-1990s and ran for some ten years.

Another long-term design project was the TAL project that started in 1997. Its aim
was the development of longitudinal conceptual teaching-learning trajectories that
describe the pathway that students largely follow in mathematics from Kindergarten
to Grade 6. The decision to work on such trajectories was innovative at that time.
The basis for this TAL project was the so-called Proeve, a first version of a national
curriculum for primary school mathematics that led to the official enactment of the
first description of the core goals for mathematics at the end of primary school at the
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beginning of the 1990s. The teaching-learning trajectories were designed to describe
how these core goals could be reached, thus providing teachers, textbook authors
and test developers with an insight into the continuous learning line of learning
mathematics, so contributing to making the curriculum more coherent.

The advent of computer-based technology in schools again brought new demands
and challenges for design. In addition to exploring opportunities for computer-
assisted instruction, much effort was also put into rethinking the subject of math-
ematics within the context of the virtual world and exploring how students could
benefit from the dynamic and interactive qualities of the new technology. This led
not only to the development of the so-called Digital Mathematics Environment in
which teachers can adapt and design instructional material for their students includ-
ing the use of mathematical tools and feedback, but also resulted in a seemingly
inexhaustible flow of applets and mini-games for primary and secondary education
that are freely available online.

Background information about the role of design in mathematics education in the
Netherlands can, for example, be found in Bakker (2004), Doorman (2005), Drijvers
(2003), Gravemeijer (1994), National Center for Research inMathematical Sciences
Education & Freudenthal Institute (1997–1998), Streefland (1993), and Van den
Heuvel-Panhuizen (1996, 2003).

3.1.4 The Role of Empirical Research in Mathematics
Education in the Netherlands

Research in the Netherlands into the learning and teaching of mathematics since
the first half of the 20th century has always been empirical in one way or another.
Initially this research was undertaken mostly by psychologists and pedagogues with
an interest in mathematics, but later on it was also done by mathematics teachers.
A prominent example of such research was the didactical experiment carried out by
Van Hiele-Geldof in the 1950s on teaching geometry in the first year of secondary
school. Her thesis about this experiment contained a very careful description of how
she developed the teaching sequence that brought students from visually supported
thinking to abstract thinking. She also recorded precise protocols of what happened
in the classroom, which were then thoroughly analysed. Starting with what she
called a psychological-didactical analysis of themathematical content was part of her
research method. In fact, Van Hiele-Geldof’s work, greatly admired by Freudenthal,
contained many important ingredients of the research into the learning and teaching
of mathematics that was done in the Netherlands from then on.

Freudenthal’s empirical didactical research beganwith observing his own children
as he was teaching them arithmetic during World War II. It is noteworthy that he
warned at first against overestimating the value of these observations, stating that
he would like to do observations with a more diverse sample and on a larger scale.
Later, he apparently changed his opinion. In the 1970s he emphasized the strengths of
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qualitative small case studies.He even called on research in the natural sciences (“One
Foucault pendulum sufficed to prove the rotation of the earth”) to prove the power of
observing a student’s learning process. For Freudenthal, one good observation was
worth more than hundreds of tests or interviews. The reason for this preference was
that observing learning processes led to the discovery of discontinuities in learning,
which Freudenthal regarded as being of great significance for understanding how
students learn mathematics. Merely comparing scores of a large sample of students
collected at different measuring points would imply that only an average learning
process, in which the discontinuities have been extinguished and all essential details
have disappeared, can be analysed.

The design work that was carried out at the IOWO from 1971 onwards, with
the aim of creating materials and teaching methods for the reform of Dutch math-
ematics education, was also highly informed by empirical research. In agreement
with Freudenthal, the emphasis was on small-scale qualitative studies carried out
in schools. Based on didactical-phenomenological analyses of the mathematical
domains and making use of knowledge of students’ learning processes and the class-
room context, learning situations were initially designed using thought experiments.
These were followed by actual experiments with students and teachers, and the reac-
tions of both students and teachers were observed. In this way, IOWO staff members
ran school experiments in which the mathematics to be taught and the teaching meth-
ods were continuously adapted based on experiences in classrooms and feedback and
input from the teachers. In this development process, design, try-out, evaluation and
adaptation followed each other in short, quick cycles. Reflections on what happened
in the classrooms focused not only on whether or not a learning process had taken
place, but also on what impeded or facilitated its occurrence. These reflections and
the accompanying intensive deliberations among IOWO staff members about the
designed learning situations provided important theoretical insights which evolved
into theRME theory ofmathematics education. In their turn, these theoretical insights
led further designs. In other words, theory development and the development of edu-
cation were strongly interwoven.

This type of research, initially called developmental research but later given the
internationally more common name design research, was the backbone of RME-
based research activities. Over the years, the method of design research was devel-
oped further. Data collection and analysis procedures which would contribute to
the evidential value of the findings of design research were added. The theoretical
grounding was also elaborated, through prior mathe-didactical analyses and through
including findings and approaches from the education and learning sciences.

In addition to design research, depending on what specific research questions
have to be answered, various other empirical research methods are used, such as
quasi-experiments (including pretest-posttest intervention designs andmicro-genetic
designs), surveys (including questioning teachers about their classroom practice and
beliefs about mathematics education and carrying out expert consultations), docu-
ment studies (including textbook and software analyses and study on the history of
mathematics education) and review studies and meta-analyses. Also, outside the cir-
cle of RME-affiliated didacticians, there is a large group of researchers in the Nether-
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lands consisting of psychologists, orthopedagogues, and cognitive neuroscientists
who focus particularly on investigating how specific student characteristics influ-
ence students’ learning of mathematics. In this way, they complement the research
done by didacticians. Similarly, research by educationalists who, among other things,
investigate school organisation and classroom climate also provide relevant knowl-
edge for all involved in mathematics education.

Relevant empirical data to direct the development of mathematics education were
also acquired through the PPON studies that, from 1987 on, have been carried out
every five years by Cito, the national institute for educational measurement. It is
important that these studies gave an overview of changes over time in the mathemat-
ics achievements of Dutch primary school students and of the effect of the use of
particular textbooks. Finally, PISA and TIMSS provide the international perspective
on achievement data for both primary and secondary school students.

Background information about the role of empirical research in mathematics edu-
cation in the Netherlands can, for example, be found in Freudenthal (1977), Goffree
(2002), Van den Brink and Streefland (1979), and Van der Velden (2000).

3.2 Students’ Own Productions and Own
Constructions—Adri Treffers’ Contributions
to Realistic Mathematics Education

Marc van Zanten2

3.2.1 Introduction

The development of Realistic Mathematics Education (RME) started with the setup
of the Wiskobas project in 1968. Wiskobas is an acronym for ‘Wiskunde op de
basisschool’,meaningmathematics in primary school. Trefferswas one of the leading
persons within Wiskobas from the beginning onwards. He can be considered as one
of the founding fathers of RME. In an interview held on the occasion of the ICME13
conference, Treffers (Fig. 3.1) stated that, in his view, the active input of students in
the teaching and learning process is the basis for good mathematics education. This
was one of the issues that came to the fore in the interview, together with other ideas
Treffers published on over the years, which are mentioned also in the text. In the
interview, Treffers highlighted the issues that are most important to him, and looked
back on his earliest sources of inspiration for his work on mathematics education. He
explained how certain people had had a major influence on his vision of mathematics
education. Interestingly, they turned out to be very special people not belonging to the

2Utrecht University & Netherlands Institute for Curriculum Development, the Netherlands,
m.a.vanzanten@uu.nl

m.a.vanzanten@uu.nl
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Fig. 3.1 Adri Treffers

community of mathematics education: he learned a lot about mathematics education
from his five year older sister, his brother with whom he shared a bedroom, the father
of his friend Beppie, and from Mr. Zwart, a very good teacher he had.

3.2.2 Treffers’ Theoretical Framework for Realistic
Mathematics Education

Treffers described in detail the principles of RME in his seminal publication Three
dimensions. A model of goal and theory description in mathematics instruction—The
Wiskobas project (1978, 1987a). The framework for an instruction theory for RME,
formulated in the 1987 version, was built on the work of Wiskobas, established in
collaboration with Freudenthal (1968, 1973), and his ideas about mathematics as a
human activity, avoiding mathematics education as transmitting ready-made math-
ematics to students, and instead stimulating the process of mathematisation. This
framework consisted of five instruction principles, derived from the didactical char-
acteristics of Wiskobas. Over the decades these principles have been reformulated
and further developed, both by Treffers himself and by other didacticians, and are
still seen as the core teaching principles of RME, as described in the Sect. 3.1 of this
chapter (see also Van den Heuvel-Panhuizen & Drijvers, 2014).

3.2.3 Students’ Own Productions

According to Treffers (1987a, p. 249), teachers can help students to find their way
to higher levels of understanding, but this “trip should be made by the pupil on his
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Fig. 3.2 An own production
by a first grader (Grossman,
1975; see Treffers & De
Moor, 1990, p. 163)

own two legs”. Therefore, a decisive influence in the learning process comes from the
students themselves in the form of their own productions and their own constructions.
Referring to this contribution of the students to the learning process, Treffers (1987a,
p. 250) speaks of an “essential factor”, which explains his preference for students’
own productions. In the interview Treffers revealed who formed the basis for this
insight.

Treffers: My first source of inspiration is the most important one. That is my five year older
sister. You could say that she invented a new didactic principle. Playing school in the attic,
she let me and my friend Beppie make up our own mathematical problems. Nowadays we
would call them students’ own productions. An example of a completely free production is:
“Produce problems that have 7 as the answer.” To be honest, I don’t think that we did it like
that back then, but now we do.

Students producing problems themselves is one of the ways in which they can
actively contribute to their own learning process. This can take place from the first
grade on, as shown in Fig. 3.2. Here the assignment was to make up problems
that should have 3 as the answer. These students’ own productions can serve as
‘productive practice’, which can be done alongside to regular practice. One benefit
of productive practice is that it engages many students. Another is that students are
not limited to a certain range of numbers. As a result, students can actually surprise
their teacherswith their productions. For example, a student in the first gradewhowas
asked to make up problems with the answer 5 came up with the problems ‘100–95’,
‘2000–1995’ and ‘10,000–9995’, which were problems far beyond the number range
the student had been taught at that moment. What happens when students make these
productions is that they make use of the structure of the number system, which is a
form of mathematisation.

Students’ ownproductions evoke reflection,which stimulates the learningprocess.
In particular, asking students to produce simple, moderate and complex problems
can cause students to reflect on their learning path. Figure 3.3 shows an example of
how students‘ own productions can be elicited in order to make them aware of what
they find easy and difficult in algorithmic subtraction.
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Fig. 3.3 Own productions in the context of algorithmic subtraction (Treffers, 2017, p. 85, p. 87)

While discussing students’ own productions, all the difficulties of algorithmic
subtraction can come to the fore, including borrowing once, borrowing more than
once and borrowing from zero, Treffers points out. In line with this, Treffers comes
up with another problem.

Treffers: Cover up some digits of a subtraction. Can another student reconstruct the original
subtraction? How many digits can be covered up at max?

These questions may lead to more productive practice, but they also connect
students’ own productions to problem solving. The latter is significant because of
the importance of challenging students, which came up later in the interview.

3.2.4 Students’ Own Constructions

As mentioned previously, Treffers does not see the learning of mathematics as a
process of absorbing ready-made knowledge. Instead, he considers the understanding
of mathematics as a process that is constructed by students themselves.

Treffers: My second source of inspiration is my brother, with whom I shared a bedroom. He
set me sometimes, teasingly, a few problems, like “you can’t do those yet.” But that taught
me how to move along the imagined number line and flexible arithmetic, for example that
you can calculate the multiplication tables in a smart way.

However, Treffers’ view that students construct their own knowledge does not
mean that mathematics education should rely on students’ self-reliant discovery.
Instead, instruction should make use of students’ own contributions and should help
them through ‘guided reinvention’, as Freudenthal called it. Students’ own informal
solution methods function as a starting point for such guided instruction. Figure 3.4
shows, as an example, informal constructions for 8 × 23 by students beginning to
learn multi-digit multiplication.

In the various additive and multiplicative methods used by the students, several
steps of the upcoming learning path are already recognizable. The teacher makes
use of this in the interactive discussion of the students’ solutions. He points out
handy ways, such as in this case the use of products of the multiplication tables. In
general, students are encouraged to think critically about their own solution methods
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Fig. 3.4 Beginning third graders’ constructions of solutions for 8 × 23 (Treffers, 1987b, p. 128)

Fig. 3.5 The problem of Hans (Treffers, 1991, p. 338)

and compare them with their classmates’ solutions and the solutions the teacher
emphasizes. These latter are purposely chosen to guide the students to a gradual
process of schematising, shortening and generalising.

The problem in Fig. 3.5 shows another type of problem that requires students’ own
constructions. Treffers (1991) is a strong proponent of these ‘daily life’ problems in
which students have to make use of all kinds of measurement knowledge and have
to figure out this knowledge based on their experiences with the situation involved.
Moreover, this type of problems elicits reasoning and further questioning: How far
is 75 km? Roughly how many km does a car cover in one hour? How fast does a
bike go? What is the speed of a pedestrian? How long would a cyclist take to do
48 km? Taking a rest after half an hour, after two hours—what is sensible? What
does a ‘brief’ rest mean? A quarter of an hour, half an hour, or a few hours? This
kind of reasoning, involving arguing, proposing solutions and calculations in which
knowledge of number and numerical data is both used and increased, is important
for the development of students’ numeracy. Treffers introduced this term and its
importance in Dutch primary school mathematics education, leading to its inclusion
in the officially established objectives for primary school.
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3.2.5 Challenging Students with Classical Puzzles

Another feature of Treffers’ work is the stimulation of students’ thinking by offering
them challenging problems, such as the subtraction problems mentioned earlier, but
also more complicated, classical mathematical problems.

Treffers: The father of my friend Beppie, a cobbler, gave us classical puzzles, including the
‘Achilles and the Tortoise’ paradox, and the famous ‘Wheat and the Chessboard’ problem.
Later, a very good teacher, Mr. Zwart, elaborated these further, touching on problems we
were still struggling with a bit. For example, whether 0,999… with the decimal 9 repeating
infinitely is or is not equal to 1. Beppie’s father and Mr. Zwart were my third and fourth
sources of inspiration.

In his work, Treffers elaborated on the ways in which classical mathematical
puzzles like the ‘Wheat and the Chessboard’ can be set in primary school so that
there is, again, room for students’ own constructions. Starting with students’ infor-
mal approaches, discussing these in an interactive setting, leading the students to a
shortened and structured procedure, all these features mentioned earlier are present
in his descriptions. Due to the influential work of Treffers and his colleagues, these
ideas made it into Dutch textbooks.

3.2.6 Students’ Input Is the Basis of Everything

To conclude, Treffers comes with advice for mathematics education today.

Treffers: I feel that of the things we spoke about, the issue of students’ own productions is
the most important one. Take for example, magic squares (Fig. 3.6). Students need to think
about how to solve them, but they can also produce them for themselves. For the teachers,
it means that they can see what students find easy or hard and how they can sometimes fly
off far above the familiar range of number and the difficulty level of the problem they could
have thought of themselves. Here you are talking about students who have an input in the
teaching and learning process and that is the basis of everything.

Fig. 3.6 Second-grade students’ own productions of magic squares (De Goeij & Treffers, 2004)
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Treffers sees students’ own productions and constructions not only as a didac-
tical tool, but also as a goal of mathematics education. Naturally this is true, since
producing and constructing mathematics yourself is in essence mathematising. This
ability is even more important in modern society than it already was in the early days
of Wiskobas.

Treffers: My general recommendation for the future of mathematics education is: enlarge
the role of students’ own productions and own constructions, in practice, in problem solving,
and in the combination of the two.

3.3 Contexts to Make Mathematics Accessible
and Relevant for Students—Jan de Lange’s
Contributions to Realistic Mathematics Education

Michiel Doorman3

3.3.1 Introduction

DeLange has beenworking atUtrechtUniversity for 40 years. He led the Freudenthal
Institute from 1981 and as Professor/Director from 1989 until 2005. He started as
a mathematician and initially was more interested in upper secondary education.
His most recent interests lie in the study of talents and competencies such as the
scientific reasoning of very young children. De Lange worked on the theoretical
basis of assessment design, carrying it through to practical impact in the Netherlands
and internationally as chair of the PISA Mathematics Expert Group (Fig. 3.7).

De Lange’s contributions to the ideas underpinning RealisticMathematics Educa-
tion (RME) are strongly connected to the role of contexts in mathematical problems.
In traditional mathematics education, contexts are included in textbooks as word
problems or as applications at the end of a chapter. These contexts play hardly any
role in students’ learning processes. Word problems are mostly short storylines pre-
senting a mathematical problem that has a straightforward solution. Applications
at the end of a chapter help students to experience how the acquired mathematical
procedures can be applied in a context outside mathematics.

In RME, context problems have a more central role in students’ learning process
from the very start onwards. These problems are presented in a situation that can be
experienced as realistic by the students and do not have a straightforward solution
procedure. On the contrary, students are invited to mathematise the situation and
to invent and create a solution. Ideally, students’ intuitive and informal solutions
anticipate the topics of the chapter andprovide opportunities for the teacher to connect
these topics to the students’ current reasoning. In RME, such context problems are

3Utrecht University, the Netherlands, m.doorman@uu.nl

m.doorman@uu.nl
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Fig. 3.7 Jan de Lange during the interview

expected to have a central role in the guided reinvention of mathematics by the
students themselves.

This understanding of the potential of context problems was developed during the
1970s and 1980s andwas largely inspired by the work of De Lange. His contributions
to the Dutch didactic tradition consisted of developing a large collection of teaching
units used mainly in innovation-oriented curriculum projects in the Netherlands and
in theUSA. In preparation for theDutch contribution to ICME13ThematicAfternoon
session on European Didactic Traditions, De Lange was interviewed to reflect on his
work and specifically on the importance of contexts in mathematics education.

3.3.2 Using a Central Context for Designing Education

After De Lange graduated in the 1970s he started his career as a mathematics teacher.
Soon he discovered that students reacted quite differently to the topics that he tried
to address in his lessons. Most surprising for him was that they did not recognize
mathematics in the world around them. After De Lange moved to the Freudenthal
Institute, one of his ambitions was to find contexts that could be used to make
mathematics accessible. A teacher in lower secondary school asked him if he could
do something for her students who had problemswith trigonometric ratios. De Lange
designed a unit intended for a couple of weeks of teaching.

De Lange: I started to work on one of my hobbies, planes, and I wrote a little booklet. It
is called Flying Through Maths. It is about all kinds of different mathematics, all in one
context. It is about glide ratios, vectors and sine and cosine.

All the mathematics in this teaching unit is presented in the context of planes and
flying, which approach is later referred to by De Lange as an example of ‘central
context design’ (De Lange, 2015). This means that the same context is used to
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Fig. 3.8 Glider problem from the booklet Flying Through Maths (De Lange, 1991, p. 7)

introduce students into various mathematical concepts. One of the concepts that was
presented in this flying context was the glide ratio (Fig. 3.8).

The context of flying is used to encourage students to reason about covering
distances when gliding from a certain height. By comparing different flights, students
are expected to come up with some thinking about the glide ratio, i.e., the ratio
between the distance covered and the starting height. This glide ratio plays a role in
the context problems in the beginning of a chapter on slopes. In this way, the glide
ratio is meaningful for students. They can use it for solving problems that they can
experience as real problems. Later in the chapter this glide ratio is generalized to
triangles and as a measure that can be used to calculate or compare slopes.

3.3.3 Contexts for Introducing and Developing Concepts

RME brought about a new perspective on the use of contexts in mathematics educa-
tion. Contexts are not only considered as an area for application learnedmathematics,
but also have an important role in the introduction and development of mathematical
concepts.

De Lange: Applications is one thing. In the traditional textbooks, it was the end of the book.
You started firstwith learningmathematics, and then you got the applications ofmathematics.
Through our theory developed at the Freudenthal Institute in the 70s, we changed that to
developing concepts through context. So, you had to be very careful, because if the context
is not very suited for the concept development, you are riding the wrong train on the wrong
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track. But I think in general we can say for a lot of concepts we found very nice contexts to
start with.

An example is the context of exponential growth that can support students in
developing the logarithm-concept (De Lange, 1987). In this context, the growth of
water plants, students first calculate the exponential increase of the area covered by
these water plants with the growth factor and the number of growing weeks. At a
certain moment, the question in the context is reflected. The question is no longer
what the area is after a certain number of weeks, but how many weeks are needed to
get an area that is 10 times as much? Students will experience that this is independent
of the starting situation and can be estimated by repeating the growth factor (e.g.,
with a growth factor of 2 this is a bit more than 3 weeks). After these introductory
tasks, 2log 10 is defined as the time needed to get 10 times the area of water plants
when the growth factor per week is 2. With this context and the concrete contextual
language in mind, students can develop basic characteristics of logarithmic relations
such as 2log 3 + 1 � 2log 6 as follows: with this 1 extra week, you get 2 times more
than 3, which equals 6. Similarly, 2log 6 + 2log 2 has to equal 2log 12, as 2log 6 is the
number of weeks to get 6 times as much, and 2log 2 is the number of weeks to get
2 times as much. The time needed to first get 6 times as much followed by the time
needed to get 2 times as much has to be equal to the time needed to get 12 times as
much.

With such a context problem, a concept is not only explored, but also more or less
formalized. Such a concrete foundation is important because it offers opportunities
for students in the future to reconstruct the procedure and meaning of the abstract
calculation procedures by themselves.

3.3.4 Relevant Mathematics Education

The aforementioned examples show the potential of contexts for learning mathe-
matics and for making that learning process meaningful and relevant for students.
This approach to mathematics education connects to the RME instructional theory
in which the learning of mathematics is interpreted as extending your common sense
reasoning about the world around you. Hence, De Lange emphasises in his reflec-
tion on educational design that designers need to find contexts by meeting the real
world outside mathematics and experience the potential of contexts by going to real
classrooms (De Lange, 2015). Observing authentic classroom activities is crucial.
He stresses the importance of direct observations without using video in order to
observe much more. In such a direct observation, one is able to look at the students’
notes, one has the possibility to participate with their work, and one can ask questions
in order to understand why students do what they do.

Exploiting the real world guided De lange towards a wide variety of original and
surprising contexts. One example is the art of ballooning. Flying a balloon depends
completely on the strength and direction of the wind and the change of the wind
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Fig. 3.9 Ballooning information from the booklet Flying Through Maths (De Lange, 1991, p. 34)

In the Netherlands, one out of four high school students has used 
drugs (at least once). Design a study to find out how many 
students at your school have used drugs. Do you get a 
representative sample by using your school when you want to 
say something about the use of drugs at all schools in your city?

Fig. 3.10 Drug use problem (De Lange & Verhage, 1992, p. 12)

speed along different altitudes. The following example (Fig. 3.9) is also taken from
the booklet Flying Through Math and is typical for a situation in which you are
supposed to travel with a balloon from one spot to a target. The task for the students
was to determine what happens when a balloon starts from Albuquerque and flies
the first half hour at 300 m, then an hour at 900 m and finally, a half hour at 300 m.

In this context, not all information is available. Remaining questions are: How
much time is needed to land?What happens when you go from one altitude to another
and how much time does that take? The task becomes a real problem solving task
for the students.

Through being in real classrooms De Lange could also look for contexts that
trigger interest in students. In choosing these contexts, he was not afraid of using
controversial situations. This can be recognized in a task for 15-year olds about drug
use (see Fig. 3.10), for example.

In the interview, De Lange emphasised again that contexts serve many important
roles in the teaching and learning of mathematics. They support conceptual devel-
opment, can be motivating and raise interest, and also teach students how to apply
mathematics.

De Lange: We should be aware that contexts have to be mathematised. This means that we
should be aware of what is the relevant mathematics in the contexts, which concepts plays
an important role, and can the contexts serve as the starting point of modelling cycles. So,
what you actually see is, that in the first phase of learning from context to concept, you use
things, you do things, which are exactly the same as using the concept in a problem-solving
activity.
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In a certain country, the national defence budget is $30 million for 
1980. The total budget for that year is $500 million. The 
following year the defence budget is $35 million, while the total 
budget is $605 million. Inflation during the period covered by the 
two budgets was 10 percent.

a. You are invited to give a lecture for a pacifist society. 
You intend to explain that the defence budget decreased 
over this period. Explain how you could do this.

b. You are invited to lecture to a military academy. You 
intend to explain that the defence budget increased over 
this period. Explain how you would do this.

Fig. 3.11 Military-budget problem (De Lange, 1987, p. 87)

The examples of problems discussed above all illustrate how contexts can be used
for designing relevant and meaningful mathematics education. What can also be
recognized is that in the 1980s designers like De Lange already anticipated what we
now call 21st century skills. A nice example of this is the Military-budget problem
(Fig. 3.11), which some thirty years ago was designed by De Lange to stimulate
students to become mathematically creative and critical.

3.3.5 Conclusion

Creative designers like De Lange, people who are able to convince others of the limi-
tations of many textbooks andwho are able to translate general educational ideas into
original and attractive resources for students, are of crucial importance for realising
meaningful and relevant mathematics education. In 2011, hewas awarded the ISDDE
Prize for Excellence in Design for Education. Malcolm Swan wrote on behalf of the
prize committee: “He has a flair for finding fresh, beautiful, original, contexts for
students and shows humour in communicating them.” Without De Lange’s contribu-
tionsmany ideas in theDutch didactic traditionwould have been lesswell articulated,
less well illustrated, and less influential in the world outside the Dutch context.
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3.4 Travelling to Hamburg

Paul Drijvers4

3.4.1 Introduction

This section describes an example of a task that was designed and field-tested for
the ICME13 conference. Its aim is to illustrate how the principles of Realistic Math-
ematics Education (RME) (see, e.g., Van den Heuvel-Panhuizen & Drijvers, 2014).
can guide the design of a new task. Indeed, task design is a core element in setting
up mathematics education according to an RME approach. This is one of the reasons
why design-based research is an important research methodology in many studies
on RME (Bakker & Van Eerde, 2015).

The task presented here involves setting up a graph that many students are not
familiar with, because it displays one distance plotted against another. For several
reasons, it makes sense to have students work on such less common graphs. First,
graphs in mathematics education in almost all cases involve an independent variable,
often called x, on the horizontal axis, and a dependent variable, for example y or
f (x), on the vertical axis. However, there are also other types of graphs than these
common x-y graphs. In economics, the independent variable—not always x but also
t for time—can also be plotted on the vertical axis rather than on the horizontal. In
physics—think about phase diagrams—the independent variable may be a parameter
that is not plotted on one of the axes. The latter case reflects the mathematical notion
of parametric curve, in which the independent variable remains implicit. In short,
students should be prepared for other types of graphs as well.

A second, more general reason to address non-typical types of graphs is the world-
wide call for mathematical thinking and problem solving as overarching goals in
mathematics education (Devlin, 2012; Doorman et al., 2007; Schoenfeld, 1992). If
students are to be educated to become literate citizens andversatile professionals, they
should be trained to deal with uncommon problem situations that invite flexibility. As
such, mathematical thinking has become a core aim in the recent curriculum reform
in the Netherlands (Drijvers, 2015; Drijvers, De Haan, & Doorman, submitted).

In this section, first the task will be presented together with some design consid-
erations that led to its present form. Next, a brief sketch is provided of the results
of the field test in school and of what the task brought to the fore at the ICME13
conference. As a task may need adaptation to the specific context in which it is used,
its elaboration is described next for the purpose of in-service teacher training, includ-
ing a three-dimensional perspective. Finally, the main points will be revisited in the
conclusion section.

4Utrecht University, the Netherlands, p.drijvers@uu.nl

p.drijvers@uu.nl
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To attend the ICME13 conference, we travelled to Hamburg by car. To prepare for this, I 
consulted Google Maps. Here you see the result: we leave Utrecht, in the Netherlands. The 
distance to Hamburg is 440 km. After 215 km, we pass by Osnabrück. Another 115 and we pass 
by Bremen. Next, we need to drive the final 110 km to reach Hamburg.

Fig. 3.12 Setting the scene for the task

3.4.2 Task Design

Figure 3.12 shows the presentation of the task in the form of a picture, displayed
through a data projector, and a suggested text that might be spoken by the teacher. As
the problem situation is a somewhat personal story from ‘real life’, it is preferable to
deliver the text orally rather than in written form. It is expected that the task becomes
‘experientially real’ through this form of presentation. In the task, the perspective
taken is that of a participant in the ICME13 conference in Hamburg, Germany. Of
course, this perspective could easily be adapted to other situations that are more
relevant to the audience.

Figure 3.13 shows how the task presentation might continue. It shows a schemati-
sation of the problem situation, inwhich the ‘noise’ of the realmap has been removed.
In the text that might be spoken, this schematisation and the underlying mental step
of representing the highway as a line segment are explicitly addressed. Depending on
the audience and the intended goal of the task, of course, one might consider leaving
this step up to the student and to reduce guidance at the benefit of opportunities for
guided reinvention. For the field tests addressed in the next section, it was decided
not to do so, due to the expected level of the students and the time constraints. The
text in Fig. 3.13 ends with the problem statement. Students are invited to use their
worksheet, which contained two coordinate systems like the one shown in Fig. 3.14.
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If I depict the highways as straight-line segments, I can globally represent the situation in this way. 
U stands for Utrecht, 215 to O (Osnabrück), 115 to B (Bremen), and 110 to H (Hamburg). Now I 
am wondering the following. During the trip, while driving, my distances to both Osnabrück and 
Bremen constantly change. What would a graph look like, if I put the distance to Bremen vertically, 
and my distance to Osnabrück horizontally? Could you please take a few minutes to sketch the 
graph in which the distance to B during the trip is vertically plotted against the distance to O on the 
horizontal axis? Please use your worksheet!

Fig. 3.13 Schematising the situation and posing the problem

Fig. 3.14 Coordinate
system that is shown on the
worksheet

One might wonder if this is a realistic task. Who would be so silly as to raise this
question? Well, we were. We were three mathematicians who were bored during the
long trip to Hamburg. How to “sell” this to students? A possible approach could be
to “play the card of the strange mathematician”, but this should not be exaggerated.
Our experience is that students may be intrigued by such problem situations, even if
the question itself is not solving a ‘real’ problem. Also, even if one might ask “Why
do we need to know this?”, the problem situation is sound in the mathematical sense,
and has possibilities for applications in mathematics and science, as explained in
Sect. 3.4.1.

After the task is presented, students can start to work in pairs, in small groups, or
individually. As it is expected that there will be quite a bit of differentiation in the
class—some students might solve this task in a minute, whereas others may not have
a clue where to start—the students who finish quickly can be provided orally with
an additional task:

If you feel you are doing well, please think of a question that you might use to help a peer
who doesn’t know how to start, a question that might serve as a scaffold.

Also, some scaffolding questions are prepared that may serve as a hint to react
to students who have difficulties with the task and raise their hands for help. For
example: How can you make a start? Do you know a similar but easier problem?
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Does this resemble a problem that you have seen in the past? Where are you in the
O-B plane when you are leaving Utrecht? And when you arrive in Hamburg? And
when you pass by Osnabrück?

To be effective, such a class activity needs a whole-class wrap-up. It might start
with the question of how to help peers tomake a start, or how you started yourself. For
example, one can consider finding the position in the plane for the special moments
of leaving Utrecht and arriving in Hamburg. This leads to the points (O, B) � (215,
330) and (O, B) � (225, 110). How about, when passing Osnabrück and Bremen?
Another option is to imagine what happens in between O and B: the distance to O
increases as much as the distance to B decreases. How does this affect the graph?
A natural question that emerges, is whether the driving speed should be constant,
and if it matters at all. Would the graph look different if you walk from Utrecht to
Hamburg rather than driving (not recommended, of course)? In an advanced class,
with many students coming up with a sensible graph, it might be interesting to show
an animation in a dynamic geometry environment, which in its turnmay invite setting
up parametric equations. Of course, how far one can go in such a wrap-up largely
depends on the students’ progress. If needed, postponing the presentation of the
results to the next lesson may be an appropriate ‘cliff-hanger teaching strategy’. The
expertise and the experience of the teacher in leading the whole-class wrap-up are
decisive in making the task work in class.

In retrospective, the following considerations guided the design of this task:

– Tomake the problem situation come alive for the audience at the ICMEconference,
the trip to Hamburg was chosen as a point of departure. The ‘experientially real’
criterion was decisive.

– In the beginning, there was some hesitation on whether to travel by train or by
car. The advantage of the train would have been that, contrary to cars driving
on highways, trains do pass through the city centres. However, it was estimated
that the car version would be more recognizable to the audience, particularly in
combination with the Google Maps image and driving directions. As an aside, the
designers of the tasks did not travel by car to Hamburg themselves; the story is
based on another car trip. The point in designing this task is not the truth of the
story behind it, but its experiential reality and mathematical soundness.

– Howopenly to phrase the problem?When designing the problemdifferent versions
came up, with different levels of support. Indeed, the version we had inmindmight
be quite a surprising challenge to students, but it was expected that through the
scaffolding hints mentioned above, it would be possible to have the students start.

– How to present the problem? It was decided to present the task orally to the class
as a whole, supported by slides displayed through a data projector. The idea here
was that this would enhance the personal character of the problem situation. Also,
such an oral whole-class introduction is expected to provide a collaborative setting,
while working on a shared problem. Finally, an oral presentation can be a welcome
change after many textbook-driven activities.
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– It was decided to provide the students with the crucial linear representation
(Fig. 3.13) and, in this way, give away the first schematisation step. Other choices
can make perfect sense here. All depends on the level of the students, their pre-
liminary knowledge, the time available, and the learning goals.

– To deal with student differences in this task, a second layer was built in, namely,
that of thinking of hints for peers. In this way, students who finished the task
quickly were invited to put themselves in the place of their slower peers, and, as
a consequence, reflect on the thinking process needed to solve the task.

3.4.3 Field Tests

To prepare the activity for the ICME13 conference, the task was field-tested in a
bilingual class in a rural school in the Netherlands. The students, 13- to 14-year olds,
took part in the pre-university streamwithin secondary education. The pilot took one
50-minute lesson. After the oral introduction, students went to work. The question
needed to be repeated once or twice. Also, we had a short whole-class discussion after
the first tentative graphs, and invited the students to sketch a second one afterwards.

Fig. 3.15 Graphs by Student 1
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Fig. 3.16 Graphs by Student 2

Figure 3.15 shows the work of Student 1 who initially seemed to identify the graph
with the map, not an uncommon phenomenon while introducing graphs.

The second sketch made by Student 2, shown in Fig. 3.16, is much better, even
if the first and the last part of the graph are not parallel. Student 2’s first graph was
linear, suggesting a proportional increase of both distances. Clearly, this student did
not have a correct mental image of the problem situation at the start. After the whole-
class interruption andmaybe some discussion with peers, the second graph was close
to perfect.

In the whole-class wrap-up, Student 2 explained his initial reasoning, but was
interrupted by Student 3, who introduced the notion of linearity.

Student 2: First, I had like this, but I thought, you can’t be in the origin at the same time,
you can’t be in B and in O at the same time ….

Teacher: Yeah, you cannot.

Student 2: So, I thought like, maybe they, yeah, I don’t know, I can’t really explain it.

Student 3: It’s a linear formula.

Teacher: Wow, how come? Why is it…. Please, explain.

Student 3: Well, ehm, since there isn’t, eh yes, since the amount added always is the same,
the first step, it’s a linear formula.

This short one-lesson intervention confirmed the initial expectations, that the
problem situation was rich and could give rise to interesting discussions.
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During the ICME13 conference in Hamburg, the task was piloted again in a
similar way with an audience of about 250 attendants. Of course, individual help
was hard to deliver in this large-scale setting. Still, in comparison to the field test in
class, similar patterns could be observed. Also, the need for level differentiation was
bigger than in the secondary class, due to the heterogeneity of the ICME audience.
It was surprising how mathematics teachers, researchers and educators have their
schemes for graphing, and can get quite confused once these schemes are challenged
by new situations.

3.4.4 Possible Task Extensions

As alreadymentioned, guided reinvention,meaning and experiential reality are subtle
matters. To be able to deal with this subtlety appropriately in a setting with students
of different levels, a good task should provide teachers with opportunities to simplify
the task, to provide variations, and to deepen and extend the task. A straightforward
way to simplify the task is to leave out one of the two cities between Utrecht and
Hamburg, or even to leave out both and ask for the graph of the distance to Hamburg
against the distance to Utrecht. Thesemight be appropriate first steps towards solving
the original problem. As variations, one may consider similar situations, such as the
already mentioned trip by train, or a bike ride from home to school.

Fig. 3.17 Animation in Geogebra (left) and the underlying function definitions (right)
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As students may come upwith different graphs andwill make all kinds of gestures
while explaining their reasoning, it might be convenient to show the graph through an
animation in a dynamic geometry system. The left screen of Fig. 3.17 shows such an
example in Geogebra, using a slider bar to move the point. This may help to illustrate
the resulting graph. In the meantime, however, this raises a deeper question: How
can you make this animation, which equations and definitions are needed? The right
screen in Fig. 3.17 provides the answer. The following definitions were used:

• Distance to Utrecht: U (Independent variable)

• Distance to Osnabrück: O(U) � |U − 215| (Dependent variable)

• Distance to Bremen B(U) � |U − 330| (Dependent variable)

• Point in the plane: P(U) � (O(U), B(U))

In this way, we take a mathematical perspective and the problem forms a gateway
to the fascinating world of parametric curves.

As a final extension, also a third city betweenUtrecht andHamburg can be consid-
ered. For example, Cloppenburg is about in the middle of Osnabrück and Bremen:
Osnabrück–Cloppenburg is 60 km, and Cloppenburg–Bremen is 55 km. Can you
plot a graph, indicating how the distances to Osnabruck, Cloppenburg and Bremen
co-vary during the trip? Note that this task, in line with its higher level, is phrased in a
somewhat more abstract way. Of course, the graph in this case will be in three dimen-
sions rather than in two. Again, an animation can be built in Geogebra (Fig. 3.18).
Rotating the graph shows a familiar form (Fig. 3.19) and in a natural way raises new,
interesting questions, such as on the angle between the trajectory and the planes.
This latter extension to the third dimension was used in a teacher professional devel-
opment course, in which the participants found the two-dimensional case relatively
easy, but were intrigued by the problem situation.

Fig. 3.18 3D graph in
Geogebra
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Fig. 3.19 3D graph in
Geogebra seen from one of
the axes

3.4.5 Conclusion

This example on task design according to RME principles revealed that for both stu-
dents in Dutch secondary school and for participants of the ICME13 conference, it
was hard to have the flexibility to refrain from the conventional time-distance graph
paradigm and to open the horizon towards distance-distance graphs. This type of
mathematical flexibility, needed in this unconventional and non-routine task, is core
in problem solving, and at the heart of what RME sees as an essential value in math-
ematics education. The point of departure is ‘realistic’ in the sense that both target
groups could imagine the situation and seemed to perceive it as realistic.What makes
the task suitable from anRMEperspective is that it can be used in different variations,
appropriate for different levels of students and for different mathematical learning
goals. Also, there are different, more and less mathematical, approaches and solution
strategies, as well as follow-up questions. Finally, the somewhat surprising character
of the task, may lead to the kind of lively and mathematically interesting interactions
among students and between students and their teacher that are so important in the
co-construction of mathematical meaning.

These task characteristics are central in RME and reflect the approach to mathe-
matics education in the Dutch didactic tradition. To design tasks that elicit genuine
mathematical activity in students is a challenge, not only in the Netherlands but in
the mathematics education community world-wide!

3.5 Voices from Abroad

The chapter concludes with five sections which give a flavour of the international life
of RME. From the beginning of the development of RME, mathematics educators
all over the world were interested in it. This led to cooperation with a large number
of countries where RME ideas and materials were tried out, discussed and adapted.
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The countries that are represented here in these short notes about their experiences
with RME all had a prominent place in a certain phase of the development of RME,
and cover all corners of the globe, including the United States, Indonesia, England
and the Cayman Islands, South Africa, and Belgium.

3.5.1 Realistic Mathematics Education in the United States

David Webb,5 Frederick Peck6

The origins of Realistic Mathematics Education (RME) in the United States can
be traced back to a proof-of-concept study (De Lange, Burrill, Romberg, & van
Reeuwijk, 1993) at a high school in Milwaukee organized by Romberg (Univer-
sity of Wisconsin) and De Lange (Freudenthal Institute). The success of this pilot
study illustrated how RME design principles could be applied in U.S. classrooms.
More recently, RME continues to be articulated largely through professional devel-
opment opportunities offered at innovation centres. As we trace the spread and scale
of RME in the United States, the instantiation of RME is best characterised as a
teacher-centred approach that involves principled reconsideration of how students
learn mathematics. Reconsideration of beliefs and conceptions is often motivated
when teachers re-experience mathematics through the lens of progressive formalisa-
tion and related didactic approaches (Webb, Van der Kooij, &Geist, 2011). Teachers’
participation in the interpretation and application of RME in U.S. classrooms has led
to systemic innovation that has been sustained, inspired and supported byprofessional
development and curricula, and by fellow teachers who provide their colleagues with
a proof-of-concept in their local context.

3.5.2 Two Decades of Realistic Mathematics Education
in Indonesia

Zulkardi,7 Ratu Ilma Indra Putri,8, Aryadi Wijaya9

In Indonesia, some two decades ago, the process of adapting Realistic Mathematics
Education (RME) began (Sembiring, Hadi, &Dolk, 2008). The Indonesian approach
is called ‘PendidikanMatematikaRealistik Indonesia’ (PMRI). This process began in
1994 when Sembiring from the Institut Teknologi Bandung met De Lange, the direc-
tor of the Freudenthal Institute of Utrecht University, who was presenting a keynote

5University of Colorado Boulder, United States, dcwebb@colorado.edu
6University of Montana, United States, frederick.peck@mso.umt.edu
7Sriwijaya University, Indonesia, zulkardi@yahoo.com
8Sriwijaya University, Indonesia, ratu.ilma@yahoo.com
9Yogyakarta State University, Indonesia, a.wijaya@uny.ac.id
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at the ICMI conference in Shanghai. The next step was the decision of the Indonesian
government to send six doctoral candidates to the Netherlands to learn about RME.
Afterwards the development and implementation of RME was continued through a
Dutch-Indonesian project called ‘Do-PMRI’ (Dissemination of PMRI). Moreover,
implementation strategies were carried out such as developing a master’s program
on RME, designing learning materials using RME theory and the development of
a national contest of mathematics literacy using context-based mathematics tasks
similar to those employed in the PISA test (Stacey et al., 2015). Recently, there were
two new initiatives at Sriwijaya University in Palembang, namely the development
of a Centre of Excellence of PMRI and the establishment of a doctoral programme
on PMRI.

3.5.3 Implementing Realistic Mathematics Education
in England and the Cayman Islands

PaulDickinson,10 FrankEade,11 SteveGough,12 SueHough,13Yvette Solomon14

Realistic Mathematics Education (RME) has been implemented in various projects
over the past ten years in the secondary and post-16 sectors of the English education
system. All of these projects can be characterised as needing to deal with clashing
educational ideologies. In particular, pressure towards early formalisation and the
heavy use of summative assessment has influenced how far it is possible to change
teachers’ practices and classroom cultures. Nevertheless, intervention studies based
on the use of RME materials and RME-inspired pedagogic design showed that, in
post-tests, students were willing to ‘have a go’ at problems, indicating confidence in
their ability to make sense of a problem and to apply their mathematics in different
contexts. Also, students were able to use a range of strategies to answer questions,
including a use of models which reflected higher levels of sense-making in math-
ematics than before (Dickinson, Eade, Gough, & Hough, 2010). Even in post-16
national examination resit classes with students who had experienced long-term fail-
ure inmathematics, and where teaching is normally focused on examination training,
small but significant achievement gains were found in number skills following a short
intervention (Hough, Solomon, Dickinson, & Gough, 2017). While questionnaire
data did not show any improvement in students’ attitudes to mathematics, analysis
of interview data suggested that this finding reflected the long-term legacy of their
previous experience of learning mathematics by learning rules without meaning, but
nevertheless, many students reported enjoying mathematics more in RME classes. In

10Manchester Metropolitan University, United Kingdom, p.dickinson@mmu.ac.uk
11Manchester Metropolitan University, United Kingdom, frankeade@outlook.com
12Manchester Metropolitan University, United Kingdom, s.j.gough@mmu.ac.uk
13Manchester Metropolitan University, United Kingdom, s.hough@mmu.ac.uk
14Manchester Metropolitan University, United Kingdom, y.solomon@mmu.ac.uk
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the Cayman Islands, with an education system that is influenced by British tradition,
but which is distant from many of its politically driven accountability pressures and
measures, the RME approach with primary students who had poor number sense
led to a substantial gain in achievement. Also in secondary school, students were
very positive about RME materials and made improvements in achievement as well.
Teachers agreed to continue using contexts, interactive approaches and models to
support problem solving rather than focus on formal algorithms. So, despite the
problems encountered in these projects, there are reasons to remain optimistic about
the potential of an RME approach in the English system.

3.5.4 Reflections on Realistic Mathematics Education
in South Africa

Cyril Julie,15 Faaiz Gierdien16

The project Realistic Mathematics Education in South Africa (REMESA) was intro-
duced in South Africa during a period when curriculum changes were introduced to
fit the educational ideals of the ‘new’ South Africa. In the project, a team comprising
staff from the Freudenthal Institute and the Mathematics Education sector of the
University of the Western Cape develop several RME-based modules, which were
implemented in classrooms. One of themodules wasVision Geometry (Lewis, 1994).
It was deemed that this topicwas a soundway tomanifest theRMEapproach. Content
of vision geometry such as lines of sight, angle of sight, perspective, was encapsu-
lated in activities for students. Although the students found the activities enjoyable
and not above their abilities, the teachers had concerns about the time needed for the
activities, the curriculum coverage and the examinability of the module’s content.
This scepticism remained after the module was somewhat adapted. Another module
that was developed was Global Graphs (Julie et al., 1999). This module was also
adapted by the South African staff. For example, another introduction was chosen
than in the original RME version, namely instead of having the students construct
graphs, asking them tomatch graphs and situations. A difference with the other mod-
ule was that it was developed with a larger group of practising teachers. Moreover,
the teaching experiments occurred when there was a more stable, albeit contested,
operative curriculum in the country. Overall, teachers expressed satisfaction about
the usefulness of the module Global Graphs. In contrast with the module Vision
Geometry, the module Global Graphs was more readily accepted, which also can
be ascribed to the prominence of graphical representations in South African school
mathematics curricula. The lesson learned from the REMESA project is that the
proximity of innovative approaches to the operative curriculum plays an important
role in teachers’ adoption of resources for their practice. In addition, the REMESA

15University of the Western Cape, South Africa, cjulie@uwc.ac.za
16University of Stellenbosch, Stellenbosch, South Africa, faaiz@sun.ac.za
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project has contributed positively to current research and development endeavours
to address the issue of high-quality teaching of mathematics in secondary schools in
low socio-economic environments in a region in South Africa.

3.5.5 Influences of Realistic Mathematics Education
on Mathematics Education in Belgium

DirkDeBock,17 WimVanDooren,18 LievenVerschaffel,19 JohanDeprez20,Dirk
Janssens21

The second half of the last century was a turbulent time for mathematics educa-
tion in Belgium. In the 1960s and 1970s, mathematics education—as in many other
countries—was drastically changed by the New Math movement that broke through
(Noël, 1993). This revolution first took place in secondary school and entered pri-
mary school a few years later. Then, for about twenty years, the official curricula
in Belgium followed this New Math approach faithfully. When from the 1980s on,
NewMath was increasingly criticised in Flanders, it was opted for a reform along the
lines of Realistic Mathematics Education (RME) (De Bock, Janssens, & Verschaf-
fel, 2004). In the end, this led to a reformed Flemish primary school curriculum that
indeed is strongly inspired by the Dutch RMEmodel, but that certainly is not simply
a copy of that model. Although, for example, more attention was paid to linking num-
bers to quantities and to solution methods based on heuristic strategies in addition
to the standard computational algorithms, the Flemish curriculum maintained the
valuable elements of the strong Belgian tradition in developing students’ mental and
written calculation skills. Also in secondary school the critique of New Math led to
using elements of the Dutch RMEmodel to enrich the Belgian mathematics curricu-
lum. Among other things, this resulted in giving solid geometry a more prominent
place, making geometry more connected to measurement, and having a less formal,
intuitive-graphical way of introducing calculus. In addition to other content changes,
this reform brought also a number of didactic innovations, such as the role given
to modelling and applications and to authentic mathematical exploration, discovery
and simulation.

17KU Leuven, Belgium, dirk.debock@kuleuven.be
18KU Leuven, Belgium, wim.vandooren@kuleuven.be
19KU Leuven, Belgium, lieven.verschaffel@kuleuven.be
20KU Leuven, Belgium, johan.deprez@kuleuven.be
21KU Leuven, Belgium, dirk.janssens1@kuleuven.be
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