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Abstract. Pairwise comparison of sound and radio signals can be used
to estimate the distance between two units that send and receive signals.
In a similar way it is possible to estimate differences of distances by
correlating two received signals. There are essentially two groups of such
methods, namely methods that are robust to noise and reverberation, but
give limited precision and sub-sample refinements that are more sensitive
to noise, but also give higher precision when they are initialized close to
the real translation. In this paper, we present stochastic models that can
explain the precision limits of such sub-sample time-difference estimates.
Using these models new methods are provided for precise estimates of
time-differences as well as Doppler effects. The developed methods are
evaluated and verified on both synthetic and real data.
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1 Introduction

Audio and radio sensors are increasingly used in smartphones, tablet PC’s, lap-
tops and other everyday tools. They also form the core of internet-of-things, e.g.
small low-power units that can run for years on batteries or use energy harvest-
ing to run for extended periods of time. If the locations of the sensing units are
known, they can be used as an ad-hoc acoustic or radio sensor network. There are
several interesting cases where such sensor networks can come into use. One such
application is localization, cf. [5–7,9]. Another possible usage is beam-forming,
i.e. to improve sound quality, [2]. Using a sensor network one can also deter-
mine who spoke when through speaker diarisation, [1]. If the sensor positions
are unknown or if they are only known to a certain accuracy, the performance of
such use-cases are inferior as is shown in [18]. It is, however, possible to perform
automatic calibration, i.e. to estimate both sender and receiver positions, even
without any prior information, as illustrated in Figs. 1 and 2. This can be done
up to a choice of coordinate system, [8,12,13,19,22], thus providing accurate
sensor positions for improved use. A key component for all of these methods is
the process of obtaining and assessing estimates of e.g. time-difference of arrival
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Fig. 1. Precise time-difference of arrival estimation can be used for many purposes,
e.g. diarization, beam-forming, positioning and anchor free node calibration. The figure
illustrates its use for anchor free node calibration, sound source movement and room
reconstruction. The image is taken from [10].

Fig. 2. The figure examplifies one usage of precise time-difference of arrival estimation.
The image illustrates the estimated microphone positions (dots), estimated mirrored
microphone positions (dots) and sound source motion (solid curve) from Fig. 1. The
estimated reflective planes are also shown in the figure. These three planes correspond
to the floor, the ceiling and the wall. The image is taken from [10].
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of transmitted signals as they arrive in pairs of sensors. In this paper the focus is
primarily on acoustic signals, but the same principles are useful for the analysis
of radio signals [4].

All of these applications depend on accurate methods to extract features from
the sound (or radio) signals. The most common feature is the time-difference-
of-arrival, which is then used for subsequent processing. For applications, it is
important to find as precise estimates as possible. In [23] time-difference esti-
mates were improved using sub-sample methods. It was also shown empirically
that the estimates of the receiver-sender configurations were improved by this.
However, no analysis of the uncertainties of the sub-sample time-differences was
provided.

This paper is an extended version of [10]. The main content is thus similar.
However this version has been developed and is more thorough. E.g. the deriva-
tions in Sect. 3.1 have been extended, a comparison between different models has
been added, see Sects. 3 and 4.1, and the experiments on real data in Sect. 4.2
have been changed and improved. In addition we have also performed stochastic
analysis for the real data experiments. This is presented in Sect. 4.2. Then fol-
lows Sect. 4.3 which is partly new. Furthermore, most of the figures have been
updated, even if a few remain from the original paper.

The main contributions of [10] and this paper are:

– A scheme for computing time-difference estimates and for estimating the pre-
cision of these estimates.

– A method to estimate minute Doppler effects, which is motivated by an exper-
imental comparison between the models.

– An extension of the framework to capture and estimate amplitude differences
in the signals.

– An evaluation on synthetic data to evince the validity of the models and
provide knowledge of when the method fails.

– An evaluation on real data which demonstrates that the estimates for time-
difference, minute Doppler effects and the amplitude changes contain relevant
information. This is shown for speeds as small as 0.1 m/s.

2 Modeling Paradigm

2.1 Measurement and Error Model

In this paper, discretely sampled signals are studied. These could e.g. be audio
or radio signals. Here, the sampling rate is assumed to be known and constant.
Furthermore, we assume that the measured signal y has been ideally sampled
after which noise – e.g. from the receivers – has been added, s.t.

y(k) = Y (k) + e(k) . (1)

The original, continuous signal is denoted Y : R �→ R and the noise, which is a
discrete stationary stochastic process, is denoted e.
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Let the set of functions Y : R → R that are (i) continuous (ii) square inte-
grable and (iii) with a Fourier transform equal to zero outside [−π, π] be denoted
B. Furthermore, denote the set of discrete, square integrable functions y : Z → R

by �. Now, define the discretization operator D : B → � by

y(i) = D(Y )(i) = Y (i). (2)

Moreover, we introduce the interpolation operator Ig : � → B, as

Y (x) = Ig(y)(x) =
∞∑

i=−∞
g(x − i)y(i) . (3)

It has been shown that interpolation using the normalized sinc function, i.e.
with g(x) = sinc(x), restores a sampled function for functions in B, see [20] Thus,
we call Isinc : � → B the ideal interpolation operator and we have that

Isinc(D(Y )) = Y . (4)

In the same way other interpolation methods can be expressed similarly. E.g.
we obtain Gaussian interpolation by changing sinc in the expression above to

Ga(x) =
1√

2πa2
ex2/(2a2). (5)

2.2 Scale-Space Smoothing and Ideal Interpolation

A measured and interpolated signal is often smoothed for two reasons. Firstly,
there is often more signal as compared to noise for lower frequencies, whereas
for higher frequencies there is usually less signal in relation to noise. Therefore
smoothing can be used in order to remove some of the noise, while keeping most
of the signal.

Secondly, patterns in a more coarse scale are easier captured after smoothing
has been applied, [15]. A Gaussian kernel Ga2 , with standard deviation a2, has
been used for the smoothing. We will also refer to a2 as the smoothing parameter.

Given a sampled signal y, the ideally interpolated and smoothed signal can
be written as

Y (x) = (Ga2 ∗ Isinc(y))(x) = IGa2∗sinc(y)(x). (6)

If a2 is large enough the approximation Ga2 ∗ sinc ≈ Ga2 holds. Thus, one
can use interpolation with the Gaussian kernel as an approximation for ideal
interpolation followed by Gaussian smoothing, [3], s.t.

Y (x) = IGa2∗sinc(y)(x) ≈ IGa2
(y)(x). (7)

What large enough means will be studied in Sect. 4.1.
Moreover, we will later use the fact that discrete w.s.s. Gaussian noise inter-

polates to continuous w.s.s. Gaussian noise, as is shown in [3].
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3 Time-Difference and Doppler Estimation

Assume that we have two signals, W (t) and W̄ (t). The signals are measured and
interpolated as described above. Also assume that the two signals are similar,
but with one e.g. translated and compressed in the time domain. This could
occur when two different receivers pick up an audio signal from a single sender.
Then the second signal can be obtained from the other and a few parameters.
We describe the relation as follows

W (t) = W̄ (αt + h), (8)

where h describes the time-difference of arrival, or translation in the signals. In a
setup where the sound source has equal distance to both microphones h = 0. The
second parameter, α, is a Doppler factor. This parameter is needed for example
if the sound source or the microphones are moving. For a stationary setup α = 1.

When the two microphones pick up the signals these are disturbed by
Gaussian w.s.s. noise. Thus, the received signals can be written

V (t) = W (t) + E(t) and V̄ (t) = W̄ (t) + Ē(t) . (9)

Here, E(t) and Ē(t) denotes the two independent noise signals after
interpolation.

Assume that the signals V and V̄ are given. Also, denote by z =
[
z1 z2

]T =
[
h α

]T , the vector of unknown parameters. Then, the parameters for which (8)
is true can be estimated by the z that minimizes the integral

G(z) =
∫

t

(V (t) − V̄ (z2t + z1))2 dt . (10)

Comparing with Cross Correlation. If we only estimate a time delay h, the
minimization of the error function (10) would in practice be the same as maxi-
mizing the cross correlation of V and V̄ . The cross-correlation for real signals is
defined as

(V � V̄ )(h) =
∫

t

V (t)V̄ (t + h) dt . (11)

Thus, the h that maximize this cross-correlation is given by

argmaxh(V � V̄ )(h) = argmaxh

∫

t

V (t)V̄ (t + h) dt . (12)

If we expand the error function (10), while neglecting the Doppler factor we
obtain the minimizer

argminh

∫
t

(V (t) − V̄ (t + h))2 dt = argminh

∫
t

(V (t))2 + (V̄ (t + h))2−2V (t)V̄ (t + h) dt

= argminh

∫
t

−2V (t)V̄ (t + h) dt = argmaxh

∫
t

V (t)V̄ (t + h) dt.

(13)
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Note that since we integrate over t, the integral
∫

t
(V̄ (t + h))2 dt is almost con-

stant, ignoring edge effects.
We choose to use (10) for estimation of the parameters since it is simple to

expand and is valid even if we add more parameters.

3.1 Estimating the Standard Deviation of the Parameters

If zT =
[
hT αT

]T is the “true” parameter for the data and ẑ is the param-
eter that has been estimated by minimizing (10), the estimation error can be
expressed as

X = ẑ − zT . (14)

Assume, without loss of generality, that zT =
[
0 1

]T . The standard deviation of
ẑ will be the same as the standard deviation of X and the mean of those two will
only differ by zT . Thus, it is sufficient to study X to get statistical information
about the estimate ẑ.

Linearizing G(z) around the true displacement zT =
[
0 1

]T gives

G(z) ≈ F (X) =
1
2
XT aX + bX + f, (15)

with
a = ∇2G(zT ) , b = ∇G(zT ) , f = G(zT ) . (16)

Using (9) and (8), we get

f = G(
[
01

]T
) =

∫
t

(V (t) − V̄ (1 · t − 0))2 dt =

∫
t

(W (t) + E(t) − (W̄ (t) + Ē(t)))2 dt

=

∫
t
(E − Ē)2 dt =

∫
t
E2 + 2EĒ + Ē2 dt. (17)

To find the coefficients a and b we first calculate the derivatives ∇G(z) and
∇2G(z).

∇G =

[ ∫
t
2(V (t) − V̄ (αt + h)) · (−V̄ ′(αt + h)) dt∫

t
2(V (t) − V̄ (αt + h)) · (−V̄ ′(αt + h) · t) dt

]

= − 2

[ ∫
t
(W (t) + E(t) − W̄ (αt + h) − Ē(αt + h)) · (W̄ ′(αt + h) + Ē′(αt + h)) dt∫

t
(W (t) + E(t) − W̄ (αt + h) − Ē(αt + h)) · (W̄ ′(αt + h) + Ē′(αt + h)) · tdt

]
.

(18)

Inserting the true displacement zT , at the point of linearization, gives

b =∇G(zT )

= − 2
[ ∫

t
(W (t) + E(t) − W̄ (t) − Ē(t)) · (W̄ ′(t) + Ē′(t)) dt∫

t
(W (t) + E(t) − W̄ (t) − Ē(t)) · (W̄ ′(t) + Ē′(t)) · t dt

]

= − 2
[ ∫

t
(E − Ē)(W̄ ′ + Ē′) dt∫

t
(E − Ē)(W̄ ′ + Ē′)t dt

]
= −2

[ ∫
t
EW̄ ′ + EĒ′ − ĒW̄ ′ − ĒĒ′ dt∫

t
(EW̄ ′ + EĒ′ − ĒW̄ ′ − ĒĒ′)t dt

]
.

(19)
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To simplify further computations, we introduce

ϕ̂ = EW̄ ′ + EĒ′ − ĒW̄ ′ − ĒĒ′, (20)

such that

b = −2
[ ∫

t
ϕ̂ dt∫

t
tϕ̂ dt

]
. (21)

Furthermore,

∇2G =
[ ∫

t
−2V̄ ′(αt + h) · (−V̄ ′(αt + h)) + 2(V (t) − V̄ (αt + h))(−V̄ ′′(αt + h)) dt∫

t
−2V̄ ′(αt + h) · t · (−V̄ ′(αt + h)) + 2(V (t) − V̄ (αt + h))(−V̄ ′′(αt + h) · t) dt

. . .

∫
t
−2V̄ ′(αt + h) · (−V̄ ′(αt + h)) · t + 2(V (t) − V̄ (αt + h)) · (−V̄ ′′(αt + h) · t) dt∫

t
−2V̄ ′(αt + h) · t(−V̄ ′(αt + h)) · t + 2(V (t) − V̄ (αt + h)) · (−V̄ ′′(αt + h) · t2) dt

]

= 2

[ ∫
t
(V̄ ′(αt + h))2 − V (t)V̄ ′′(αt + h) + V̄ (αt + h)V̄ ′′(αt + h) dt∫

t
t · (V̄ ′(αt + h))2 − t · V (t)V̄ ′′(αt + h) + t · V̄ (αt + h)V̄ ′′(αt + h) dt

. . .

∫
t
·(V̄ ′(αt + h))2 − t · V (t)V̄ ′′(αt + h) + t · V̄ (αt + h)V̄ ′′(αt + h) dt∫

t
t2 · (V̄ ′(αt + h))2 − t2 · V (t)V̄ ′′(αt + h) + t2 · V̄ (αt + h)V̄ ′′(αt + h)

]
.

(22)
Now, introducing the notation

φ(z) = (V̄ ′(αt + h))2 − V (t)V̄ ′′(αt + h) + V̄ (αt + h)V̄ ′′(αt + h), (23)

we can write ∇2G shorter as

∇2G =
[ ∫

t
φ dt

∫
t
tφ dt∫

t
tφ dt

∫
t
t2φ dt

]
. (24)

If we let φ̂ be the value of φ for zT

φ̂ =φ(zT ) = (W̄ ′(t) + Ē′(t))2 − (W (t) + E(t))(W̄ ′′(t) + Ē′′(t))
+ (W̄ (t) + Ē(t))(W̄ ′′(t) + Ē′′(t))

=(W̄ ′)2 + 2W̄ ′Ē′ + (Ē′)2 − EW̄ ′′ − EĒ′′ + ĒW̄ ′′ + ĒĒ′′
(25)

we get

a = ∇2G(zT ) =
[ ∫

t
φ̂ dt

∫
t
tφ̂ dt∫

t
tφ̂ dt

∫
t
t2φ̂ dt

]
. (26)

We also have that F (X) = 1/2 · XT aX + bX + f . To minimize this error
function, we find the X for which the derivative of F (X) is zero. Since a is
symmetric we get

∇F (X) = aX + b = 0 ⇔ X = g(a, b) = −a−1b. (27)

In the calculations below, we assume that a is invertible.
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Now we would like to find the mean and covariance of X. For this, Gauss’
approximation formulas are used. If we denote the expected value of a and b
with μa = E[A] and μb = E[b] respectively the expected value of X can be
approximated to

E[X] =E[g(a, b)] ≈ E[g(μa, μb) + (a − μa)g′
a(μa, μb) + (b − μb)g′

b(μa, μb)]
=g(μa, μb) + (E[a] − μa)g′

a(μa, μb) + (E[b] − μb)g′
b(μa, μb)

=g(μa, μb) = −μ−1
a μb = −E[a]−1E[b].

(28)

In a similar manner the covariance of X is

C[X] =C[g(a, b)] ≈ g′
a(μa, μb)C[a]g′

a(μa, μb)T + g′
b(μa, μb)C[b]g′

b(μa, μb)T

+ 2g′
a(μa, μb)C[a, b]g′

b(μa, μb)T ,
(29)

where C[a, b] denotes the cross-covariance between a and b. For further compu-
tations g′

a(a, b), g′
b(a, b), E[a], E[b], C[b] and C[a, b] are needed.

By computing the expected value of ϕ̂

E[ϕ̂] =E[EW̄ ′ + EĒ′ − ĒW̄ ′ − ĒĒ′]
=E[E]W̄ ′ + E[E]E[Ē′] − E[Ē]W̄ ′ − E[Ē]E[Ē′] = 0

(30)

we get

E[b] =E
[
−2

[∫
t
ϕ̂ dt∫

t
tϕ̂ dt

]]
= −2

[ ∫
t
E[ϕ̂] dt∫

t
tE[ϕ̂] dt

]
= −2

[ ∫
t
0 dt∫

t
t · 0 dt

]
=

[
0
0

]
. (31)

In the second step of the computation of E[ϕ̂] we have used the fact that for
a weakly stationary process the process and its derivative at a certain time are
uncorrelated, and thus E[ĒĒ′] = E[Ē]E[Ē′], [16]. Hence,

E[X] = −E[a]−1E[b] = −E[a]−1

[
0
0

]
=

[
0
0

]
. (32)

For the partial derivative of g(a, b) w.r.t. b we get [17]

g′
b(a, b) =

∂

∂b

(−a−1b
)

= −(a−1)T = −(aT )−1 = −a−1 (33)

and thus g′
b(μa, μb) = −(E[a])−1. Since E[b] = 0, we get that g′

a(μa, μb) = 0,
[17]. Hence the first and the last term in (29) cancel, leaving

C[X] =g′
b(μa, μb)C[b]g′

b(μa, μb)T = (−E[a]−1)C[b](−E[a]−1)T

=E[a]−1C[b](E[a]−1)T .
(34)



124 G. Flood et al.

To find the expected value of a the expected value of φ̂ is needed. This is
obtained from

E[φ̂] = (W̄ ′)2 + 2W̄ ′E[Ē′] + E[(Ē′)2] − W̄ ′′E[E] − E[E]E[Ē′′] + W̄ ′′E[Ē] + E[ĒĒ′′]
= (W̄ ′)2 + E[(Ē′)2] + E[ĒĒ′′] = (W̄ ′)2. (35)

In the last equality we have used that E[ĒĒ′′] = −E[(Ē′)2], [16]. Thus, the two
last terms cancel out. The expected value of a is therefore

E[a] =2
[ ∫

t
E[φ̂] dt

∫
t
E[tφ̂] dt∫

t
E[tφ̂] dt

∫
t
E[t2φ̂] dt

]
= 2

[ ∫
t
(W̄ ′)2 dt

∫
t
t(W̄ ′)2 dt∫

t
t(W̄ ′)2 dt

∫
t
t2(W̄ ′)2 dt

]
. (36)

Now, since the expected value of b is zero, the covariance of b is

C[b] = (−2)2
[
C11 C12

C21 C22

]
, (37)

with

C11 = E
[∫

t1

ϕ̂(t1) dt1 ·
∫

t2

ϕ̂(t2) dt2

]

C12 = E
[∫

t1

t1ϕ̂(t1) dt1 ·
∫

t2

ϕ̂(t2) dt2

]

C21 = E
[∫

t1

ϕ̂(t1) dt1 ·
∫

t2

t2ϕ̂(t2) dt2

]

C22 = E
[∫

t1

t1ϕ̂(t1) dt1 ·
∫

t2

t2ϕ̂(t2) dt2

]
.

(38)

Note that by changing the order of the terms in C12 it is clear that C21 = C12.
Furthermore, we obtain

C11 =E
[∫

t1

ϕ̂(t1) dt1 ·
∫

t2

ϕ̂(t2) dt2

]

=E
[( ∫

t1

(E − Ē)(W̄ ′ + Ē′) dt1

)
·
( ∫

t2

(E − Ē)(W̄ ′ + Ē′) dt2

)]

=E
[ ∫

t1

∫

t2

(E(t1) − Ē(t1))(W̄ ′(t1) + Ē′(t1))·

(E(t2) − Ē(t2))(W̄ ′(t2) + Ē′(t2)) dt1dt2

]
.

(39)

Denoting E[(E(t1) − Ē(t1))(E(t2) − Ē(t2))] = rE−Ē(t1 − t2) and assuming that
E[Ē′(t1)Ē′(t2)] is small gives



Stochastic Analysis of Time-Difference and Doppler Estimates 125

C11 =E
[∫

t1

ϕ̂(t1) dt1 ·
∫

t2

ϕ̂(t2) dt2

]

=
∫

t1

∫

t2

E[(E(t1) − Ē(t1))(E(t2) − Ē(t2))] · (W̄ ′(t1)W̄ ′(t2)

+ W̄ ′(t1)E[Ē′(t2)] + E[Ē′(t1)]W̄ ′(t2) + E[Ē′(t1)Ē′(t2)]) dt2dt1

≈
∫

t1

∫

t2

rE−Ē(t1 − t2)W̄ ′(t1)W̄ ′(t2) dt2dt1

=
∫

t1

W̄ ′(t1)(W̄ ′ ∗ rE−Ē)(t1) dt1.

(40)

The time t is a deterministic quantity and the other elements in C[b] can be
computed similarly. Finally we have

C11 =
∫

t

W̄ ′(t)(W̄ ′ ∗ rE−Ē)(t) dt

C12 = C21 =
∫

t

tW̄ ′(t)(W̄ ′ ∗ rE−Ē)(t) dt

C22 =
∫

t

tW̄ ′(t)((tW̄ ′) ∗ rE−Ē)(t) dt

(41)

and through (34) we get an expression for the variance and thus also the standard
deviation of X.

3.2 Expanding the Model

It is easy to change or expand the model (8) to contain more (or fewer) param-
eters. If we keep h and α and add an extra amplitude parameter γ, we get the
model

W (t) = γW̄ (αt + h). (42)

The error integral (10) would then be changed accordingly and the optimization
would instead be over over z =

[
z1 z2 z3

]
=

[
h α γ

]
.

The computations for achieving the estimations does in practice not get
harder when we add more parameters. However, the analysis from the previ-
ous section gets more complex.

4 Experimental Validation

For validation we perform experiments on both real data and synthetic data. The
purpose of using synthetic data is to demonstrate the validity of the model, but
also to verify the approximations used. In the latter case we have studied at what
signal-to-noise ratio the approximations are valid. Furthermore, to show that the
parameter estimations contain useful information, we have done experiments on
real data. This is well-known for time-difference, but less explored for the Doppler
effects and amplitude changes.
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4.1 Synthetic Data - Validation of Method

The model was first tested on simulated data in order to study when the approxi-
mations in the model derivation hold. The linearization using Gauss’ approxima-
tion formula, e.g. (28) and (29), is one example of such approximations. Another
is the usage of Gaussian interpolation as an approximation of ideal interpolation
followed by convolution with a Gaussian, (7).

-5

-4

-3

-2

-1

0

1

2

3

4

Fig. 3. The simulated signal that was used for the experimental validation. To achieve
a more realistic signal noise of different levels was added later on. The plot is taken
from [10].

To do these studies we compared the theoretical standard deviations of the
parameters calculated according to Sect. 3.1 with empirically computed standard
deviations. The agreement of these standard deviations makes us conclude that
our approximations are valid.

First we simulated an original continuous signal W (x), see Fig. 3. The second
signal was then created according to (8) s.t. W̄ = W (1/α · (x − h)). The signals
were ideally sampled after which Gaussian white discrete noise with standard
deviation σn was added. After smoothing with a Gaussian kernel with standard
deviation a2 (see Sect. 2.2) the signals can be described by V (t) and V̄ (t) as
before.

The two signals V and V̄ were simulated anew 1000 times to investigate the
effect of a2 and σn. Each time the same original signals W and W̄ were used,
but with different noise realizations. Then, we computed the theoretical standard
deviation of the parameter vector z, σz =

[
σh σα

]
. This was done in accordance

with the presented theory. We also computed an empirical standard deviation
σ̂z =

[
σ̂h σ̂α

]
from the 1000 different parameter estimations.

When studying the effect of a2 the noise level was kept constant, with σn =
0.03. The translation was set to h = 3.63 and the Doppler factor was α =
1.02. However, the exact numbers are unessential. While varying the smoothing
parameter a2 ∈ [0.3, 0.8] the standard deviation was then computed according
to the procedure above.

The results from these simulations can be seen in Fig. 4. When a2 is below
a2 ≈ 0.55 the theoretical values σz and the empirical values σ̂z do not agree,
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Fig. 4. The plots show the standard deviation of the parameters in z for different
values of the smoothing parameter a2. The stars (∗) represent the theoretical values
σz and the crosses (x) the empirical values σ̂z . The left plot shows the results for the
translation z1 = h and the right plot for the Doppler factor z2 = α. It is clear that the
approximation is valid approximately when a2 > 0.55. The plots are taken from [10].
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Fig. 5. The standard deviation of the translation (to the left) and Doppler factor (to
the right) for different levels of noise in the signal. The stars (∗) mark the theoretical
values σz and the crosses (x) the empirical σ̂z . For the translation the values agree for
signals with a noise level up to σn ≈ 0.8. For the Doppler factor the theoretical values
follow the empirical values when σn < 1.1. The plots are taken from [10].

while they do for a2 > 0.55. Therefore we draw the conclusion that the approx-
imation (7) of ideal interpolation should only be used when a2 > 0.55.

Secondly, the effect of changing the noise level was investigated. The smooth-
ing parameters was fixed to a2 = 2 and the translation and the Doppler factor
were kept on the same level as before. Instead we varied the noise level s.t.
σn ∈ [0, 1.6]. Then the standard deviations of the parameters σz and σ̂z were
computed in the same way as in the previous section.

The results from this run can be seen in Fig. 5, with the results for the
translation parameter h to the left and for the Doppler parameter α to the
right. When σn is lower than σn ≈ 0.8 the theoretical and empirical values for
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the translation parameter are similar. For higher values of σn they do not agree.
The same goes for the Doppler factor when the noise level is below σn ≈ 1.1.

By this, we reason that noise with a standard deviation up to σn ≈ 0.8 can
be handled. The original signal W have an amplitude that varies between 1 and
3.5 and using the standard deviation of that signal, σW , we can compute the
signal-to-noise ratio that the system can manage. We get the result

SNR =
σ2

W

σ2
n

≈ 4.7. (43)

Comparing Different Models. In this paper we have chosen to work with
the models (8) and (42). However, we have so far not presented any comparison
between different models. To investigate this, we studied two models, namely
(8), which we call model B and a slightly simpler model which we call model A,

W (x) = W̄ (x + h). (44)

To begin with, we simulated data according to model A. We call this data
A. During the simulation the standard deviation of the noise in the signals was
set to σn = 0.02 and the smoothing parameter was a2 = 2.0. Furthermore, we
studied this data both using model A, i.e. by minimizing

∫
t
(V (t)− V̄ (t+h))2 dt

and using model B, see (10). The results can be seen in the first column (Data A)
of Table 1.

Secondly, a similar test was made but this time we simulated data according
to model B. We call this data B. We then studied this data using both model
A and B. The results are shown in the second column (data B) of Table 1.

Table 1. Comparison between model A from (44) and model B from (8). Data A
consists of signals with only translational differences while the second signal in data B
is affected by both translation and a Doppler effect. The standard deviations for model
B in the table regards the theoretical values that were derived in Section 3.1, and a
similar analysis has been performed for model A.

Data A Data B

True values Translation, hT 3.63 3.63

Doppler factor, αT 1.00 1.02

Model A Est. h, ĥ(A) 3.63 13.4

Std. of h, σ
(A)
h 1.01 · 10−2 1.02 · 10−2

Model B Est. h, ĥ(B) 3.63 3.66

Std. of h, σ
(B)
h 2.30 · 10−2 2.30 · 10−2

Est. α, α̂(B) 1.00 1.02

Std. of α, σ
(B)
α 5.32 · 10−5 5.33 · 10−5

Studying the first column of Table 1 we see that model B estimates the
parameters as good as model A – which in this case is the most correct model –
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does. Though, for model B the standard deviation σh is more than twice as big
as for model A.

In the second column of the table we see that since model A cannot esti-
mate the Doppler effect, the translation parameter is erroneously estimated.
The standard deviation σh is however still lower for model A. To minimize the
error function model A estimates the translation such that the signal is fitted in
the middle, see Fig. 6. This means that even though the standard deviation is
low, the bias is high.

If we know that our collected data has only been affected by a translation
it is clearly better to use model A. However, the loss for using a more simple
model is larger on complex data than the loss for using a larger model for simple
data. Thus, based on the results from Table 1 we conclude that it is better to
use a larger model for the real data in the following section.
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Fig. 6. The results after using model A on data B, where the second signal is affected
both by a translation and Doppler effect. Since the model does not estimate any Doppler
factor, the estimated translation will be biased. The two signals agree well in the middle,
while there is a gap between them at the beginning and the end. This gap cannot be
captured by a translation.

4.2 Real Data - Validation of Method

The experiments on real data were performed in an anaechoic chamber and the
recording frequency was f = 96 kHz. We used 8 T-Bone MM-1 microphones and
these were connected to an audio interface (M-Audio Fast Track Ultra 8R) and
a computer. Furthermore, the microphones were placed so that they spanned
3D, approximately 0.3–1.5 m away from each other. As a sound source we used
a mobile phone which was connected to a small loudspeaker. The mobile phone
was moved around in the room while playing a song.

We used the technique described in [22] and refined in [21] to achieve ground
truth consisting of a 3D trajectory for the sound source path s(t) and the 3D
positions of the microphones r1, . . . , r8. The method uses RANSAC algorithms
which are based on minimal solvers [14] to find initial estimates of the sound
trajectory and microphone positions. Then, these are refined using non-linear
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optimization of a robust error norm, including a smooth motion prior, to reach
the final estimates.

However, to make ground truth independent from the data that we used for
testing we chose to only take data from microphone 3–8 into account during the
first two thirds of the sound signal. Thus, by that we estimated s(t) for certain
t and r3, . . . , r8. For the final third of the signal we added the information from
microphone 1 and 2 as well, such that our solution would not drift compared to
ground truth. By that we estimated the rest of s(t), r1 and r2.

We only used data from microphone 1 and 2 for the validation of the method
presented in this paper. The sound was played for around 29 s and the loud-
speaker was constantly moving during this time. Furthermore, both the direction
and the speed of the sound source changed.

Since our method assume a constant parameter z in a window we divided the
recording into 2834 patches of 1000 samples each (i.e. about 0.01 s). Within these
patches the parameters were approximately constant. Each of the patches could
then be investigated and compared to ground truth separately. From ground
truth we had a constant loudspeaker position s(i), its derivative ∂s(i)

∂t (i) and the
receiver positions r1 and r2 for each signal patch i.

Estimating the Parameters. If we call signal patch i from the first micro-
phone V (i)(t) and let V̄ (i)(t) be the patch from the second microphone we can
estimate the parameters using (8) to model the received signals.
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Fig. 7. The received signal patches at a certain time – the first signal in dashed (- -)
and the second as solid (—). The top plot shows the signals as they were received. In
the lower plot the same patches have been modified using the optimal parameters h
and α.

The method presented in this paper is developed to estimate small transla-
tions, s.t. h ∈ [−10, 10] samples. However, in the experiments the delays were
larger than that. Therefore we began by pre-estimating an integer delay h̃(i) using
GCC-PHAT. The GCC-PHAT method is described in [11]. After that we did a
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subsample refinement of the translation and estimated the Doppler parameter
using our method. This was done by minimization of the intergral

∫

t

(V (i)(t) − V̄ (i)(α(i)t + h̃(i) + h(i)))2 dt. (45)

Here, the optimization was over h(i) and α(i), while h̃(i) should be seen as a
constant.

The results after applying the optimized parameters to one of the signal
patches can be seen in Fig. 7. The optimization was carried out for all different
patches.
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Fig. 8. The figure shows the difference between the distances from receiver 1 to the
sender (d1) and receiver 2 to the sender (d2) over time. The ground truth Δd(i) is
plotted as a solid line (—) and the values Δd̄(i) obtained from time-difference estimates
as dots (•). Each dot represents the value for one signal patch. It is hard to distinguish
the line representing ground truth since the estimations agree well with this. The
plot is similar to Fig. 7 in [10], but has been generated using the updated and more
independent method which is presented in this paper.

Comparison with Ground Truth. The distances d
(i)
1 and d

(i)
2 from the micro-

phones to the loudspeaker were computed from the ground truth receiver and
sender positions (r1, r2 and s(i)) according to

d
(i)
1 = |r1 − s(i)|, d

(i)
2 = |r2 − s(i)|. (46)

The difference of these distances,

Δd(i) = d
(i)
2 − d

(i)
1 (47)

has a connection to our estimated translation h(i) and the time difference of
arrival. However, Δd(i) is measured in meters, while we compute h(i) in samples.
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To be able to compare these two, we multiplied h(i) with a scaling factor c/f .
The recording frequency was f = 96 kHz and c = 340 m/s is the speed of sound.
From this we could obtain an estimation of Δd(i),

Δd̄(i) =
c

f
· h(i). (48)

Thereafter we could compare our estimated values Δd̄(i) to the ground truth
values Δd(i). The ground truth is plotted together with our estimations in Fig. 8.
The plot shows the results over time, for all different patches. It is clear that the
two agree well.

The Doppler parameter measures how the distance differences changes, i.e.

∂Δd

∂t
=

∂d2
∂t

− ∂d1
∂t

. (49)

Here, the distances over time are denoted d1 and d2 respectively. The derivative
of d1(t) = |r1 − s(t)| is

∂d1
∂t

=
r1 − s

|r1 − s| · ∂s

∂t
, (50)

where · denotes the scalar product between the two time dependent vectors. The
derivative of d2 can be found correspondingly. If n

(i)
1 and n

(i)
2 are unit vectors in

the direction from s(i) to r1 and r2 respectively, i.e.

n
(i)
1 =

r1 − s(i)

|r1 − s(i)| , n
(i)
2 =

r2 − s(i)

|r2 − s(i)| , (51)

the derivatives can be expressed as

∂d
(i)
1

∂t
= n

(i)
1 · ∂s(i)

∂t
,

∂d
(i)
2

∂t
= n

(i)
2 · ∂s(i)

∂t
. (52)

Thus
∂Δd(i)

∂t
= n

(i)
2 · ∂s(i)

∂t
− n

(i)
1 · ∂s(i)

∂t
. (53)

These ground truth Doppler values can be interpreted as how much Δd
changes each second. However, our estimated Doppler factor α is a unit-less
constant. We can express the relation between the two values as

∂Δd

∂t
= (α − 1) · c, (54)

where c still denotes the speed of sound. In Fig. 9 the ground truth is plotted as
a solid line together with our estimations marked with dots. The similarities are
easily distinguishable even if the estimations are noisy.

It is clear from the plots that the estimations contain relevant information.
However, there is quite some noise in the estimates in Figs. 8 and 9. This can
be reduced further by computation of a moving average. We have computed a
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Fig. 9. The derivative of the distance differences Δd plotted over time. The dots (•)
are our estimations and the solid line (—) is computed from ground truth. We see
that even though the estimations are noisy the pattern agree with ground truth. The
plot is similar to Fig. 8 in [10], but has been generated using the updated and more
independent method which is presented in this paper.
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Fig. 10. This plot shows essentially the same thing as Fig. 9, i.e. ∂Δd/∂t, but with a 20-
patches moving average over the estimations. The averaging substantially reduces the
noise. The plot is similar to Fig. 10 in [10], but has been generated using the updated
and more independent method which is presented in this paper.

moving average over 20 patches – approximately 0.2 s – for the distance difference
derivative and plotted the result in Fig. 10. The plot can be compared to Fig. 9,
where no averaging has been done. We see that the moving average substantially
reduces the noise in the estimates.

Even in Fig. 10, the estimates in the beginning are noisy. This is due to the
character of the song that was played, where the sound is not persistent until
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after 5–6 s. In the beginning there are just intermittent drumbeats and silence
between these. Then the information is not sufficient to make good estimates.
Thus, it is more fair to the algorithm to review the results from 5–6 s and forward.
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Fig. 11. The standard deviation for parameters that was estimated for the real data.
The upper plot shows the standard deviation of the distance difference in Fig. 8 over
time and the lower plot shows the standard deviation of the derivative of the distance
difference in Fig. 9.

Estimating the Standard Deviation of the Parameters. We have also
computed the standard deviations of the parameters in accordance to Sect. 3.1.
These are plotted over time in Fig. 11. We can see that the estimations are more
uncertain in the beginning of the song, in consistence with when the signal is not
persistent. However, just by looking at the estimated Doppler factor this seems
to be more uncertain than the theoretical standard deviation suggests.

We also estimated the standard deviations empirically. This was done using
the results in Figs. 8 and 9. The empirical standard deviation was computed
for the difference between our estimations and ground truth, for a certain time
window, namely t ∈ [10, 15].

The different standard deviations are displayed in Table 2. For the theoretical
values we have computed the mean and median, both for all signal and for
t ∈ [10, 15] for comparison with the empirical values.

We can see that the theoretical and empirical values agree quite well for the
translation. The reason that the mean of the theoretical standard deviation is
higher for all signal is due to the parts of the signal that are more uncertain.
However, in the chosen time window the values agree well.

For the Doppler factor the theoretical standard deviation is lower compared
to the empirical estimates. This is interesting and there can be several reasons.
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Table 2. The mean and the median for the standard deviation of the estimated distance
difference (Fig. 8) and the Doppler factor (Fig. 9) for the two received signals.

Translation,

d2 − d1

Doppler factor, ∂Δd/∂t

Theoretical, all signal Mean of std 1.03 · 10−2 5.25 · 10−3

Median of std 4.71 · 10−3 2.39 · 10−3

Theoretical, t ∈ [10, 15] Mean of std 4.58 · 10−3 2.29 · 10−3

Median of std 4.12 · 10−3 2.08 · 10−3

Empirical, t ∈ [10, 15] 3.88 · 10−3 4.43 · 10−1

To begin with, we made some assumptions for the received signals when we
derived the equations in Sect. 3.1, which are probably not true for our data.
E.g. in our experiments we estimated the noise in the signals as the difference
between the two signals after modification. In the bottom plot of Fig. 7 we see
that there is still an amplitude difference between the two signals. This means
that our estimated noise will not be w.s.s., as was assumed in the derivations.
Furthermore, the noise will thus be overestimated. Actually, it turned out the
SNR was below 4.7.

Except from this, our method is developed to work with one signal with
constant parameters and does not take into account that the patches in our real
data actually constitutes one long signal. Also, we might have forgotten to take
some important factor into account in out derivations for the standard deviation
of the Doppler factor. It might be that the problem cannot be modeled as linear.
Regardless, an interesting point for future focus is to investigate this.

4.3 Expanding the Model for Real Data

As mentioned in Sect. 3.2 it is in practice not much harder to estimate three
model parameters. Therefore, to get a more precise solution (see Sect. 4.1 and
the end of the previous section), we have also made experiments on the same
data using (42) as model for the signals. The computations are made in the same
manner as in the previous section but the error function (45) is replaced by

∫

t

(V (i)(t) − γ(i)V̄ (i)(α(i)t + h̃(i) + h(i)))2 dt, (55)

and the optimization is performed over all three parameters, the subsample
translation h(i), the Doppler factor α(i) and the amplitude factor γ(i).

The results from using this model for the same signal patch as in Fig. 7 can be
seen in Fig. 12. After moving the signals according to the estimated parameters
the norm of the difference between the signals (bottom plot in the figures) has
decreased with 20% when we included the amplitude factor compared to when
we did not.

The plots for the translation parameter and the Doppler factor look similar
to the plots in Figs. 8 and 9. However, we can now make a comparison to ground
truth for the amplitude factor γ as well.
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Fig. 12. The plot shows the same signal patches as in Fig. 7. The difference is that
a larger model, namely (42), has been used here and thus an amplitude has been
estimated as well. The bottom image shows the same signals after modifications using
the optimal parameters.
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Fig. 13. The distance quotient d2/d1 plotted over time. The solid line (—) represents
the ground truth and each dot (•) is the estimation for a certain patch. While the
estimations are somewhat noisy there is no doubt that the pattern is the same. The
plot is similar to Fig. 9 in [10], but has been generated using the updated and more
independent method which is presented in this paper.

The amplitude difference of the two received signals can be compared to d
(i)
1

and d
(i)
2 . The amplitude estimate γ(i) is related to the quotient of the distances,

d
(i)
2 /d

(i)
1 . Since the sound spreads as on the surface of a sphere, the distance

quotient is proportional to the square root of the amplitude γ(i),

d
(i)
2

d
(i)
1

= C ·
√

γ(i). (56)
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The unknown constant C depends on the gains of the two recording channels.
For the experiment, the estimated proportionality constant was C = 1.3.

The distance quotient is plotted over time in Fig. 13 – our estimations as dots
and ground truth as a solid line. Again we see that they clearly follow the same
pattern.

5 Conclusions

In this paper we have studied how to estimate three parameters – time-
differences, amplitude changes and minute Doppler effects – from two audio
signals. The study also contains a stochastic analysis for these estimated param-
eters and a comparison between different signal models. The results are impor-
tant both for simultaneous determination of sender and receiver positions, but
also for localization, beam-forming and diarization. In the paper we have built on
previous results on stochastic analysis of interpolation and smoothing in order
to give explicit formulas for the covariance matrix of the estimated parameters.
In the paper it is shown that the approximations that are introduced in the
theory are valid as long as the smoothing is at least 0.55 sample points and as
long as the signal-to-noise ratio is greater than 4.7. Furthermore, we show using
experiments on both simulated and real data that these estimates provide useful
information for subsequent analysis.
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