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Abstract. Nearest neighbor (NN) search is a fundamental issue in many
computer applications, such as multimedia search, computer vision and
machine learning. While this problem is trivial in low-dimensional search
spaces, it becomes much more difficult in higher dimension because of
the phenomenon known as the curse of dimensionality, where the com-
plexity grows exponentially with dimension and the data tends to show
strong correlations between dimensions. In this paper, we introduce a
new hashing method to efficiently cope with this challenge. The idea
is to split the search space into many subspaces based on a number of
jointly-independent and uniformly-distributed circular random variables
(CRVs) computed from the data points. Our method has been tested on
datasets of local SIFT and global GIST features and was compared to
locality sensitive hashing (LSH), Spherical Hashing methods (HD and
SHD) and the fast library for approximate nearest neighbor (FLANN)
matcher by using linear search as a baseline. The experimental results
show that our method outperforms all state-of-the-art methods for the
GIST features. For SIFT features, the results indicate that our method
significantly reduces the search query time while preserving the search
quality and outperforms FLANN for datasets of size less than 200 K
points.
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1 Introduction

The nearest neighbor (NN) search is one of the most challenging tasks in many
computer applications such as machine learning, multimedia databases, com-
puter vision and image processing. In many of these applications, the data points
are typically represented as high-dimensional vectors. For example, in computer
vision applications, to automatically process and understand an image, it has to
be described by one or several of high-dimensional features.

The NN Search problem is defined as follows: Assuming a dataset of points
P ⊂ R

d are given as P = {p1, p2, p3, . . . , pn}. Then, the problem is to find the
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closest point in P to a given query point q using a certain similarity measure
such as the hamming or euclidean distance.

NN(P, q) = {p ∈ P | ∀pi ∈ P ∧ pi �= p : dist(p, q) � dist(pi, q)}.

The linear search is the easiest technique to solve this problem, which includes
computing all the metric distances from a query point to every point in the
dataset for finding the point with the smallest distance (exact NN). However,
the query time of linear search grows proportionally to the number and dimen-
sionality of data points. Therefore, this solution is very time-consuming and
impractical for large-scale datasets of high-dimensional points.

Much research has been conducted within the last three decades to find an
efficient solution for the NN search problem in high-dimensional spaces. The
suggested solutions have in common that they organise the dataset content in
complex data structures (trees, graphs or hash tables) in such a way that a NN
query can be answered without searching the whole dataset. Unfortunately, the
time of data saving into and fetching from the data structure keeps growing
exponentially with the number of dimensions. The NN search can be acceler-
ated by relaxing the problem by searching for the approximate nearest neighbor
(ANN) instead of the exact one. The ANN is defined as any point whose distance
to query point is less than (1 + ε) times the distance between the query point
and exact NN.

In general, the ANN search algorithms can be typically classified into three
major categories: graph-based, tree-based, and hash-based algorithms [1].

The common idea of graph-based algorithms is to build a k-nearest neighbor
(kNN) graph in an offline phase. The kNN graph is a network of nodes linked by
weighted edges. The nodes represent the data points and edge weights represent
the distances between linked points. In the literature, many strategies for kNN
graph exploration have been published. In [2], the kNN graph is explored in a
best-first order, starting from a few well-separated nodes. In [3], a greedy search
is performed, to find the closest node to the query point, staring from a randomly
selected starting node.

The tree-based algorithms are based on the recursive partitioning of the
search space into sub-spaces.

The most widely used tree-based algorithm is the k-d tree [4,5]. The k-d tree
is a k-dimensional binary search tree in which each node represents a partition
of the k-dimensional space and the root node represents the whole space. To
search for the NN, the coordinates of the query point are used to determine
the NN leaf node. Then, the linear search is performed to determine the closest
point within the NN leaf. The k-d tree operates successfully in low-dimensional
search space, but its performance degrades exponentially with increasing num-
ber of dimensions. Various improvements to k-d tree have been suggested [6,7].
Silpa-Anan et al. [8] proposed the use of multiple randomised k-d trees, which
are built by selecting the split dimensions randomly from among the dimensions
with a high variance. By querying the randomised trees, a single priority queue
is used to save answers sorted by their distances to the query point.
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In [9], the hierarchical k-means tree is proposed. The hierarchical k-
means tree partitions the space hierarchically by using the k-means clustering
algorithm.

The k-means algorithm selects k points randomly (called centroids). Then,
k initial clusters are created by clustering points according to their distances to
the closest centroid. The centroids are iteratively updated to the mean of each
cluster, and the clustering is repeated until convergence is achieved.

The most popular hash-based method for ANN search is the locality sensitive
hashing (LSH). The LSH was introduced by Indyk et al. [10] for use in binary
hamming spaces and later modified by Datar et al. [11] for the use in euclidean
spaces. The main idea of LSH is to construct a set of hash functions that project
data points from a high-dimensional to one-dimensional space, segmented into
intervals of the same length (called buckets). The hash functions are designed,
so that the neighbor points in the origin space will be projected to the same
hash buckets with high probability [12]. The performance of hash-based algo-
rithms highly relies on the quality of the hash functions used and the tuning of
algorithmic parameters. Therefore, many papers dealing with these issues have
been proposed (e.g. [13–19]).

Recently, in [20] Heo et al. proposed spherical hashing (SHD) method and
compared it with many recent algorithms such as spectral hashing [19], iterative
quantization [16], random maximum margin hashing [18] and generalized sim-
ilarity preserving independent component analysis [17]. They found that their
method outperforms all compared state of-the-art algorithms. In [1], Muja and
Lowe compared many different algorithms for ANN search using datasets with
a wide range of dimensionality. They developed a Fast Library for ANN search
(FLANN) in high dimensional spaces. FLANN contains a collection of the best
algorithms for ANN search and an automatic mechanism for electing the best
algorithm and optimal parameters depending on the dataset’s content.

In [21], we introduced a hashing method for ANN search in high dimen-
sional spaces. The idea is based on extracting several jointly-independent and
uniformly-distributed circular random variables (CRVs) from the data points.
These CRVs are then used to index data in hash trees. The CRVs hashing
(CRVH) method has been successfully applied to speed up SIFT feature match-
ing. In this paper, we extend our previous work by applying the algorithm on
GIST descriptor and by evaluating its performance on large image datasets.

The rest of the paper is organised as follows. In the next Sect. 2, we present
CRVH method in more details. In Sect. 3, we show how to apply our method
on SIFT and GIST descriptors. In Sect. 4, we evaluate our method on several
datasets of SIFT and GIST descriptors (with different sizes) and compare it
with the LSH, HD, SHD and FLANN methods. Finally, we conclude the paper
in Sect. 5.

2 CRVH Method

In this section, the proposed CRVH method will be theoretically described in
details. We start with defining the circular random variables (CRVs).
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Definition 1. Let x = (x0 . . . xn−1)T be a n-dimensional descriptor vector. We
segment it into k segments s0, . . . , sk−1, each of length l with k = �n

l �. Each seg-
ment si is represented by a l-dimensional vector: si = {xi·l, xi·l+1, . . . , xi·l+(l−1)}.
For each segment, a circular random variable vi can be defined as the loca-
tion of the maximum component within the segment. vi = {j ∈ [0, l − 1] |
xi·l+j is the maximum value in si}.

From CRVs, a hash tree with lk leaves can be constructed. The hash keys
h(x ) are determined by a polynomial of order (k − 1) as follows:

h(x ) = I =
k−1∑

i=0

li · vi. (1)

Where l denotes the segment length and k the number of segments (the num-
ber of CRVs). If the CRVs are jointly-independent and uniformly-distributed,
then the data points will be evenly distributed over all the hash tree leaves. In
Fig. 1, we show how to extract CRVs from a high-dimensional descriptor. The
descriptor is divided into k segments each of length l = 5. Form each segment
si, a CRV vi is defined as the peak index within the respective segment.

vi

l = 5 x0 x5 x10 x15 x20 x25︸ ︷︷ ︸
S0

︸ ︷︷ ︸
S1

︸ ︷︷ ︸
S2

︸ ︷︷ ︸
S3

︸ ︷︷ ︸
S4

v0 = 3 v1 = 2 v2 = 0 v3 = 4 v4 = 2

. . .

Fig. 1. Extraction of CRVs from a data point represented as d-dimensional vector. In
this example, the segment length is chosen equal to 5 [21].

For two neighboring points p1 and p2 it is assumed that the CRVs computed
from its descriptors tend to be the same and both points are hence hashed into
the same hash-tree leaf with high probability

Prob [h (p1) = h (p2)] > P1

Prob [h (p1) �= h (p2)] < P2

with P1 	 P2. P1 is a threshold of the probability that two true neighbors are
hashed to the same leaf and P2 is a threshold of the probability that two true
neighbors are hashed to different leaves. For the sake of simplicity, we explain
this assumption in two-dimensional search space as shown in Fig. 2. In 2D space,
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Fig. 2. 2D classification using one CRV [21]. (Color figure online)
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the vector can be considered as one segment of length l = 2 and hence only one
circular binary random variable can be constructed v. If the abscissa of a vector
is larger than the ordinate (x > y) we get v = 0 (red dots in Fig. 2), otherwise
y > x yields v = 1 (blue dots in the figure). For boundary points, which whose
segments have no dominant maximum (grey dots in Fig. 2), we get a boundary
problem. In this case, boundary problem can be avoided by adding boundary
points to both hash leaves. In high-dimensional spaces, the boundary problem
can be solved by considering not only the maximum indices that define the
CRVs, but also the second maximum indices if the second to first maximum
ratio is greater than a certain threshold T .

T =
max2

max1
(2)
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Fig. 4. Hash tree for 6D dataset with two CRVs of segment length = 3 [21].

where max1 and max2 are the first and second maximum values in a certain seg-
ment, respectively. The adjustment of ratio threshold is used to make a trade-off
between search speed and precision. This consideration can be taken into account
while storing or/and querying stages. The dealing with boundary problem can
be explained by the following example: Assuming that we have 4 of 6D points
represented in Fig. 3 and we chose segment length equal to 3, then we obtain
two CRVs. Using these CRVs, points can be stored into a hash tree of 32 = 9
leaves as shown in Fig. 4.

While querying, we can distinguish between three cases: first, each segment
of the query point has a dominant peak as the case of point A (see Fig. 3), in
this case, only one of the 9 leaves has to be searched. In second case, one of the
segments has no dominant peak (as the case of points B or C). In this case, we
have to consider the maximum and the second maximum and hence two leaves
have to be searched. The last case is if both segments have no dominant peaks
(as in the case of point D). In this case, 4 leaves out of 9 have to be explored.
For illustration purposes, Fig. 3 shows the maximum, second maximum and their
indices of two segments for 4 example points, and Fig. 4 shows how they are
stored (or queried) in the hash tree, when the ratio threshold T is set to 0.5.

Using the above hash function, the dataset points will be evenly distributed
over all the hash leaves, if two conditions are met, firstly the used CRVs are
uniformly-distributed, and secondly, the CRVs are jointly-independent.

To verify if the CRVs meet the uniformly-distributedness condition, their
probability density functions (PDFs) are estimated from a large set of data
points. The PDFs are computed by constructing histograms of the CRVs rang-
ing between [0, l − 1]. Once the PDFs are estimated, the χ2 test is used to
quantitatively evaluate the goodness fit to the uniform distribution. The value
of the test statistic is defined as:
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Fig. 5. Comparison between (a) joint pdf of two uncorrelated CRVs and (b) the product
of their individual pdfs.

χ2 =
n∑

i=1

(Oi − E)2

E
(3)

where Oi is the observed pdf value, E is the expected value from the uniform
distribution and n is the number of possible values the CRVs can take. Mathe-
matically, it is known that, a set of random variables (V1, V2, . . . , Vn) are jointly-
independent, if the joint probability density function is equal to the product of
their individual pdfs.

pdf (V1, V2, . . . , Vn) =
n∏

i=1

pdf (Vi) (4)

To verify whether the CRVs meet the jointly-independent condition, the circular
correlation coefficient (CCC) is firstly used to filter out correlated CRVs. The
jointly-independent condition is then examined for the remaining uncorrelated
CRVs by comparing the joint probability density function with the product of
the individual probability functions. In our case, we experimentally find that
CCC is sufficient to determine whether the CRVs are jointly-independent or
not. In Fig. 5, the joint PDF and the product of PDFs of two uncorrelated
CRVs (extracted from one million 960-D GIST descriptors) are shown. As seen
by comparing the Fig. 5(a) with Fig. 5(b), for two uncorrelated CRVs, the joint
PDF tends to be equal to the individual PDFs’product.

The CCC proposed by Fisher and Lee [22] is defined as:

ρ (α, β) =
∑n

i=0 sin (α − ᾱ) · sin
(
β − β̄

)
√∑n

i=0 sin (α − ᾱ)2 · ∑n
i=0 sin

(
β − β̄

)2 (5)
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where ρ(α, β) is the CCC, n is the number of data points, α, β are two circular
variables and ᾱ, β̄ are their respective circular mean values defined as:

mean (α) = ᾱ = arctan

(
n∑

i=0

sin(α),
n∑

i=0

cos (α)

)
. (6)

the absolute of ρ(α, β) takes values from the interval [0, 1]. 0 indicates that
there is no relationship between the variables, and 1 represents the strongest
association possible.

Once the CCC and the χ2 test values are computed for all the extracted
CRVs, the CRVs are grouped so that CCC and χ2 values are as small as possible
in each group. An example with CCCs computed for SIFT descriptors is shown
in Fig. 6. For each group of uncorrelated CRVs, a hash tree can be construct.

The above conditions ensure that the data are well-balancedly distributed
over all the hash tree leaves. Therefore, the speed-up factor gained by our method
compared to linear search can be theoretically determined as follows:

(
l

2
)k ≤ SF ≤ lk (7)

where l is CRV length and k is the number of CRVs that meet the conditions
mentioned above.

In general, our method consists of three main steps. In the first step we
extract the CRVs from the descriptor. To this end, we study the characteristics of
the descriptor statistically to determine how its components are distributed and
dependent on each other. Based on these characteristics we divide the descriptor
into a set of equal length segments. For each segment, a CRV is defined as the
location of the maximum within this segment. We calculate then the probability
density functions and the joint dependency between the CRVs, and we group
them into groups so that they are uniformly-distributed and jointly-independent
as much as possible. The goal behind that is to spread the points over hash leaves
uniformly and hence to maximize the speed-up factor defined in Eq. 7 regardless
of how the points are distributed in their origin space.

In the second step we store the dataset points into hash trees. For this goal,
we calculate the CRVs from the segments specified in the first step. From CRVs
of each point, a hash key is computed as defined in Eq. 1. The hash key is then
used to specify the hash leaves where to store this point. This step is done once
for each dataset.

The last, third step is the same as the second one, but it is run on-line and
applied to each query point in order to determine the hash leaves, where the
candidate neighbors of the query point can be expected.

In the next section, we will describe how to apply this method on local SIFT
and global GIST descriptors, which are mostly used in computer vision and
image processing applications.
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Fig. 6. Plot of circular correlation coefficients for V0 to V3 between each two CRVs for
SIFT descriptors (out of 16) [21].

3 CRVH Method for SIFT and GIST Descriptors

To apply CRVH method on SIFT descriptors, we choose the CRV segment length
l = 8. Then, from the 128-dimensional vector, 16 different CRVs can be obtained.
A subset of these CRVs have to be selected, so that the CRVs meet the jointly-
independent and uniformly-distribution conditions. For this goal, we have sta-
tistically analysed a dataset of the SIFT descriptors. Statistically, we found that
the SIFT descriptor has a special signature, so that some components are always
larger than some others [21]. The signature of SIFT descriptors is represented in
Fig. 7 by the mean value of each component. For example, the 41th, 49th, 73th

and the 81th components are always significantly larger than their neighbors.
The signature of SIFT descriptors influences the distribution of proposed

CRVs. In order to remove this effect, SIFT descriptors are weighted before com-
puting of CRVs. The weight vector is defined as the inverse of individual elements
of the signature vector. S = [s1, s2, . . . , sn] ⇒ W =

[
s−1
1 , s−1

2 , . . . , s−1
n

]
Fig. 8

shows the PDF functions of the CRVs before and after removing the descriptor
signature effect. As shown in Fig. 8(b), after removing signature effect, all CRVs
meet the uniformly-distributedness condition.

To study the dependence between the CRVs, the circular correlation coeffi-
cient (CCC) between each two CRVs is calculated. The CCCs between CRVs
are explained in Fig. 6. Figure 6 shows that neighboring CRVs in the descrip-
tor are highly-correlated, whereas there are no or only very weak correlations
between non-contiguous CRVs. We omitted the other 12 diagrams showing the
correspondences for the other CRVs. From the 16 CRVs we get two sub-groups
of jointly-independent and uniformly-distributed CRVs:

0 8 16 24 32 40 48 56 64 72 80 88 96 104 112 120 128
0

25

50

75

100

%

Fig. 7. The signature of a SIFT descriptor; the normalised mean values of the SIFT
descriptor components were computed from a dataset of 100 K descriptors.
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Fig. 8. The probability density functions of the CRVs (extracted from 100k SIFT
features) before and after removing signature influence.
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Fig. 9. Speed-up and precision comparison between CRVH and FLANN; baseline is
linear search for static and dynamic datasets.

g1 = {V 0, V 2, V 5, V 7, V 8, V 10, V 13, V 15}
and g2 = {V 1, V 3, V 4, V 6, V 9, V 11, V 12, V 14}.
From these two sub-groups, two hash trees can be constructed.

With a segment length of 8, 120 or 48 different CRVs can be obtained from
960-D or 384-D GIST descriptors respectively. These CRVs are classified into
several sub-groups, so that the CRVs of each group have to meet the jointly-
independent and the uniformly-distribution conditions. Similar to SIFT, we sta-
tistically found that a GIST descriptor has also a special signature, so that some
components are always larger than some others. Before computing CRVs from
the GIST descriptor, this signature is neutralised by weighting the descriptor
with a constant weight vector. The weight vector is computed as the case of
SIFT feature by inverting the signature components. Experimentally, we found
that, CRVs of 960-D GIST descriptor can be classified into 14 sub-groups, so that
each sub-group contains 6 jointly-independent and uniformly-distributed CRVs.
Hence, from these sub-groups, 14 hash trees can be constructed. Similarly, for
384-D GIST descriptor, 6 hash trees can be constructed.
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4 Empirical Evaluation

In this section, we analyse the performance of our method on two kinds of
descriptors: local SIFT and Global GIST descriptors. We further compare the
method with FLANN, LSH, DH and SHD on different image datasets. In the
following experiments, we use the OpenCV implementation of FLANN and the
C++ implementation of LSH, HD and SHD available in [20]. All experiments
were carried out on a Linux machine with an Intel(R) Core(TM) i7-4770S CPU
3.10 GHz and 32 GB RAM.

For SIFT descriptors, the performance of our method is compared with the
state-of-the-art NN matcher FLANN and LSH. The experiments are carried
out using the Oxford Buildings Dataset of real-word images [23]. The Oxford
Buildings Dataset dataset consists of about 5000 images. Among them there are
several pairs that show the same scene from different viewpoints. 10 images of
that pairs are taken out of the dataset and used as the query set.

We compare our method with FLANN and LSH in terms of both, speed-up
over the linear search (baseline) and the percentage of correctly sought neighbors
(precision). To evaluate the performance of our method, two experiments were
conducted. The first experiment was carried out with different dataset sizes
(20 K, 200 K, 1M) by varying precision parameters. We measured the trade-off
between the speed-up and the precision. For the FLANN matcher, the precision
was adjusted by varying appropriate FLANN parameters (number of trees and
checks), whereas for the CRVH method, the precision was changed by varying
the ratio threshold. The obtained results are shown in Fig. 9(a). As can be seen
from the figure, our method outperforms the FLANN matcher for datasets with
a size of less than 200 K descriptors.

In the second experiment, the performance is compared against FLANN and
LSH for two different settings, a static and a dynamic dataset, respectively. In
the static setting, the image dataset remains unchanged, while in the dynamic
one, the dataset needs to be updated on-line by adding or deleting images.
In this experiment, we keep the precision level at 90% and vary the size of
dataset. Figure 9 shows the obtained results for both dataset settings. Figure 9(c)
shows that in the case of a dynamic datasets, the CRV method outperforms
both the LSH and FLANN methods for all dataset sizes significantly. It reaches
speed-up factor of 20 over FLANN for dataset sizes up 100 K descriptors. The
reason of this outcome can be explained by the FLANN method constructs a
specific nearest neighbor search index for a specific dataset; when the dataset is
updated by adding or removing some data, the search index has to be updated as
well, otherwise the search speed decrease. Conversely, the CRVH method works
independently from the dataset contents and its performance is not influenced
by adding or removing data points.

For the GIST descriptor, the performance of our method is compared with
LSH and Spherical Hashing methods (HD and SHD). The experiments are car-
ried out using the Tiny [24] dataset. The Tiny dataset consists of 80 million
32× 32 color images. Each image is described by one GIST descriptor of dimen-
sion 960 or 384. We evaluate our method on three different-sized sub-sets of
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Fig. 10. Results on 50 k 960-D GIST descriptors.

the Tiny dataset (50K, 1M and 10M images). In each experiment, 100 GIST
descriptors are randomly selected and used as query set. The remaining descrip-
tors are used as the dataset. To obtain statistically meaningful results, for 50 K
and 1M datasets, the experiments were repeated 5 times with varying the data-
and query sets. For 10M, the experiment was repeated only two times because
of the time required for computing ground truth. The performance is measured
by mean average precision (mAP), query time and offline time. The precision
is defined as the fraction of true points among the top Knn retrieved points.
The ground truth is determined by the Knn nearest neighbors that are retrieved
by the linear search based on Euclidean distance of GIST descriptors. For the
LSH, HD, and SHD hashing methods, the performance was measured across
code binary lengths ranging from 32 to 512 bits, whereas for CRVH, the perfor-
mance was measured across all possible number of hash trees (14 trees for 960D
and 6 trees for 384D GIST descriptors). For all experiments, we set Knn = 100,
and we set the ratio threshold T of CRVH to T = 0.5. The offline time of LSH
is the time required to compute binary code, while for HD/SHD it is the time
of binary code computation plus the spherical hashing learning time. For our
method, offline time is the time required to construct hash trees.
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Fig. 11. Results on 1 million 385-D GIST.
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Fig. 12. Results on 10 million 384-D GIST descriptors.

Figure 10 shows the results on 50 K 960D GIST descriptors. Using two hash
trees, our method reaches a mAP (Fig. 10(a)) better than all state-of-the-art
methods with a similar query time (see Fig. 10(b)). When increasing the number
of threes, our method can reaches mAP > 0.5 with a query time less than 6 sec.
Regarding offline time, Fig. 10(c) shows that our method extremely outperforms
the other methods. For example, for a binary code length of 512, HD and SHD
needed about 1200 s, while constructing 14 hash tree only needs about 15 s.

Figures 11 and 12 show the results on 1M and 10M of 384D GIST descriptors.
For 3 hash trees, our method reaches mAP = 0.45 at query time about 15 s
(Fig. 11(a)), while the best state-of-the-art method (SHD) reaches mAP = 0.22
at a query time about 30 s. Figures 11 and 12 also demonstrate the scalability of
our methods. It is shown that, on both dataset sizes (1M and 10M), our method
provides similar mAP , while the query and offline time increases linearly.

5 Conclusions

In this paper, we presented a hashing method for NN search in high-dimensional
spaces. Our method bases on extracting a set of CRVs from data points. The
data vector is divided into several segments. For each segment, a CRV is defined
as the relative position of the peak in that segment. The CRVs are grouped
together in such a way that in each group, they are all jointly-independent and
uniformly-distributed. The CRVs are exploited to store data points evenly in
one or several hash trees. In the query phase, the CRVs of query point are
used to determine the hash leaves, where candidate neighbors can be found.
The proposed method was tested on datasets of SIFT and GIST descriptors and
compared with LSH, HD, SHD and FLANN. The presented experimental results
show that, our proposed method outperforms all compared state-of-art methods.
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