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Abstract. A novel application of convolutional neural networks to phone
recognition is presented in this paper. Both the TIMIT and NTIMIT speech
corpora have been employed. The phonetic transcriptions of these corpora have
been used to label spectrogram segments for training the convolutional neural
network. A sliding window extracted fixed sized images from the spectrograms
produced for the TIMIT and NTIMIT utterances. These images were assigned to
the appropriate phone class by parsing the TIMIT and NTIMIT phone tran-
scriptions. The GoogLeNet convolutional neural network was implemented and
trained using stochastic gradient descent with mini batches. Post training,
phonetic rescoring was performed to map each phone set to the smaller standard
set, i.e. the 61 phone set was mapped to the 39 phone set. Benchmark results of
both datasets are presented for comparison to other state-of-the-art approaches.
It will be shown that this convolutional neural network approach is particularly
well suited to network noise and the distortion of speech data, as demonstrated
by the state-of-the-art benchmark results for NTIMIT.
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1 Introduction

Automatic Speech Recognition (ASR) typically involves multiple successive layers of
hand-crafted feature extraction steps. This compresses the huge amounts of data pro-
duced from the raw audio ensuring that the training of the ASR does not take an
unreasonably long time. With the adoption of GPGPUs and the so-called Deep Learning
trend in recent years, data-driven approaches have overtaken the more traditional ASR
pipelines. This means that audio data is automatically processed in its frequency form
(e.g. spectrogram) with a Deep Neural Network (DNN), or more appropriately, since
speech is temporal, a Recurrent Neural Network (RNN). These networks automate the
feature extraction process and can be trained quickly with GPUs. The RNN then con-
verts the spectrogram directly to phonetic symbols or text [1].

Of all the deep-learning technologies, Convolutional Neural Networks (CNNs)
arguably demonstrate the most automated feature extraction pipeline. In this paper we
have employed CNNs to process the spectrograms as they are well-known for their
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state of the art performance for image processing tasks, and this has been adapted for
learning the acoustic model component of an ASR system. The acoustic model is
responsible for extracting acoustic features from speech and classifying them to symbol
classes. The phonetic transcription of both the TIMIT and NTIMIT corpora will be
used as the ‘ground truths’ for training, validation and testing the CNN acoustic model.
This consists of spectrograms as input and the phones as class labels. The work
presented in this paper builds on previously published work [2] but extends from
TIMIT classification to additionally employ the NTIMIT speech corpus to achieve state
of the art results. In addition, this paper includes more details regarding the analysis of
errors in phone classification.

CNNs are inspired by receptive fields in the mammalian brain and have been
typically employed for the classification of static images [3]. Mammalian receptive
fields can be found in the V1 processing centres of the cortex responsible for vision and
in the cochlear nucleus of the auditory processing areas [4]. They work by transforming
the firing of sensory neurons depending on spatial input [5]. Typically, an inhibitory
region surrounds the receptive field and suppresses any stimulus which is not captured
by the bounds of the receptive field. In this way, receptive fields play a feature
extraction role.

Fukushima developed the Neocognitron network inspired by the work of Hubel and
Wiesel on receptive fields [6, 7]. The Neocognitron network provided an automated
way for implementing feature extraction from images. This approach was advanced by
LeCun by incorporating the convolution operations now commonplace in CNNs. It was
LeCun that coined the term CNN, the most notable example of which was the LeNet5
architecture which was used to learn the MNIST handwritten character data set [8, 9].
LeNet5 was the first network to use convolutions and subsampling or pooling layers.

Since Ciresan’s innovative GPU implementation in 2011 [10], CNNs are now
typically trained in parallel with a GPU. Selection of a suitable CNN architecture for
classification of any data is dependent upon the amount of available resources and data
required to train the networks. The depth of the architecture is positively correlated
with the amount of training data required to train them. Additionally, for large network
architectures, the number of parameters to be optimized becomes a factor. Perhaps the
most efficient architecture to date is the GoogLeNet CNN. It has a relatively complex
network structure as compared to AlexNets or VGG networks.

GoogLeNet’s main contribution is that it uses Inception modules, within which are
convolution kernels extracting features of different sizes. There are 1 x 1, 3 x 3, and
5 x 5 pixel convolutions, typically an odd number so that the kernel can be centred on
top of the image pixel in question. 1 X 1 convolutions are also used to reduce the
dimensions of the feature vector, ensuring that the number of parameters to be opti-
mised remains manageable. GoogleNet’s reduced number of parameters was a sig-
nificant innovation to the field. This is in comparison to its fore-runner AlexNet, which
has 60 million parameters to GoogLeNet’s 4 million [3]. The pooling layer reduces the
number of parameters, but its primary function is to make the network invariant to
feature translation. The concatenation layer constructs a feature vector for processing
by the next layer. This architecture was used in [2] and was retained here for com-
parison purposes. Intuitively it is arguably the ‘right’ depth as far as the volume of
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images available to train it. The volume of images used to train the networks presented
here are slightly larger than the 2011 ImageNet dataset [19] that the GoogLeNet
architecture was optimized to tackle.

2 Phone Recognition with TIMIT and NTIMIT

In this work, spectrograms derived from the TIMIT corpus have been used to train a
CNN to perform acoustic modelling [11]. The TIMIT corpus, which has an accurate
phone transcription, was designed in 1993 as a speech data resource for acoustic
phonetic studies. It has been used extensively for the development and evaluation of
ASR systems. TIMIT is the most accurately transcribed speech corpus in existence as it
contains not only transcriptions of the text but also contains accurate timing of phones.
This is impressive given that the average English speaker utters 14-15 phones a
second. The corpus contains the broadband recordings of 630 people (438 male/192
female) reading ten phonetically rich sentences of eight major dialects of American
English. It includes time-aligned orthographic, phonetic and word transcriptions as well
as a 16-bit 16 kHz speech waveform file for each utterance. TIMIT was commissioned
by DARPA and worked on by many sites, including Texas Instruments (TI) and
Massachusetts Institute of Technology (MIT), hence the corpus’ name. Figure 1 fea-
tures a spectrogram and illustrates the accuracy of the word and phone transcription for
one of TIMIT’s core training set utterances. A sliding window, shown in grayscale,
moves over the 16 kHz (Short-Term Fourier Transform) STFT-based spectrogram. The
resulting 256 * 256 pixel spectrogram patches are placed into phone classes according
to the TIMIT transcription for training, validation and testing.
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Fig. 1. Presentation of the images for GoogLeNet training [2].

A spectrogram was generated for every 160 samples. For 16 kHz of encoded audio,
this corresponds to 10 ms as per the standard resolution required to find all the acoustic
features the audio contains. The phone transcriptions are utilised to label each spec-
trogram according to the phone to which its centre most closely aligns to. Another
option would have been to use the centre of the ground truth interval and calculate the
Euclidean distance between the centre of the phone interval and the window length.
However, this would have made assumptions about where the phone is centred within
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the interval, requiring an additional computationally expensive step in the labelling of
the spectrogram windows.

The previous figure also illustrates the data preparation for the training, validation
and testing sets using the sliding window approach. It shows how the phonetic tran-
scription is used to label the 256 x 256 greyscale spectrogram patches as the sliding
window passes over each of the TIMIT utterances. The labelled spectrograms were
sorted according to the phone class to which they belong within each of the training,
validation and testing sets. In the TIMIT corpus we use the standard core training
setup. STFT-type spectrograms were used in particular as they could align the acoustic
data and the phonetic symbols with timing that was as accurate as possible. NVIDIA’s
cuFFT library was used for the FFT component of spectrogram generation [18]. The
distribution of the phones that were generated according to the TIMIT ground truth are
shown in Fig. 2.
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Fig. 2. Distribution of phones within the TIMIT transcription, note that the bars correspond to
the alphabetically ordered phones in the key [2].

As evident from Fig. 2, the two largest classes are ‘s’ and ‘h#’ (silence). Silence
occurs at the beginning and end of each utterance. The distribution is highly non-
uniform which makes training of the phone classes in the CNN challenging. The
training data is the standard TIMIT core set, and the standard test set sub-directories
DR1-4 and DR5-8 were used for validation and testing respectively. This partitioning
resulted in 1,417,588 spectrogram patches in the training set, as well as 222,789 and
294,101 spectrograms in the validation and testing sets respectively.

2.1 TIMIT GoogLeNet Training and Inferencing

The GoogleNet acoustic model in this work was trained with Stochastic Gradient
Descent (SGD). Prior to the advent of Deep Learning, gradient descent was usually
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performed using the full batch of training samples in order to adapt the network
weights in each training step. However, this approach is not easily parallelizable and
thus cannot be implemented efficiently on a GPU. In contrast, SGD computes the
gradient of the parameters on a single or few (mini batch) training samples. For larger
datasets, such as the one utilised in this work, SGD performs qualitatively as well as
batch methods but are faster to train.

We used a stepped learning rate with a 256 sample mini batch size. The resultant
training graph is illustrated in Fig. 3. The GoogLeNet architecture produces a phone
class prediction at three successive points in the network (lossl, loss2, and loss3).
The NVIDIA DIGITS deep learning framework [20] which was employed for this
implementation, reports the top-1 and top-5 predictions for each of these loss outputs.
loss3 (the last network output) reports the highest accuracy which is 71.65% for
classification of the 61 phones. For loss3/top-5 the accuracy is reported as 96.27%,
which means that the correct phone was listed in the top five network output classi-
fications over 96% of the time. As mentioned earlier, each spectrogram window
contains 4-5 phones on average, and our results show that in the majority of cases these
other phones were indeed correctly being reported in the top-5 network outputs.
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Fig. 3. TIMIT SGD training [2].

The network is trained using ~1.4 M images and uses the validation set
(~223,000 images) to check training progress. A separate set (~ 294,000 images) was
used to test the system, and the standard test set sub-directories DR1-4 and DR5-8 were
used for validation and testing respectively. The validation set is kept separate from the
training data and is only used to monitor the progress of the training, and to stop
training if overfitting occurs. The highest value of the validation accuracy is used as the
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final system result and this was achieved at epoch 20, as can be seen in Fig. 3. With
this final version of the system, we performed inferencing over the test set, Fig. 4
shows an example prediction from the system for a single sample of unseen test data.
The output of the inferencing process contains many duplicates of phones due to the
small increments of the sliding window position.

The 256 ms spectrogram windows typically can contain between 4 and 5 phones,
with the average speaker uttering approximately 15 phones per second. The pooling
layers in the CNN acoustic model provide flexibility in where the feature under
question (phones in this case) can be within the 256 * 256 spectrogram image. This is
useful for different orientations and scales of images in image classification and is also
particularly useful for phone recognition where it is likely there will exist small errors
in the training transcription.

During inferencing, the CNN acoustic model makes softmax predictions of all the
phone classes for each of the test spectrograms, at three successive output stages of the
network (Loss 1 to 3). We conducted some graphical analysis of the output confidences
of the phones, colour coding the outputs for easier readability of the results, see Fig. 4.
As can be seen from the loss-3 (accuracy), the network makes crisp classifications of
usually only a single phone at a time. Given that this is unseen data, and that the
comparison with the ground truth is good, we are confident that this network is an
effective way to train an acoustic model.
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Fig. 4. Softmax network outputs for a test utterance [2].

2.2 Post-processing and Rescoring

Post-processing of the classification output was performed to remove duplicates pro-
duced by the fine granularity of the sliding window. It is the convention in the literature
when reporting results for the TIMIT corpus to re-score the results for a smaller set of
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phones [12]. The phoneticians that scored TIMIT used 61 phone symbols. However,
many of these phones in TIMIT are not conventionally used by other speech corpora
and ASR systems. There are phone symbols called closures e.g. pcl, kcl, tcl, bel, dcl,
and gcl for example, which simply refer to the closing of the mouth before release of
closure resulting in the p, k, t, b, d, or g phones being uttered respectively. Most
acoustic models map these to the silence symbol ‘h#’. Remapping the output of the
model inferencing for the unseen testing data to the smaller 39 phone set (See Table 1
for the rescroing mapping), resulted in a significant increase in accuracy from 71.655
(shown in Fig. 3) to 77.44% after rescoring.

This result, while not quite exceeding the 82.3% result reported by Graves [13]
with bidirectional LSTMs, or the DNN with stochastic depth [14] which achieved a
competitive accuracy of 80.9%, is nevertheless still comparable. The novel approach of
Zhang et al. advocates an RNN-CNN hybrid based on MFCC features using con-
ventional MFCC feature extraction with an RNN layer before a deep CNN structure
[15]. This hybrid system achieved an impressive 82.67% accuracy. It is not surprising
to us that the current state of the art is with a form of CNN [16] with an 83.5% test
accuracy. Notably, a team from Microsoft recently presented a fusion system that
achieved the state of the art accuracy for the Switchboard corpus. Each of the three
ensemble members in the fusion system used some form of CNN architecture, par-
ticularly at the feature extraction part of the networks. It is becoming clear that CNNs
are demonstrating superiority over RNNs for acoustic modelling.

Table 1. Rescoring mapping of phone symbols (61 to 39 symbols).

aa ->aa . .
e -sae epi ->sil ow ->ow
ah  ->ah er ->er oy ->oy
ey ->ey p ->p
23 ig; £ ->sil pau ->sil
ax ->ah g 28 pcl ->sil
ax-h->ah gcl —>S}1 q ->sil
axr -s>er h# ->sil r ->r
ay ->ay hh ->hh s ->s
b ->b r)v ->hh sh ->sh
bcl ->sil ih ->in £t
ch  -sch ix ->ih tcl ->sil
d ->d iy ->iy th ->th
dcl -ssil jh  ->jh uh ->uh
dh  ->dh k ->k ‘ uw  ->uw
dx  ->dx kcl ->sil ux ->uw
eh  ->eh 1->1 VvV ->V
el -51 m->m W ->w
em ->m n->n y =2y
ng ->ng z ->z
z:g :i:g nx ->n zh  ->sh
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2.3 NTIMIT Experiments

For commercial speech recognition applications, it is vital to evaluate how ASR per-
forms in the telephone setting. To ensure a fair comparison with the previously pub-
lished TIMIT speech recognition paper we decided to train the system with NTIMIT
[17]. NTIMIT (Network TIMIT) is the result of transmitting the TIMIT database over
the telephone network. This results in loss of information in the signal due to the
smaller passband of the telephone network, as well as distortions due to the network
transmission. To quantify the effects of the network on the original TIMIT data, we
calculated the normalized energy of TIMIT and NTIMIT in the [0, 8 kHz] frequency
band. Figure 5 shows the absolute value of the normalized amplitudes of the TIMIT
(top) and NTIMIT (bottom) corpora.

Both signals are shown here in the [0,8 kHz] range for the 16 kHz sample rate of
the original audio as per Nyquist sampling theory. As can be seen from the figure, for
TIMIT there is a smooth variation in signal amplitude from the low frequencies to the
high frequencies in the entire frequency range. For the NTIMIT signal, it can be seen
that after 3400 Hz the gradient of the amplitude stops varying (flatlines) and drops
quickly before flatlining again at approximately 6800 Hz (which is likely due to some
frequency folding). Consequently, it can be seen that there is very little useful infor-
mation in the NTIMIT signal above 3400 Hz. Hence for the purposes of the NTIMIT
experiments, we first downsampled all of the audio files to 6.5 kHz to ensure that the
entire 256 x 256 pixel range resulting spectrogram input to the CNN represents the
available speech signal.
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Fig. 5. Spectral profile of TIMIT (top) and NTIMIT (bottom). TIMIT shows a smooth
transmission from low to high frequency, whereas NTIMIT has little useful information encoded
above 3.3 kHz.



TIMIT and NTIMIT Phone Recognition 97

M accuracy (val) 70.3622 0
B accuracy-top5 (val) 96.0204 mpegugmpugg |- 70
M loss (val)

| loss1/accuracy (val)

Loss

Accuracy (%)

\ M loss1/accuracy-top5 (val)

loss1/loss (val)
loss2/accuracy (val)

M loss2/accuracy-top5 (val)

k/h A M loss2/loss u.ah
12T ANY, \/

T T T T l
0 5 10 15 20 25 30

M loss (train) M loss1/loss (train) M loss2/loss (train) M accuracy (val) W accuracy-top5 (val) M loss (val)
W loss1/accuracy (val) M loss1/accuracy-top5 (val) loss1/loss (val) loss2/accuracy (val) Wl loss2/accuracy-top5 (val)
M loss2/loss (val)

Fig. 6. NTIMIT stochastic gradient descent training.

A GooglLeNet CNN was trained from scratch with spectrograms generated from the
downsampled NTIMIT training data. Figure 6 shows progress of the training results in
terms of accuracy and loss. The best validation accuracy of 70.36% occurs at epoch 11,
the top-5 accuracy achieved is 96.02%. Once again, rescoring was employed to convert
the 61 phone set to 39 phones and the accuracy increased to 73.63% as a result.

Figure 7 shows the confusion matrix for the 61 phone set of the NTIMIT test
results. The confusion matrix is calculated by accumulating the classification confi-
dences for all 294,000 images in the NTIMIT test set and is informative with regards to
the typical pattern of misclassification, in particular with regards to the top-5 perfor-
mance. It can be quickly understood why the top-5 accuracy is so high, when looking
across the rows of the confusion matrix, it can be seen that there are no more than 5
significant classifications for any actual phone. A typical misclassification occurs when
comparing the classification of the ‘aa’ phone as the ‘r’ sound, although interestingly
the results indicate that ‘r’ is rarely mistaken for ‘aa’. The original 61 phone set had
many symbols for silence such as ‘pau’, ‘h#’, ‘sil’ and ‘q’, likely to describe the context
of the silence in the original corpus and whether it was a silence at the beginning or end
of an utterance (‘h#’), a pause (‘pau’), etc. However, ultimately an absence of speech
regardless of context is easy to mistake when the spectrogram window is small and
hence, as can be seen, misclassifications of these various silences are common. Given
this, it is understandable why mapping all these silences as well as many of the closure
phones, e.g. ‘bel’, ‘dcl’, ‘kel’ to ‘sil” significantly improves the recognition accuracy. In
order to assess how the rescoring improves matters we generated the confusion matrix
for the rescored phones in Fig. 8.

Figure 8 shows the confusion matrix for the rescored phone matrices, for the
purposes of isolating the remaining phone misclassifications we removed the now
amalgamated ‘sil” symbols. The main misclassifications can now be seen from the
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figure. The ‘aa’ and ‘r’ symbols were not rescored and so this misclassification remains,
similarly ‘ch’ and ‘sh’ are confused by the system. In general, these misclassifications
are intuitively understandable and in an ASR system with a good quality language
model, many of these typical misclassifications will be overcome by the probability
distribution of phonetic sequences inherent in the language model.

3 Conclusions

This paper extended previously published work [2] concerning TIMIT phone classi-
fication using CNNs to the case of noisy telephone speech (NTIMIT corpus). Typi-
cally, we have found that NTIMIT results in the literature are around 10% less than for
TIMIT. However, we have found that we are within 4% of the TIMIT CNN model
performance in our tests which suggests that the CNN approach is much more noise
robust. To our knowledge the NTIMIT benchmark results reported here are the state of
the art.

CNNs are becoming a favoured method for feature extraction of speech data, now
more commonly used as input layers to DNN-based ASR systems when used as input
to an end to end speech recognition system. The reason for this is that CNNs automate
the feature extraction process. We also found in this study, that CNNs seem to be more
robust to challenging, noisy and distorted data of the type that is found in the NTIMIT
corpus, as compared to other approaches.
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