
Interactive Design Support
for Architecture Projects During Early

Phases Based on Recurrent Neural
Networks

Johannes Bayer(B), Syed Saqib Bukhari, and Andreas Dengel

German Research Center for Artificial Intelligence,
Trippstadter Strasse 122, 67663 Kaiserslautern, Germany

{johannes.bayer,saqib.bukhari,andreas.dengel}@dfki.de
https://www.dfki.de

Abstract. In the beginning of an architectural project, abstract design
decisions have to be made according to the purpose of the later build-
ing. Based on these decisions, a rough floor plan layout is drafted (and
subsequently redrafted in successively more refined versions). This entire
process can be considered an iterative design algorithm, in which high-
level ideas and requirements are transformed into a specific building
description.

Nowadays, this process is usually carried out in a manual and labor-
intensive manner. More precisely, concepts are usually drafted on semi-
transparent paper with pencils so that a when a new sheet of paper is
put on an existing one, the old concept may serve as a template for the
next step in the design iteration.

In this paper, we present a semi-automatic approach to assist the
developer by proposing suggestions for solving individual design steps
automatically. These suggested designs can be modified between two suc-
cessive automatic design steps, hence the developer remains in control of
the overall design process. In the presented approach, floor plans are rep-
resented by graph structures and the developer’s behavior is modeled as
a sequence of graph modifications. Based on these sequences we trained
a recurrent neural network-based predictor that is used to generate the
design suggestions. We assess the performance of our system in order to
show its general applicability.

The paper at hand is a extended version of our ICPRAM 2018 confer-
ence paper [1], in which we address the different aspects of our proposed
algorithm, challenges we faced during our research as well as intended
work flow in greater detail.

Keywords: Interactive design support · Early phase support
Architecture project · LSTM · Archistant

c© Springer Nature Switzerland AG 2019
M. De Marsico et al. (Eds.): ICPRAM 2018, LNCS 11351, pp. 27–43, 2019.
https://doi.org/10.1007/978-3-030-05499-1_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05499-1_2&domain=pdf
https://doi.org/10.1007/978-3-030-05499-1_2


28 J. Bayer et al.

1 Introduction

In many architectural projects, the development of a building can be considered
to be following a top-down strategy. In the entire life-cycle of a building (formu-
lation of an initial concept of a building to its demolition), the early design phase
deals with deriving a first and rough floor plan layout given an abstract idea.
Such a concept may be purpose-driven (e.g. ‘apartment building for 12 aver-
age families with children in a mid-sized city’) or may contain stylistic wishes
(‘Tuscan Mansion’) as well as semiotic statements (‘The temple should reflect
the openness of our religion’). Given that such a high-level description usually
comes from a customer or contractor, this initial concept can also be considered
a requirement to the project and therefore contains rather punctual yet spe-
cific constrains (‘The house should have two bathrooms as well as three sleeping
rooms and the living room should be next to the kitchen’). Generally, only a
rough idea is given, hence most of the final floor plan’s aspects remain vague.

(a) Room Graph (b) Floor Plan Layout

Fig. 1. Illustration of the room schedule work flow (a → b).

Buildings can be described using graphs structures. In such a modeling, indi-
vidual rooms are conveniently described as nodes while the connections between
them (e.g. walls, doors) are described as edges. Using such a description, all
properties of a floor plan layout must consequently be expressed as properties
of nodes and properties of edges. The surrounding walls of a room for example
can be denoted as a polygon that is a property of the node which represents the
room.

Given a graph-based description of a building, the early-phase design task
in architecture translates into an iterative graph manipulation algorithm (see
Fig. 1). This technique is already existing as a traditional and manual working
method in architecture, the so-called room schedule (also referred to as architec-
tural program). From the algorithmic viewpoint, the building project’s concept
(or requirements) translate to structural constrains of the building’s graph at
the start of the algorithm: A fixed amount of rooms translates to a fixed amount
of nodes in the graph. Adjacency requirements (‘The kitchen must be next to



Interactive Design Support for Architecture Projects During Early Phases 29

the living room’) translate to predetermined edges in the graph. Defined room
aspects translate to fixed properties of the corresponding nodes. The task of such
an algorithm is to complete the missing graph properties.

The entire process described to far is nowadays usually carried out manually
and informally. This usually involves semi-transparent sketching paper that is
being written on with pencils. Algorithmically, each sheet of semitransparent
paper represents one iteration (or corresponds to a set of graph modifications).
When putting on a new sheet of semi-transparent paper on top of the old one,
the old sketch serves as a template for the next, refining design iteration. While
a fair amount of this task is highly creative, many actions remain rather repet-
itive and monotone for the architectural developer. Usually, this process makes
use of previously existing projects since architectural projects often work with
references. Hence, graph structures from former projects are assumed to be at
least partly copied or resembled in newer ones.

In this paper, a semi-automated approach for drafting architectural sketches
is described. In Sect. 2, the existing base technologies and concepts on which
the approach of this paper is based are outlined. In Sect. 3, the employed rep-
resentation of floor plans for recurrent neural networks is introduced. Section 4
describes the central machine learning approach, i.e. how models are trained and
how floor plan drafts are extended as well as completed using the trained models.
Some of the problems encountered during the design of the system as well as
how trade-offs attempt to address them are also described here. After that, in
Sect. 5 the integration of the approach into an existing sketching software is out-
lined. The approach is evaluated in Sect. 6, where the results of an automatically
conducted performance evaluation on a set of floor plans is presented. Examples
of real-value outputs of a trained models are provided to illustrate the use of
the integrated system. Section 7 concludes this paper by giving an outlook on
possible future research directions.

2 Related Work

2.1 The Long-Short Term Memory

Long-Short Term Memories [7,9] are a class of recurrent artificial neural net-
works. During each time step, they are supplied with an input vector of arbitrary
(but fixed) length, while they emit an output vector of a size equivalent to their
amount of cells. Stacked with an MLP, they may also return a vector of also
arbitrary (but fixed) size. As vector sequence processing units, LSTMs possess
different key properties like the ability to transform data in various ways and
storing information for an arbitrary length of time steps. The components of
their input vectors have to be normalized to a certain the interval (often [0, 1]).
Likewise, their output values are limited to a certain interval (often [0, 1]). The
experiments described in this paper have been conducted using the OCRopus
LSTM implementation [4].



30 J. Bayer et al.

2.2 The Architectural Design Support Tool Archistant

Archistant [11] is an experimental system for supporting architectural developers
during early design phases. Its key feature is the search of floor plans similar to an
entered sketch. It consists of a front-end, the Archistant WebUI, and a modular
back-end, in which floor plans are processed between the individual modules via
the dedicated AGraphML format.

Archistant WebUI. The Archistant WebUI (see Fig. 2, formerly known as
Metis WebUI [2]) is the graphical user interface of the system. It mainly consists
of a sketch editor for floor plans (originally the created sketches just served as
search requests to the core system). The workflow intended by the Archistant
WebUI follows the traditional room schedule working method. Every aspect of
a room may be specified as abstract or specific as intended by the user and
the degree of abstractness may be altered by the user during his work. This

Fig. 2. Screenshot of the Archistant WebUI.

Table 1. Edge types in Archistant.

Type Description Visualization (WebUI)

Wall Rooms share a uninterrupted wall only 1 Continuous Line

Door Rooms connected by door 2 Continuous Lines

Entrance Rooms connected via a reinforced door 2 Dashed Lines

Passage Rooms connected by a simple discontinuity
in a wall

3 Continuous Lines



Interactive Design Support for Architecture Projects During Early Phases 31

continuous refinement allows for a top-down work process, in which a high-
level building description is transformed into a specific floor plan. The Archis-
tant WebUI comes as a web application and therefore runs inside a HTML5-
supporting web browser.

AGraphML. AGraphML [10] is Archistant’s exchange format for floor plan
concepts. AGraphML itself is a specification of GraphML [3]. It follows the
convention of the paper at hand, in which rooms are modeled as nodes and
their connections are modeled as edges. The AGraphML specification therefore
mainly consists of the definitions of node and edge attributes (see Table 1).

3 Encoding Floor Plans for Recurrent Neural Network
Processing

This section outlines the representation of floor plans which is used to make them
processable by recurrent neural networks. In the current status of our work, we
restrict ourselves to a limited set of floor plan attributes that are incorporated
into this representation: Room functions, connections between rooms, room lay-
outs (i.e. a polygon which is representing a rooms surrounding walls), and infor-
mation whether or not natural light is available in a room or not (which roughly
equals to whether or not a room is equipped with at least one window).

Fig. 3. Rendered image of a sample floor (from [1]). Window symbols indicate access
to natural light. The detail level shown in this image equals the information contained
in the neural network representation.

3.1 Requirements

In order to be processable by recurrent neural networks, floor plans need to
be described as a sequence of feature vectors (all feature vectors must have
the same length). There are several requirements to this sequence representa-
tion: Both sequence length and vector size should be as small as possible in



32 J. Bayer et al.

order to minimize learning and inference execution times. The vectors should be
easy to interpret by automated means. Finally, the actual information should be
organized into separated chunks of small vector sequences and these should be
separated by data-less so-called control vectors (their purpose will be explained
later). Most important, the information flow in the vector sequence should mimic
the actual workflow of a user who develops a floor plan. Consequently, abstract
information should precede specific information, i.e. declaration of all rooms
along with their room functions should be before the declaration of the actual
room layouts.

3.2 Blocks

A complete floor plan description in the chosen representation consists of 3
consecutive blocks:

1. Room Function Declarations.
2. Room Connections.
3. Room Geometry Layouts.

Fig. 4. Feature vector sequence of the same sample floor encoding (from [1]). Every
feature vector occupies one column. The encoding consists of three blocks. The first
block ranges from column 0 to 5 and defines the rooms along with IDs (row 20–29), the
room function, the room’s center position (row 31 and 32), and whether or not a room
has access to natural light (row 30). In Block 2 (column 6–12) connections between the
rooms are defined. In block 3 (column 13–31) the polygons of the room surrounding
walls are described.



Interactive Design Support for Architecture Projects During Early Phases 33

Each block consists of a number of tags of the same kind (i.e. there is one
tag type for each block). Each tag is represented by a number of vectors. An
example for a rendered floor plan along with its representation as a sequence of
vectors can be seen in Figs. 3 and 4 respectively.

3.3 The Feature Vector

The feature vector is considered to be structured into several channels (see Fig. 5
for the relation between channels and actual feature vector components):

– The blank channel indicates that no information are present (used to indicate
start and ending of floor plans or to signal the LSTM to become active)

– The control channel indicates that a new tag begins and what type the new
tag is

– The room type channel (room types are called room functions in architecture)
– The connection type channel
– The room ID channel is used to declare or reference an individual room
– A second ID channel is used for connection declaration
– has Window property

Fig. 5. Structure of the feature vector (from [1]).



34 J. Bayer et al.

Fig. 6. The different tag types in feature vectors representation (channel view, from
[1]). Left: Definition of a Living (i) Room with ID (1) with a Window (t) with a center
at position (x, y). Middle: Definition of a door connection (d) between rooms 0 and 1.
Right: Definition of the polygon layout of room 0.

– X Ordinate of a Point
– Y Ordinate of a Point

Generally, LSTMs allow for real-valued vector components as input and out-
put. However, only a 2D-Point’s X and Y ordinates (which are both normalized
to [0, 1]) actually make use of this capability. All other components are mod-
eled as boolean variables (0.0 for false, 1.0 for true). In a former version of
the floor plan representation, 1-Hot Encoding has been considered. However,
this approach is rather inefficient compared to the finally chosen one (the final,
tighter encoding occupies around 88 less space than our experimental 1-Hot
encoding of the same information). So in order to minimize the sequence length,
each feature vector may contain several information and the ID of each room is
represented as a dedicated channel. As an disadvantage, this finally chosen, tight
encoding only allows for a fixed upper limit of rooms that has to be determined
before training (10 rooms in the paper at hand).

3.4 Tags

Tags are the atomic units of floor plan features. At the same time, they can be
considered graph modifications carried out by an entity (like the user) to develop
a floor plan. Every tag is represented by a set of successive feature vectors.
All tags start with a so-called control vector, that only serves the purpose of
indicating the tag’s type. Figure 6 illustrates how the different tag types are
made up from feature vectors. Currently, there are three different types of tags:



Interactive Design Support for Architecture Projects During Early Phases 35

Room Definition Tags. Each tag of this type defines a room by assigning it
an ID along with a room type, a flag indicating whether or not the room has a
window, and the position of the room’s center. This tag type always occupies 2
feature vectors.

Connection Tags. A Connection Tag declares a connection between two rooms.
It consists of the references between the two connection partners as well as the
connection type. Since all room IDs are represented in the feature vector by
dedicated components, two room IDs can be represented in one feature vector.
The supported connection types are taken from the definition of Archistant. This
tag type always occupies 2 feature vectors.

Room Layout Tags. These tags define a polygon surrounding walls around
a room by describing the individual corners of the room’s walls successively. A
room layout tag occupies p+1 feature vectors, where p is the number of corners
of the room.

3.5 Room and Connection Order

The order of rooms and connections in the floor plan representation underlies a
trade-off: a well defined order of rooms and connections only allows for exactly
one representation of the same floor plan. By allowing for any arbitrary order
of rooms and connections, the actual user behavior is better approximated and
there are multiple representations of the same floor plan (many samples can be
created from one single floor plan). However, when considering elements to be
given in a random fashion, an LSTM that should predict them is difficult to train.
Since a random order of room definitions and connections adds an unpredictable
noise to the LSTM, the order or rooms and connections is defined as follows:

Room Order. The order in which the rooms are given in the feature vector
sequence is determined by the center position of the room within the floor plan.
A room which center has a smaller X ordinate appears before a room with a
greater X center ordinate. In case of the centers of two rooms share the same X
ordinate, the room with the smaller Y ordinate precedes the other room (top to
bottom, left to right). The order of rooms is the same for block 1 and block 3.

Connection Order. The order of connections in the feature vector sequence
is determined by the order of the rooms. At this point, the connection graph is
considered to be directed and that the source room IDs are always smaller than
target room IDs. If two connections have different source room IDs, the connec-
tion with the lower source room ID will come before the one with the higher
source room ID. If two connections have the same source room ID, the con-
nection with the lower target room ID will precede the connection with higher
target room ID.



36 J. Bayer et al.

4 Proposed Mechanism of Autocompletion of Floor Plans
Using LSTM

In this section, the proposed algorithm for expanding and completing floor plans
is presented. More precisely, the modus operandi, in which existing parts of floor
plans are given to the (LSTM) model and new floor plan parts are retrieved is
outlined.

4.1 Input and Output Sequences

The structure of the model’s input vector is identical to the structure of its output
vector and therefore both are referred to as feature vectors. Consequently and
as a general working principle, existing parts of a floor plan are used as input
to the model while new floor plan parts are retrieved from the model’s output.
Two different approaches that implement such a behavior are examined here:
block generation sequencers and vector prediction sequencers.

Block Generation Sequencers. Block generation sequencers follow a simple
pattern: The first n blocks are given to the model’s input. Simultaneously, the
model’s output is simply a series of blank vectors (the blank component is 1.0,
while all other components remain 0.0). Afterwards, a sequence of blank vectors
is used as input while the n+ 1th block is emitted by the model (eventually fin-
ished by a blank vector). As a result, there has to be one model trained for each
block that should be predicted. Consequently, multiple models are used to sup-
port the user during the entire work flow. Additionally, a model for supporting
the first design step cannot be created using this kind of sequencer.

Vector Prediction Sequencers. Vector prediction sequencers aim to predict
the n-th vector of a sequence given the first n − 1 sequence vectors. These
sequencers are trained by using a concatenation of a blank vector with the full
feature vector sequence of a floor plan as the input. As an output, the full feature
vector sequence of the same floor plan is used, but this time followed by a blank
vector.

4.2 Preparation of Database

In order to make maximum use of the limited set of floor plans available in
AGraphML, some preprocessing is applied to generate the final training set as
well as test set (see Fig. 7). The validation set is omitted here since the amount
of floor plans available was very limited and previous experiments on a similar
DB indicated that overfitting is not a serious issue in the given situation. First
of all, the original sample set is split into two disjoint subsets. Each floor plan is
now converted into b different samples (we refer to this process as blow-up and to
b as blow-up factor). A sample is derived from a floor plan by rotating all point



Interactive Design Support for Architecture Projects During Early Phases 37

Fig. 7. Sample preparation (from [1]).

of the floor plan (centers, corner points) by an random vector and then create
the feature vector sequence as described so far. During this step, the center and
corner points of the floor plan are also normalized to the [0, 1]2 space. Because
of the applied rotation, the order of rooms and connections differs within the
samples generated from one single floor plan.

4.3 Extension of Floor Plans

The two different sequencing approaches need different strategies to generate
new floor plan aspects, as outlined below:

Block Generation Sequencers. In this approach, a new block is generated by
feeding a concatenation of previous blocks with a sequence of blank vectors into
the model and reading the predicted block from the model’s output. The blank
vector sequence length must be larger that the expected length of the predicted
block. This is can be done by determining the upper limit of predicted block
length in the training database. A more sophisticated approach is to make use
knowledge on the input sketch (e.g. the room count of the input sketch).

Vector Prediction Sequencers. Following a metaphor by Alex Graves, in
which sequence predictors used for sequence generation are compared to a person
dreaming (both are iteratively treating their own output as new input [8]), this
structures works like a dreaming person who occasionally gets inspiration from
outside and who combines the information from outside with its flow of dreaming.
Because of that, this technique is referred to as the shallowDream structure here
(see Fig. 8).



38 J. Bayer et al.

Fig. 8. The shallowDream structure (from [1]). The inputs are marked green. Compo-
nents of the LSTM recursion are marked blue. (Color figure online)

Basically, this structure operates in two different phases. During the first
phase, the already existing floor plan parts as provided or accepted by the user
(also referred to as concept) are fed into the model. During this phase of concept
injection, all outputs of the model are ignored (the concept is kept as it is in the
feature vector sequence, i.e. existing requirements or design iterations are fully
sustained). After the concept has been injected completely, the model takes over
both the generation of the structure’s output and also serves as its own input.
This phase is also referred to as generation phase. The process is terminated
when a predefined stop symbol occurs in the feature vector sequence.

Using the shallowDream structure, it is possible to implement multiple differ-
ent functions by simply altering the concept and the stop symbol. For example,
in order to predict room connections, the a concatenation of block 1 and the
control vector of a block 2 tag (connection tag) is used as concept and the con-
trol vector of a room layout tag is used as stop symbol. The control vector at
the end of a concept is used to instruct the model to generate the favored tag
type (and hence to start the new block).

Even after intensive training, the output produced by the model only approx-
imates the intended feature vectors. An error at any time step influences the
outputs of all subsequent time steps due to the recursive characteristics of the
shallowDream structure. This effect aggravates over time, therefore feature vec-
tors have to be regenerated during the generation phase. For that purpose, three
different strategies are proposed:

No Regeneration. In this primitive approach, the current feature vector is
simply reinserted without any modifications into the models input.

Vector-Based Regeneration. This strategy solely utilizes knowledge about
the feature vector’s structure. Generally, all boolean components are recovered



Interactive Design Support for Architecture Projects During Early Phases 39

by mapping them to 1.0 or 0.0 based on which the component is closer to and
the real-valued components remain unaltered.

Sequence-Based Regeneration. In this approach, a state machine is keeping
track of the current block and tag the sequence is in (thereby utilizing knowledge
about the sequence structure). Based on that information a vector is regenerated
by calculating the most likely, possible vector. In order for the state machine to
transit between different states, only selected components are evaluated against
a threshold. Different components (and combinations of them) might be used in
different blocks.

5 Integration of the Proposed Mechanism into Archistant

This paper is restricted to the following two functions:

– Room Connection Generation. Given a set of rooms (each room is described
by a center position coordinate and room function) connections are generated
between them, turning a set of rooms into a room graph.

– Room Layout Generation. Given a room Graph, layouts for each room a
layout (i.e. a polygon describing its surrounding walls) is generated.

For the sake of simplicity, a single button is added to the WebUI only, which
we labeled “Creativity”. Based on the current state of the user’s work, the dif-
ferent functions are selected automatically.

6 Experiments

LSTMs are trained based on the two described sequencing approaches. In all
cases, a training database with 200 entries, a test database of 40 entries, a
blowup factor of 30, 500 LSTM cells and a learning rate of 0.01 are used.

6.1 Quantitative Analysis

In order to compare the performances of the different approaches, the room
connection generation is calculated on the room definitions of the test set of floor
plans and compared with these floor plan’s actual connections. As a metric, the
amount of wrong connections is divided by the amount of actual connections.
A connection is considered to be completely wrong (error 1.0), if the predicted
connection does not actually exist in the ground truth. It is considered partly
wrong (error 0.5), if the connection type in ground truth is different. The final
evaluation value is the arithmetic average over all floor plans in the test set.
The results are shown in Table 2. It is emphasized that floor plan generation is
a creative task and that there is not necessarily one solution to a given problem,
i.e. the used error calculation metrics do only hint the actual performance of the
approaches (an error of 0% appears unrealistic to accomplish given that also the
floor plans in the database are only one way to solve the problem).



40 J. Bayer et al.

Table 2. Performance comparison of the individual approaches for the connection
generation task on the test set (from [1]).

Approach Error

Block generation sequencer 65.78%

Vector prediction sequencer 66.08%

6.2 Qualitative Analysis

The performance of the shallowDream structure is shown exemplary for two
scenarios. For the room connection generation, four rooms are given (Fig. 10)
as a concept. As illustrated in Fig. 9, the regeneration strategy influences the
output. Figure 11 depicts a rendered version of the output produced by the
sequence based regeneration.

In order to illustrate the performance of the room layout generation function,
a different starting situation is used (see Fig. 12), the result is depicted in Fig. 13.

7 Future Work

We have shown the general viability of our approach (i.e. the output of the
trained models resembles the intended syntax in a quality sufficient for our infer-
encing algorithm to produce results). Nevertheless, a lot of floor plan aspects are
not yet covered in the existing models. The actual position of doors and win-
dows are needs to be included into the models as well as support for multi-storey
buildings. Apart from that, the performance of the existing models is still fairly
limited. At the moment, there is only one phase of concept injection followed
by a generation phase. By allowing for multiple alternating phases of generation
and concept injection, even more functions could be realized. Apart from that,
better metrics have to be found to assess a models performance. As of now, our
approach only supports a strict order of design phases. A more flexible approach
that allows for a more fluid transition between design steps would be useful in
future.

In order to both allow for better comparison to similar approaches and to
improve the performance of our system, the presented approach can be applied
to a standard database [5] and existing algorithms [6] can be used to increase
the sample size of the sample database.

Many of the mentioned problems could be avoided by a completely different
sequencing strategy: Instead of employing a single neural network that manip-
ulates the entire room graph, multiple neural network instances could be used
instead. In such a scenario, one LSTM could be responsible for a single room.
Such a group of LSTMs could communicate the results of individual design steps
among each other. Not only would this approach allow for shorter sequences, it
would also render most of the room ID assignment as well as room and connec-
tion ordering redundant. The problem of a predetermined, fixed upper limit of



Interactive Design Support for Architecture Projects During Early Phases 41

Fig. 9. The regeneration technique in shallowDream influences the generated feature
vector sequences (from [1]). From Top to Bottom: 1. The concept. 2. No Regeneration.
3. Vector-Based Regeneration 4. Sequence-Based Regeneration.



42 J. Bayer et al.

Fig. 10. Input given to the shallowDream structure (from [1]).

Fig. 11. Output obtained from the shallowDream structure (from [1]).

Fig. 12. Input given to the shallowDream structure (from [1]).

Fig. 13. Output obtained from the shallowDream structure (from [1]).



Interactive Design Support for Architecture Projects During Early Phases 43

rooms would therefore also be mitigated tremendously in such a setting. Like-
wise, one of the assumed reasons for the low training performance of the models
is the amount of information that the LSTMs had to store. This problem would
also be mitigated in a distributed approach.

Apart from that, our approach can be used as a general template for machine
learning of user behavior, given that the data structure manipulated by the user
can be described as a graph. Consequently, a more general implementation of a
graph-based machine learning framework can be build using our approach.

Acknowledgment. This work was partly funded by Deutsche Forschungs-
Gemeinschaft.

References

1. Bayer, J., Bukhari, S., Dengel, A.: Interactive LSTM-based design support in a
sketching tool for the architectural domain. In: 7th International Conference on
Pattern Recognition Applications and Methods, Funchal (2018)

2. Bayer, J., et al.: Migrating the classical pen-and-paper based conceptual sketching
of architecture plans towards computer tools - prototype design and evaluation.
In: Lamiroy, B., Dueire Lins, R. (eds.) GREC 2015. LNCS, vol. 9657, pp. 47–59.
Springer, Cham (2017). https://doi.org/10.1007/978-3-319-52159-6 4

3. Brandes, U., Eiglsperger, M., Lerner, J., Pich, C.: Graph Markup Language
(GraphML). In: Tamassia, R. (ed.) Handbook of Graph Drawing and Visualization,
vol. 20007, pp. 517–541. CRC Press, Boca Raton (2013)

4. Breuel, T.M.: The OCRopus open source OCR system. In: Electronic Imaging
2008, p. 68150F. International Society for Optics and Photonics (2008)

5. de las Heras, L.-P., Terrades, O.R., Robles, S., Sánchez, G.: CVC-FP and SGT: a
new database for structural floor plan analysis and its groundtruthing tool. Int. J.
Doc. Anal. Recognit. (IJDAR) 18(1), 15–30 (2015)

6. Delalandre, M., Pridmore, T., Valveny, E., Locteau, H., Trupin, E.: Building syn-
thetic graphical documents for performance evaluation. In: Liu, W., Lladós, J.,
Ogier, J.-M. (eds.) GREC 2007. LNCS, vol. 5046, pp. 288–298. Springer, Heidel-
berg (2008). https://doi.org/10.1007/978-3-540-88188-9 27

7. Gers, F.A., Schmidhuber, J., Cummins, F.: Learning to forget: continual prediction
with LSTM. Neural Comput. 12(10), 2451–2471 (2000)

8. Graves, A.: Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850 (2013)

9. Hochreiter, S., Schmidhuber, J.: Long short-term memory. Neural Comput. 9(8),
1735–1780 (1997)

10. Langenhan, C.: Datenmanagement in der Architektur. Dissertation, Technische
Universität München, Müchen (2017)

11. Sabri, Q.U., Bayer, J., Ayzenshtadt, V., Bukhari, S.S., Althoff, K.-D., Dengel, A.:
Semantic pattern-based retrieval of architectural floor plans with case-based and
graph-based searching techniques and their evaluation and visualization (2017)

https://doi.org/10.1007/978-3-319-52159-6_4
https://doi.org/10.1007/978-3-540-88188-9_27
http://arxiv.org/abs/1308.0850

	Interactive Design Support for Architecture Projects During Early Phases Based on Recurrent Neural Networks
	1 Introduction
	2 Related Work
	2.1 The Long-Short Term Memory
	2.2 The Architectural Design Support Tool Archistant

	3 Encoding Floor Plans for Recurrent Neural Network Processing
	3.1 Requirements
	3.2 Blocks
	3.3 The Feature Vector
	3.4 Tags
	3.5 Room and Connection Order

	4 Proposed Mechanism of Autocompletion of Floor Plans Using LSTM
	4.1 Input and Output Sequences
	4.2 Preparation of Database
	4.3 Extension of Floor Plans

	5 Integration of the Proposed Mechanism into Archistant
	6 Experiments
	6.1 Quantitative Analysis
	6.2 Qualitative Analysis

	7 Future Work
	References




