
Chapter 1
Hyperparameter Optimization

Matthias Feurer and Frank Hutter

Abstract Recent interest in complex and computationally expensive machine
learning models with many hyperparameters, such as automated machine learning
(AutoML) frameworks and deep neural networks, has resulted in a resurgence
of research on hyperparameter optimization (HPO). In this chapter, we give an
overview of the most prominent approaches for HPO. We first discuss blackbox
function optimization methods based on model-free methods and Bayesian opti-
mization. Since the high computational demand of many modern machine learning
applications renders pure blackbox optimization extremely costly, we next focus
on modern multi-fidelity methods that use (much) cheaper variants of the blackbox
function to approximately assess the quality of hyperparameter settings. Lastly, we
point to open problems and future research directions.

1.1 Introduction

Every machine learning system has hyperparameters, and the most basic task in
automated machine learning (AutoML) is to automatically set these hyperparam-
eters to optimize performance. Especially recent deep neural networks crucially
depend on a wide range of hyperparameter choices about the neural network’s archi-
tecture, regularization, and optimization. Automated hyperparameter optimization
(HPO) has several important use cases; it can

• reduce the human effort necessary for applying machine learning. This is
particularly important in the context of AutoML.

M. Feurer (�)
Department of Computer Science, University of Freiburg, Freiburg, Baden-Württemberg,
Germany
e-mail: feurerm@informatik.uni-freiburg.de

F. Hutter
Department of Computer Science, University of Freiburg, Freiburg, Germany

© The Author(s) 2019
F. Hutter et al. (eds.), Automated Machine Learning, The Springer Series
on Challenges in Machine Learning, https://doi.org/10.1007/978-3-030-05318-5_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-05318-5_1&domain=pdf
mailto:feurerm@informatik.uni-freiburg.de
https://doi.org/10.1007/978-3-030-05318-5_1

4 M. Feurer and F. Hutter

• improve the performance of machine learning algorithms (by tailoring them
to the problem at hand); this has led to new state-of-the-art performances for
important machine learning benchmarks in several studies (e.g. [105, 140]).

• improve the reproducibility and fairness of scientific studies. Automated HPO
is clearly more reproducible than manual search. It facilitates fair comparisons
since different methods can only be compared fairly if they all receive the same
level of tuning for the problem at hand [14, 133].

The problem of HPO has a long history, dating back to the 1990s (e.g., [77,
82, 107, 126]), and it was also established early that different hyperparameter
configurations tend to work best for different datasets [82]. In contrast, it is a rather
new insight that HPO can be used to adapt general-purpose pipelines to specific
application domains [30]. Nowadays, it is also widely acknowledged that tuned
hyperparameters improve over the default setting provided by common machine
learning libraries [100, 116, 130, 149].

Because of the increased usage of machine learning in companies, HPO is also of
substantial commercial interest and plays an ever larger role there, be it in company-
internal tools [45], as part of machine learning cloud services [6, 89], or as a service
by itself [137].

HPO faces several challenges which make it a hard problem in practice:

• Function evaluations can be extremely expensive for large models (e.g., in deep
learning), complex machine learning pipelines, or large datesets.

• The configuration space is often complex (comprising a mix of continuous, cat-
egorical and conditional hyperparameters) and high-dimensional. Furthermore,
it is not always clear which of an algorithm’s hyperparameters need to be
optimized, and in which ranges.

• We usually don’t have access to a gradient of the loss function with respect to
the hyperparameters. Furthermore, other properties of the target function often
used in classical optimization do not typically apply, such as convexity and
smoothness.

• One cannot directly optimize for generalization performance as training datasets
are of limited size.

We refer the interested reader to other reviews of HPO for further discussions on
this topic [64, 94].

This chapter is structured as follows. First, we define the HPO problem for-
mally and discuss its variants (Sect. 1.2). Then, we discuss blackbox optimization
algorithms for solving HPO (Sect. 1.3). Next, we focus on modern multi-fidelity
methods that enable the use of HPO even for very expensive models, by exploiting
approximate performance measures that are cheaper than full model evaluations
(Sect. 1.4). We then provide an overview of the most important hyperparameter
optimization systems and applications to AutoML (Sect. 1.5) and end the chapter
with a discussion of open problems (Sect. 1.6).

1 Hyperparameter Optimization 5

1.2 Problem Statement

Let A denote a machine learning algorithm with N hyperparameters. We denote
the domain of the n-th hyperparameter by �n and the overall hyperparameter
configuration space as � = �1 × �2 × . . . �N . A vector of hyperparameters is
denoted by λ ∈ �, and A with its hyperparameters instantiated to λ is denoted
by Aλ.

The domain of a hyperparameter can be real-valued (e.g., learning rate), integer-
valued (e.g., number of layers), binary (e.g., whether to use early stopping or not), or
categorical (e.g., choice of optimizer). For integer and real-valued hyperparameters,
the domains are mostly bounded for practical reasons, with only a few excep-
tions [12, 113, 136].

Furthermore, the configuration space can contain conditionality, i.e., a hyper-
parameter may only be relevant if another hyperparameter (or some combination
of hyperparameters) takes on a certain value. Conditional spaces take the form of
directed acyclic graphs. Such conditional spaces occur, e.g., in the automated tuning
of machine learning pipelines, where the choice between different preprocessing
and machine learning algorithms is modeled as a categorical hyperparameter, a
problem known as Full Model Selection (FMS) or Combined Algorithm Selection
and Hyperparameter optimization problem (CASH) [30, 34, 83, 149]. They also
occur when optimizing the architecture of a neural network: e.g., the number of
layers can be an integer hyperparameter and the per-layer hyperparameters of layer
i are only active if the network depth is at least i [12, 14, 33].

Given a data set D, our goal is to find

λ∗ = argmin
λ∈�

E(Dtrain,Dvalid)∼DV(L,Aλ,Dtrain,Dvalid), (1.1)

where V(L,Aλ,Dtrain,Dvalid) measures the loss of a model generated by algo-
rithm A with hyperparameters λ on training data Dtrain and evaluated on validation
data Dvalid . In practice, we only have access to finite data D ∼ D and thus need to
approximate the expectation in Eq. 1.1.

Popular choices for the validation protocol V(·, ·, ·, ·) are the holdout and cross-
validation error for a user-given loss function (such as misclassification rate);
see Bischl et al. [16] for an overview of validation protocols. Several strategies
for reducing the evaluation time have been proposed: It is possible to only test
machine learning algorithms on a subset of folds [149], only on a subset of
data [78, 102, 147], or for a small amount of iterations; we will discuss some of
these strategies in more detail in Sect. 1.4. Recent work on multi-task [147] and
multi-source [121] optimization introduced further cheap, auxiliary tasks, which
can be queried instead of Eq. 1.1. These can provide cheap information to help HPO,
but do not necessarily train a machine learning model on the dataset of interest and
therefore do not yield a usable model as a side product.

6 M. Feurer and F. Hutter

1.2.1 Alternatives to Optimization: Ensembling and
Marginalization

Solving Eq. 1.1 with one of the techniques described in the rest of this chapter
usually requires fitting the machine learning algorithm A with multiple hyperpa-
rameter vectors λt . Instead of using the argmin-operator over these, it is possible
to either construct an ensemble (which aims to minimize the loss for a given
validation protocol) or to integrate out all the hyperparameters (if the model under
consideration is a probabilistic model). We refer to Guyon et al. [50] and the
references therein for a comparison of frequentist and Bayesian model selection.

Only choosing a single hyperparameter configuration can be wasteful when
many good configurations have been identified by HPO, and combining them
in an ensemble can improve performance [109]. This is particularly useful in
AutoML systems with a large configuration space (e.g., in FMS or CASH), where
good configurations can be very diverse, which increases the potential gains from
ensembling [4, 19, 31, 34]. To further improve performance, Automatic Franken-
steining [155] uses HPO to train a stacking model [156] on the outputs of the
models found with HPO; the 2nd level models are then combined using a traditional
ensembling strategy.

The methods discussed so far applied ensembling after the HPO procedure.
While they improve performance in practice, the base models are not optimized
for ensembling. It is, however, also possible to directly optimize for models which
would maximally improve an existing ensemble [97].

Finally, when dealing with Bayesian models it is often possible to integrate
out the hyperparameters of the machine learning algorithm, for example using
evidence maximization [98], Bayesian model averaging [56], slice sampling [111]
or empirical Bayes [103].

1.2.2 Optimizing for Multiple Objectives

In practical applications it is often necessary to trade off two or more objectives,
such as the performance of a model and resource consumption [65] (see also
Chap. 3) or multiple loss functions [57]. Potential solutions can be obtained in two
ways.

First, if a limit on a secondary performance measure is known (such as the
maximal memory consumption), the problem can be formulated as a constrained
optimization problem. We will discuss constraint handling in Bayesian optimization
in Sect. 1.3.2.4.

Second, and more generally, one can apply multi-objective optimization to search
for the Pareto front, a set of configurations which are optimal tradeoffs between the
objectives in the sense that, for each configuration on the Pareto front, there is no
other configuration which performs better for at least one and at least as well for all
other objectives. The user can then choose a configuration from the Pareto front. We
refer the interested reader to further literature on this topic [53, 57, 65, 134].

1 Hyperparameter Optimization 7

1.3 Blackbox Hyperparameter Optimization

In general, every blackbox optimization method can be applied to HPO. Due to
the non-convex nature of the problem, global optimization algorithms are usually
preferred, but some locality in the optimization process is useful in order to make
progress within the few function evaluations that are usually available. We first
discuss model-free blackbox HPO methods and then describe blackbox Bayesian
optimization methods.

1.3.1 Model-Free Blackbox Optimization Methods

Grid search is the most basic HPO method, also known as full factorial design [110].
The user specifies a finite set of values for each hyperparameter, and grid search
evaluates the Cartesian product of these sets. This suffers from the curse of dimen-
sionality since the required number of function evaluations grows exponentially
with the dimensionality of the configuration space. An additional problem of grid
search is that increasing the resolution of discretization substantially increases the
required number of function evaluations.

A simple alternative to grid search is random search [13].1 As the name suggests,
random search samples configurations at random until a certain budget for the search
is exhausted. This works better than grid search when some hyperparameters are
much more important than others (a property that holds in many cases [13, 61]).
Intuitively, when run with a fixed budget of B function evaluations, the number of
different values grid search can afford to evaluate for each of the N hyperparameters
is only B1/N , whereas random search will explore B different values for each; see
Fig. 1.1 for an illustration.

Fig. 1.1 Comparison of grid search and random search for minimizing a function with one
important and one unimportant parameter. This figure is based on the illustration in Fig. 1 of
Bergstra and Bengio [13]

1In some disciplines this is also known as pure random search [158].

8 M. Feurer and F. Hutter

Further advantages over grid search include easier parallelization (since workers
do not need to communicate with each other and failing workers do not leave holes
in the design) and flexible resource allocation (since one can add an arbitrary number
of random points to a random search design to still yield a random search design;
the equivalent does not hold for grid search).

Random search is a useful baseline because it makes no assumptions on the
machine learning algorithm being optimized, and, given enough resources, will,
in expectation, achieves performance arbitrarily close to the optimum. Interleaving
random search with more complex optimization strategies therefore allows to
guarantee a minimal rate of convergence and also adds exploration that can improve
model-based search [3, 59]. Random search is also a useful method for initializing
the search process, as it explores the entire configuration space and thus often
finds settings with reasonable performance. However, it is no silver bullet and often
takes far longer than guided search methods to identify one of the best performing
hyperparameter configurations: e.g., when sampling without replacement from a
configuration space with N Boolean hyperparameters with a good and a bad setting
each and no interaction effects, it will require an expected 2N−1 function evaluations
to find the optimum, whereas a guided search could find the optimum in N + 1
function evaluations as follows: starting from an arbitrary configuration, loop over
the hyperparameters and change one at a time, keeping the resulting configuration
if performance improves and reverting the change if it doesn’t. Accordingly, the
guided search methods we discuss in the following sections usually outperform
random search [12, 14, 33, 90, 153].

Population-based methods, such as genetic algorithms, evolutionary algorithms,
evolutionary strategies, and particle swarm optimization are optimization algo-
rithms that maintain a population, i.e., a set of configurations, and improve this
population by applying local perturbations (so-called mutations) and combinations
of different members (so-called crossover) to obtain a new generation of better
configurations. These methods are conceptually simple, can handle different data
types, and are embarrassingly parallel [91] since a population of N members can be
evaluated in parallel on N machines.

One of the best known population-based methods is the covariance matrix
adaption evolutionary strategy (CMA-ES [51]); this simple evolutionary strategy
samples configurations from a multivariate Gaussian whose mean and covariance
are updated in each generation based on the success of the population’s individ-
uals. CMA-ES is one of the most competitive blackbox optimization algorithms,
regularly dominating the Black-Box Optimization Benchmarking (BBOB) chal-
lenge [11].

For further details on population-based methods, we refer to [28, 138]; we discuss
applications to hyperparameter optimization in Sect. 1.5, applications to neural
architecture search in Chap. 3, and genetic programming for AutoML pipelines in
Chap. 8.

1 Hyperparameter Optimization 9

1.3.2 Bayesian Optimization

Bayesian optimization is a state-of-the-art optimization framework for the global
optimization of expensive blackbox functions, which recently gained traction in
HPO by obtaining new state-of-the-art results in tuning deep neural networks
for image classification [140, 141], speech recognition [22] and neural language
modeling [105], and by demonstrating wide applicability to different problem
settings. For an in-depth introduction to Bayesian optimization, we refer to the
excellent tutorials by Shahriari et al. [135] and Brochu et al. [18].

In this section we first give a brief introduction to Bayesian optimization, present
alternative surrogate models used in it, describe extensions to conditional and
constrained configuration spaces, and then discuss several important applications
to hyperparameter optimization.

Many recent advances in Bayesian optimization do not treat HPO as a blackbox
any more, for example multi-fidelity HPO (see Sect. 1.4), Bayesian optimization
with meta-learning (see Chap. 2), and Bayesian optimization taking the pipeline
structure into account [159, 160]. Furthermore, many recent developments in
Bayesian optimization do not directly target HPO, but can often be readily applied
to HPO, such as new acquisition functions, new models and kernels, and new
parallelization schemes.

1.3.2.1 Bayesian Optimization in a Nutshell

Bayesian optimization is an iterative algorithm with two key ingredients: a prob-
abilistic surrogate model and an acquisition function to decide which point to
evaluate next. In each iteration, the surrogate model is fitted to all observations
of the target function made so far. Then the acquisition function, which uses the
predictive distribution of the probabilistic model, determines the utility of different
candidate points, trading off exploration and exploitation. Compared to evaluating
the expensive blackbox function, the acquisition function is cheap to compute and
can therefore be thoroughly optimized.

Although many acquisition functions exist, the expected improvement (EI) [72]:

E[I(λ)] = E[max(fmin − y, 0)] (1.2)

is common choice since it can be computed in closed form if the model prediction
y at configuration λ follows a normal distribution:

E[I(λ)] = (fmin − μ(λ))�

(
fmin − μ(λ)

σ

)
+ σφ

(
fmin − μ(λ)

σ

)
, (1.3)

where φ(·) and �(·) are the standard normal density and standard normal distribu-
tion function, and fmin is the best observed value so far.

Fig. 1.2 illustrates Bayesian optimization optimizing a toy function.

10 M. Feurer and F. Hutter

1.3.2.2 Surrogate Models

Traditionally, Bayesian optimization employs Gaussian processes [124] to model
the target function because of their expressiveness, smooth and well-calibrated

Fig. 1.2 Illustration of Bayesian optimization on a 1-d function. Our goal is to minimize the
dashed line using a Gaussian process surrogate (predictions shown as black line, with blue tube
representing the uncertainty) by maximizing the acquisition function represented by the lower
orange curve. (Top) The acquisition value is low around observations, and the highest acquisition
value is at a point where the predicted function value is low and the predictive uncertainty is
relatively high. (Middle) While there is still a lot of variance to the left of the new observation, the
predicted mean to the right is much lower and the next observation is conducted there. (Bottom)
Although there is almost no uncertainty left around the location of the true maximum, the next
evaluation is done there due to its expected improvement over the best point so far

1 Hyperparameter Optimization 11

uncertainty estimates and closed-form computability of the predictive distribution.
A Gaussian process G (

m(λ), k(λ,λ′)
)

is fully specified by a mean m(λ) and a
covariance function k(λ,λ′), although the mean function is usually assumed to be
constant in Bayesian optimization. Mean and variance predictions μ(·) and σ 2(·)
for the noise-free case can be obtained by:

μ(λ) = kT∗ K−1y, σ 2(λ) = k(λ,λ) − kT∗ K−1k∗, (1.4)

where k∗ denotes the vector of covariances between λ and all previous observations,
K is the covariance matrix of all previously evaluated configurations and y are
the observed function values. The quality of the Gaussian process depends solely
on the covariance function. A common choice is the Mátern 5/2 kernel, with its
hyperparameters integrated out by Markov Chain Monte Carlo [140].

One downside of standard Gaussian processes is that they scale cubically in
the number of data points, limiting their applicability when one can afford many
function evaluations (e.g., with many parallel workers, or when function evaluations
are cheap due to the use of lower fidelities). This cubic scaling can be avoided
by scalable Gaussian process approximations, such as sparse Gaussian processes.
These approximate the full Gaussian process by using only a subset of the original
dataset as inducing points to build the kernel matrix K. While they allowed Bayesian
optimization with GPs to scale to tens of thousands of datapoints for optimizing the
parameters of a randomized SAT solver [62], there are criticism about the calibration
of their uncertainty estimates and their applicability to standard HPO has not been
tested [104, 154].

Another downside of Gaussian processes with standard kernels is their poor
scalability to high dimensions. As a result, many extensions have been proposed
to efficiently handle intrinsic properties of configuration spaces with large number
of hyperparameters, such as the use of random embeddings [153], using Gaussian
processes on partitions of the configuration space [154], cylindric kernels [114], and
additive kernels [40, 75].

Since some other machine learning models are more scalable and flexible than
Gaussian processes, there is also a large body of research on adapting these models
to Bayesian optimization. Firstly, (deep) neural networks are a very flexible and
scalable models. The simplest way to apply them to Bayesian optimization is as a
feature extractor to preprocess inputs and then use the outputs of the final hidden
layer as basis functions for Bayesian linear regression [141]. A more complex, fully
Bayesian treatment of the network weights, is also possible by using a Bayesian
neural network trained with stochastic gradient Hamiltonian Monte Carlo [144].
Neural networks tend to be faster than Gaussian processes for Bayesian optimization
after ∼250 function evaluations, which also allows for large-scale parallelism. The
flexibility of deep learning can also enable Bayesian optimization on more complex
tasks. For example, a variational auto-encoder can be used to embed complex inputs
(such as the structured configurations of the automated statistician, see Chap. 9)
into a real-valued vector such that a regular Gaussian process can handle it [92].
For multi-source Bayesian optimization, a neural network architecture built on

12 M. Feurer and F. Hutter

factorization machines [125] can include information on previous tasks [131] and
has also been extended to tackle the CASH problem [132].

Another alternative model for Bayesian optimization are random forests [59].
While GPs perform better than random forests on small, numerical configuration
spaces [29], random forests natively handle larger, categorical and conditional
configuration spaces where standard GPs do not work well [29, 70, 90]. Further-
more, the computational complexity of random forests scales far better to many
data points: while the computational complexity of fitting and predicting variances
with GPs for n data points scales as O(n3) and O(n2), respectively, for random
forests, the scaling in n is only O(n log n) and O(log n), respectively. Due to
these advantages, the SMAC framework for Bayesian optimization with random
forests [59] enabled the prominent AutoML frameworks Auto-WEKA [149] and
Auto-sklearn [34] (which are described in Chaps. 4 and 6).

Instead of modeling the probability p(y|λ) of observations y given the config-
urations λ, the Tree Parzen Estimator (TPE [12, 14]) models density functions
p(λ|y < α) and p(λ|y ≥ α). Given a percentile α (usually set to 15%), the
observations are divided in good observations and bad observations and simple
1-d Parzen windows are used to model the two distributions. The ratio p(λ|y<α)

p(λ|y≥α)
is

related to the expected improvement acquisition function and is used to propose new
hyperparameter configurations. TPE uses a tree of Parzen estimators for conditional
hyperparameters and demonstrated good performance on such structured HPO
tasks [12, 14, 29, 33, 143, 149, 160], is conceptually simple, and parallelizes
naturally [91]. It is also the workhorse behind the AutoML framework Hyperopt-
sklearn [83] (which is described in Chap. 5).

Finally, we note that there are also surrogate-based approaches which do not
follow the Bayesian optimization paradigm: Hord [67] uses a deterministic RBF
surrogate, and Harmonica [52] uses a compressed sensing technique, both to tune
the hyperparameters of deep neural networks.

1.3.2.3 Configuration Space Description

Bayesian optimization was originally designed to optimize box-constrained, real-
valued functions. However, for many machine learning hyperparameters, such as the
learning rate in neural networks or regularization in support vector machines, it is
common to optimize the exponent of an exponential term to describe that changing
it, e.g., from 0.001 to 0.01 is expected to have a similarly high impact as changing
it from 0.1 to 1. A technique known as input warping [142] allows to automatically
learn such transformations during the optimization process by replacing each input
dimension with the two parameters of a Beta distribution and optimizing these.

One obvious limitation of the box-constraints is that the user needs to define
these upfront. To avoid this, it is possible to dynamically expand the configura-
tion space [113, 136]. Alternatively, the estimation-of-distribution-style algorithm
TPE [12] is able to deal with infinite spaces on which a (typically Gaussian) prior is
placed.

1 Hyperparameter Optimization 13

Integers and categorical hyperparameters require special treatment but can be
integrated fairly easily into regular Bayesian optimization by small adaptations of
the kernel and the optimization procedure (see Sect. 12.1.2 of [58], as well as [42]).
Other models, such as factorization machines and random forests, can also naturally
handle these data types.

Conditional hyperparameters are still an active area of research (see Chaps. 5
and 6 for depictions of conditional configuration spaces in recent AutoML systems).
They can be handled natively by tree-based methods, such as random forests [59]
and tree Parzen estimators (TPE) [12], but due to the numerous advantages of
Gaussian processes over other models, multiple kernels for structured configuration
spaces have also been proposed [4, 12, 63, 70, 92, 96, 146].

1.3.2.4 Constrained Bayesian Optimization

In realistic scenarios it is often necessary to satisfy constraints, such as memory
consumption [139, 149], training time [149], prediction time [41, 43], accuracy of a
compressed model [41], energy usage [43] or simply to not fail during the training
procedure [43].

Constraints can be hidden in that only a binary observation (success or failure)
is available [88]. Typical examples in AutoML are memory and time constraints to
allow training of the algorithms in a shared computing system, and to make sure
that a single slow algorithm configuration does not use all the time available for
HPO [34, 149] (see also Chaps. 4 and 6).

Constraints can also merely be unknown, meaning that we can observe and model
an auxiliary constraint function, but only know about a constraint violation after
evaluating the target function [46]. An example of this is the prediction time of a
support vector machine, which can only be obtained by training it as it depends on
the number of support vectors selected during training.

The simplest approach to model violated constraints is to define a penalty
value (at least as bad as the worst possible observable loss value) and use it
as the observation for failed runs [34, 45, 59, 149]. More advanced approaches
model the probability of violating one or more constraints and actively search for
configurations with low loss values that are unlikely to violate any of the given
constraints [41, 43, 46, 88].

Bayesian optimization frameworks using information theoretic acquisition func-
tions allow decoupling the evaluation of the target function and the constraints
to dynamically choose which of them to evaluate next [43, 55]. This becomes
advantageous when evaluating the function of interest and the constraints require
vastly different amounts of time, such as evaluating a deep neural network’s
performance and memory consumption [43].

14 M. Feurer and F. Hutter

1.4 Multi-fidelity Optimization

Increasing dataset sizes and increasingly complex models are a major hurdle in HPO
since they make blackbox performance evaluation more expensive. Training a single
hyperparameter configuration on large datasets can nowadays easily exceed several
hours and take up to several days [85].

A common technique to speed up manual tuning is therefore to probe an
algorithm/hyperparameter configuration on a small subset of the data, by training
it only for a few iterations, by running it on a subset of features, by only using one
or a few of the cross-validation folds, or by using down-sampled images in computer
vision. Multi-fidelity methods cast such manual heuristics into formal algorithms,
using so-called low fidelity approximations of the actual loss function to minimize.
These approximations introduce a tradeoff between optimization performance and
runtime, but in practice, the obtained speedups often outweigh the approximation
error.

First, we review methods which model an algorithm’s learning curve during
training and can stop the training procedure if adding further resources is predicted
to not help. Second, we discuss simple selection methods which only choose
one of a finite set of given algorithms/hyperparameter configurations. Third, we
discuss multi-fidelity methods which can actively decide which fidelity will provide
most information about finding the optimal hyperparameters. We also refer to
Chap. 2 (which discusses how multi-fidelity methods can be used across datasets)
and Chap. 3 (which describes low-fidelity approximations for neural architecture
search).

1.4.1 Learning Curve-Based Prediction for Early Stopping

We start this section on multi-fidelity methods in HPO with methods that evaluate
and model learning curves during HPO [82, 123] and then decide whether to
add further resources or stop the training procedure for a given hyperparameter
configuration. Examples of learning curves are the performance of the same con-
figuration trained on increasing dataset subsets, or the performance of an iterative
algorithm measured for each iteration (or every i-th iteration if the calculation of
the performance is expensive).

Learning curve extrapolation is used in the context of predictive termination [26],
where a learning curve model is used to extrapolate a partially observed learning
curve for a configuration, and the training process is stopped if the configuration
is predicted to not reach the performance of the best model trained so far in the
optimization process. Each learning curve is modeled as a weighted combination of
11 parametric functions from various scientific areas. These functions’ parameters
and their weights are sampled via Markov chain Monte Carlo to minimize the loss
of fitting the partially observed learning curve. This yields a predictive distribution,

1 Hyperparameter Optimization 15

which allows to stop training based on the probability of not beating the best known
model. When combined with Bayesian optimization, the predictive termination cri-
terion enabled lower error rates than off-the-shelve blackbox Bayesian optimization
for optimizing neural networks. On average, the method sped up the optimization
by a factor of two and was able to find a (then) state-of-the-art neural network for
CIFAR-10 (without data augmentation) [26].

While the method above is limited by not sharing information across different
hyperparameter configurations, this can be achieved by using the basis functions as
the output layer of a Bayesian neural network [80]. The parameters and weights of
the basis functions, and thus the full learning curve, can thereby be predicted for
arbitrary hyperparameter configurations. Alternatively, it is possible to use previous
learning curves as basis function extrapolators [21]. While the experimental results
are inconclusive on whether the proposed method is superior to pre-specified
parametric functions, not having to manually define them is a clear advantage.

Freeze-Thaw Bayesian optimization [148] is a full integration of learning curves
into the modeling and selection process of Bayesian optimization. Instead of
terminating a configuration, the machine learning models are trained iteratively for
a few iterations and then frozen. Bayesian optimization can then decide to thaw one
of the frozen models, which means to continue training it. Alternatively, the method
can also decide to start a new configuration. Freeze-Thaw models the performance
of a converged algorithm with a regular Gaussian process and introduces a special
covariance function corresponding to exponentially decaying functions to model the
learning curves with per-learning curve Gaussian processes.

1.4.2 Bandit-Based Algorithm Selection Methods

In this section, we describe methods that try to determine the best algorithm
out of a given finite set of algorithms based on low-fidelity approximations of
their performance; towards its end, we also discuss potential combinations with
adaptive configuration strategies. We focus on variants of the bandit-based strategies
successive halving and Hyperband, since these have shown strong performance,
especially for optimizing deep learning algorithms. Strictly speaking, some of the
methods which we will discuss in this subsection also model learning curves, but
they provide no means of selecting new configurations based on these models.

First, however, we briefly describe the historical evolution of multi-fidelity
algorithm selection methods. In 2000, Petrak [120] noted that simply testing various
algorithms on a small subset of the data is a powerful and cheap mechanism to
select an algorithm. Later approaches used iterative algorithm elimination schemes
to drop hyperparameter configurations if they perform badly on subsets of the
data [17], if they perform significantly worse than a group of top-performing
configurations [86], if they perform worse than the best configuration by a user-
specified factor [143], or if even an optimistic performance bound for an algorithm
is worse than the best known algorithm [128]. Likewise, it is possible to drop

16 M. Feurer and F. Hutter

hyperparameter configurations if they perform badly on one or a few cross-
validation folds [149]. Finally, Jamieson and Talwalkar [69] proposed to use the
successive halving algorithm originally introduced by Karnin et al. [76] for HPO.

Fig. 1.3 Illustration of successive halving for eight algorithms/configurations. After evaluating all
algorithms on 1

8 of the total budget, half of them are dropped and the budget given to the remaining
algorithms is doubled

Successive halving is an extremely simple, yet powerful, and therefore popular
strategy for multi-fidelity algorithm selection: for a given initial budget, query all
algorithms for that budget; then, remove the half that performed worst, double the
budget 2 and successively repeat until only a single algorithm is left. This process is
illustrated in Fig. 1.3. Jamieson and Talwalkar [69] benchmarked several common
bandit methods and found that successive halving performs well both in terms
of the number of required iterations and in the required computation time, that
the algorithm theoretically outperforms a uniform budget allocation strategy if the
algorithms converge favorably, and that it is preferable to many well-known bandit
strategies from the literature, such as UCB and EXP3.

While successive halving is an efficient approach, it suffers from the budget-
vs-number of configurations trade off. Given a total budget, the user has to decide
beforehand whether to try many configurations and only assign a small budget to
each, or to try only a few and assign them a larger budget. Assigning too small a
budget can result in prematurely terminating good configurations, while assigning
too large a budget can result in running poor configurations too long and thereby
wasting resources.

2More precisely, drop the worst fraction η−1
η

of algorithms and multiply the budget for the
remaining algorithms by η, where η is a hyperparameter. Its default value was changed from 2
to 3 with the introduction of HyperBand [90].

1 Hyperparameter Optimization 17

HyperBand [90] is a hedging strategy designed to combat this problem when
selecting from randomly sampled configurations. It divides the total budget into
several combinations of number of configurations vs. budget for each, to then call
successive halving as a subroutine on each set of random configurations. Due to the
hedging strategy which includes running some configurations only on the maximal
budget, in the worst case, HyperBand takes at most a constant factor more time
than vanilla random search on the maximal budget. In practice, due to its use
of cheap low-fidelity evaluations, HyperBand has been shown to improve over
vanilla random search and blackbox Bayesian optimization for data subsets, feature
subsets and iterative algorithms, such as stochastic gradient descent for deep neural
networks.

Despite HyperBand’s success for deep neural networks it is very limiting to not
adapt the configuration proposal strategy to the function evaluations. To overcome
this limitation, the recent approach BOHB [33] combines Bayesian optimization and
HyperBand to achieve the best of both worlds: strong anytime performance (quick
improvements in the beginning by using low fidelities in HyperBand) and strong
final performance (good performance in the long run by replacing HyperBand’s
random search by Bayesian optimization). BOHB also uses parallel resources
effectively and deals with problem domains ranging from a few to many dozen
hyperparameters. BOHB’s Bayesian optimization component resembles TPE [12],
but differs by using multidimensional kernel density estimators. It only fits a model
on the highest fidelity for which at least |�| + 1 evaluations have been performed
(the number of hyperparameters, plus one). BOHB’s first model is therefore fitted
on the lowest fidelity, and over time models trained on higher fidelities take over,
while still using the lower fidelities in successive halving. Empirically, BOHB was
shown to outperform several state-of-the-art HPO methods for tuning support vector
machines, neural networks and reinforcement learning algorithms, including most
methods presented in this section [33]. Further approaches to combine HyperBand
and Bayesian optimization have also been proposed [15, 151].

Multiple fidelity evaluations can also be combined with HPO in other ways.
Instead of switching between lower fidelities and the highest fidelity, it is possible to
perform HPO on a subset of the original data and extract the best-performing con-
figurations in order to use them as an initial design for HPO on the full dataset [152].
To speed up solutions to the CASH problem, it is also possible to iteratively remove
entire algorithms (and their hyperparameters) from the configuration space based on
poor performance on small dataset subsets [159].

1.4.3 Adaptive Choices of Fidelities

All methods in the previous subsection follow a predefined schedule for the
fidelities. Alternatively, one might want to actively choose which fidelities to
evaluate given previous observations to prevent a misspecification of the schedule.

18 M. Feurer and F. Hutter

Multi-task Bayesian optimization [147] uses a multi-task Gaussian process
to model the performance of related tasks and to automatically learn the tasks’
correlation during the optimization process. This method can dynamically switch
between cheaper, low-fidelity tasks and the expensive, high-fidelity target task based
on a cost-aware information-theoretic acquisition function. In practice, the proposed
method starts exploring the configuration space on the cheaper task and only
switches to the more expensive configuration space in later parts of the optimization,
approximately halving the time required for HPO. Multi-task Bayesian optimization
can also be used to transfer information from previous optimization tasks, and we
refer to Chap. 2 for further details.

Multi-task Bayesian optimization (and the methods presented in the previous
subsection) requires an upfront specification of a set of fidelities. This can be
suboptimal since these can be misspecified [74, 78] and because the number of
fidelities that can be handled is low (usually five or less). Therefore, and in order to
exploit the typically smooth dependence on the fidelity (such as, e.g., size of the data
subset used), it often yields better results to treat the fidelity as continuous (and, e.g.,
choose a continuous percentage of the full data set to evaluate a configuration on),
trading off the information gain and the time required for evaluation [78]. To exploit
the domain knowledge that performance typically improves with more data, with
diminishing returns, a special kernel can be constructed for the data subsets [78].
This generalization of multi-task Bayesian optimization improves performance and
can achieve a 10–100 fold speedup compared to blackbox Bayesian optimization.

Instead of using an information-theoretic acquisition function, Bayesian opti-
mization with the Upper Confidence Bound (UCB) acquisition function can also
be extended to multiple fidelities [73, 74]. While the first such approach, MF-
GP-UCB [73], required upfront fidelity definitions, the later BOCA algorithm [74]
dropped that requirement. BOCA has also been applied to optimization with more
than one continuous fidelity, and we expect HPO for more than one continuous
fidelity to be of further interest in the future.

Generally speaking, methods that can adaptively choose their fidelity are very
appealing and more powerful than the conceptually simpler bandit-based methods
discussed in Sect. 1.4.2, but in practice we caution that strong models are required
to make successful choices about the fidelities. When the models are not strong
(since they do not have enough training data yet, or due to model mismatch), these
methods may spend too much time evaluating higher fidelities, and the more robust
fixed budget schedules discussed in Sect. 1.4.2 might yield better performance given
a fixed time limit.

1.5 Applications to AutoML

In this section, we provide a historical overview of the most important hyperparam-
eter optimization systems and applications to automated machine learning.

1 Hyperparameter Optimization 19

Grid search has been used for hyperparameter optimization since the 1990s [71,
107] and was already supported by early machine learning tools in 2002 [35].
The first adaptive optimization methods applied to HPO were greedy depth-first
search [82] and pattern search [109], both improving over default hyperparam-
eter configurations, and pattern search improving over grid search, too. Genetic
algorithms were first applied to tuning the two hyperparameters C and γ of an RBF-
SVM in 2004 [119] and resulted in improved classification performance in less time
than grid search. In the same year, an evolutionary algorithm was used to learn a
composition of three different kernels for an SVM, the kernel hyperparameters and
to jointly select a feature subset; the learned combination of kernels was able to
outperform every single optimized kernel. Similar in spirit, also in 2004, a genetic
algorithm was used to select both the features used by and the hyperparameters of
either an SVM or a neural network [129].

CMA-ES was first used for hyperparameter optimization in 2005 [38], in that
case to optimize an SVM’s hyperparameters C and γ , a kernel lengthscale li for
each dimension of the input data, and a complete rotation and scaling matrix. Much
more recently, CMA-ES has been demonstrated to be an excellent choice for parallel
HPO, outperforming state-of-the-art Bayesian optimization tools when optimizing
19 hyperparameters of a deep neural network on 30 GPUs in parallel [91].

In 2009, Escalante et al. [30] extended the HPO problem to the Full Model
Selection problem, which includes selecting a preprocessing algorithm, a feature
selection algorithm, a classifier and all their hyperparameters. By being able to
construct a machine learning pipeline from multiple off-the-shelf machine learning
algorithms using HPO, the authors empirically found that they can apply their
method to any data set as no domain knowledge is required, and demonstrated the
applicability of their approach to a variety of domains [32, 49]. Their proposed
method, particle swarm model selection (PSMS), uses a modified particle swarm
optimizer to handle the conditional configuration space. To avoid overfitting,
PSMS was extended with a custom ensembling strategy which combined the best
solutions from multiple generations [31]. Since particle swarm optimization was
originally designed to work on continuous configuration spaces, PSMS was later
also extended to use a genetic algorithm to optimize the pipeline structure and
only use particle swarm optimization to optimize the hyperparameters of each
pipeline [145].

To the best of our knowledge, the first application of Bayesian optimization to
HPO dates back to 2005, when Frohlich and Zell [39] used an online Gaussian
process together with EI to optimize the hyperparameters of an SVM, achieving
speedups of factor 10 (classification, 2 hyperparameters) and 100 (regression, 3
hyperparameters) over grid search. Tuned Data Mining [84] proposed to tune the
hyperparameters of a full machine learning pipeline using Bayesian optimization;
specifically, this used a single fixed pipeline and tuned the hyperparameters of the
classifier as well as the per-class classification threshold and class weights.

In 2011, Bergstra et al. [12] were the first to apply Bayesian optimization to
tune the hyperparameters of a deep neural network, outperforming both manual
and random search. Furthermore, they demonstrated that TPE resulted in better

20 M. Feurer and F. Hutter

performance than a Gaussian process-based approach. TPE, as well as Bayesian
optimization with random forests, were also successful for joint neural architecture
search and hyperparameter optimization [14, 106].

Another important step in applying Bayesian optimization to HPO was made by
Snoek et al. in the 2012 paper Practical Bayesian Optimization of Machine Learning
Algorithms [140], which describes several tricks of the trade for Gaussian process-
based HPO implemented in the Spearmint system and obtained a new state-of-the-
art result for hyperparameter optimization of deep neural networks.

Independently of the Full Model Selection paradigm, Auto-WEKA [149] (see
also Chap. 4) introduced the Combined Algorithm Selection and Hyperparameter
Optimization (CASH) problem, in which the choice of a classification algorithm is
modeled as a categorical variable, the algorithm hyperparameters are modeled as
conditional hyperparameters, and the random-forest based Bayesian optimization
system SMAC [59] is used for joint optimization in the resulting 786-dimensional
configuration space.

In recent years, multi-fidelity methods have become very popular, especially
in deep learning. Firstly, using low-fidelity approximations based on data subsets,
feature subsets and short runs of iterative algorithms, Hyperband [90] was shown
to outperform blackbox Bayesian optimization methods that did not take these
lower fidelities into account. Finally, most recently, in the 2018 paper BOHB:
Robust and Efficient Hyperparameter Optimization at Scale, Falkner et al. [33]
introduced a robust, flexible, and parallelizable combination of Bayesian optimiza-
tion and Hyperband that substantially outperformed both Hyperband and blackbox
Bayesian optimization for a wide range of problems, including tuning support vector
machines, various types of neural networks, and reinforcement learning algorithms.

At the time of writing, we make the following recommendations for which tools
we would use in practical applications of HPO:

• If multiple fidelities are applicable (i.e., if it is possible to define substantially
cheaper versions of the objective function of interest, such that the performance
for these roughly correlates with the performance for the full objective function
of interest), we recommend BOHB [33] as a robust, efficient, versatile, and
parallelizable default hyperparameter optimization method.

• If multiple fidelities are not applicable:

– If all hyperparameters are real-valued and one can only afford a few dozen
function evaluations, we recommend the use of a Gaussian process-based
Bayesian optimization tool, such as Spearmint [140].

– For large and conditional configuration spaces we suggest either the random
forest-based SMAC [59] or TPE [14], due to their proven strong performance
on such tasks [29].

– For purely real-valued spaces and relatively cheap objective functions, for
which one can afford more than hundreds of evaluations, we recommend
CMA-ES [51].

1 Hyperparameter Optimization 21

1.6 Open Problems and Future Research Directions

We conclude this chapter with a discussion of open problems, current research
questions and potential further developments we expect to have an impact on
HPO in the future. Notably, despite their relevance, we leave out discussions on
hyperparameter importance and configuration space definition as these fall under
the umbrella of meta-learning and can be found in Chap. 2.

1.6.1 Benchmarks and Comparability

Given the breadth of existing HPO methods, a natural question is what are the
strengths and weaknesses of each of them. In order to allow for a fair com-
parison between different HPO approaches, the community needs to design and
agree upon a common set of benchmarks that expands over time, as new HPO
variants, such as multi-fidelity optimization, emerge. As a particular example for
what this could look like we would like to mention the COCO platform (short
for comparing continuous optimizers), which provides benchmark and analysis
tools for continuous optimization and is used as a workbench for the yearly
Black-Box Optimization Benchmarking (BBOB) challenge [11]. Efforts along
similar lines in HPO have already yielded the hyperparameter optimization library
(HPOlib [29]) and a benchmark collection specifically for Bayesian optimization
methods [25]. However, neither of these has gained similar traction as the COCO
platform.

Additionaly, the community needs clearly defined metrics, but currently different
works use different metrics. One important dimension in which evaluations differ
is whether they report performance on the validation set used for optimization or
on a separate test set. The former helps to study the strength of the optimizer
in isolation, without the noise that is added in the evaluation when going from
validation to test set; on the other hand, some optimizers may lead to more
overfitting than others, which can only be diagnosed by using the test set. Another
important dimension in which evaluations differ is whether they report perfor-
mance after a given number of function evaluations or after a given amount of
time. The latter accounts for the difference in time between evaluating different
hyperparameter configurations and includes optimization overheads, and therefore
reflects what is required in practice; however, the former is more convenient and
aids reproducibility by yielding the same results irrespective of the hardware used.
To aid reproducibility, especially studies that use time should therefore release an
implementation.

We note that it is important to compare against strong baselines when using
new benchmarks, which is another reason why HPO methods should be published
with an accompanying implementation. Unfortunately, there is no common software
library as is, for example, available in deep learning research that implements all

22 M. Feurer and F. Hutter

the basic building blocks [2, 117]. As a simple, yet effective baseline that can
be trivially included in empirical studies, Jamieson and Recht [68] suggest to
compare against different parallelization levels of random search to demonstrate
the speedups over regular random search. When comparing to other optimization
techniques it is important to compare against a solid implementation, since, e.g.,
simpler versions of Bayesian optimization have been shown to yield inferior
performance [79, 140, 142].

1.6.2 Gradient-Based Optimization

In some cases (e.g., least-squares support vector machines and neural networks) it
is possible to obtain the gradient of the model selection criterion with respect to
some of the model hyperparameters. Different to blackbox HPO, in this case each
evaluation of the target function results in an entire hypergradient vector instead of
a single float value, allowing for faster HPO.

Maclaurin et al. [99] described a procedure to compute the exact gradients of
validation performance with respect to all continuous hyperparameters of a neural
network by backpropagating through the entire training procedure of stochastic
gradient descent with momentum (using a novel, memory-efficient algorithm).
Being able to handle many hyperparameters efficiently through gradient-based
methods allows for a new paradigm of hyperparametrizing the model to obtain
flexibility over model classes, regularization, and training methods. Maclaurin et
al. demonstrated the applicability of gradient-based HPO to many high-dimensional
HPO problems, such as optimizing the learning rate of a neural network for each
iteration and layer separately, optimizing the weight initialization scale hyperpa-
rameter for each layer in a neural network, optimizing the l2 penalty for each
individual parameter in logistic regression, and learning completely new training
datasets. As a small downside, backpropagating through the entire training proce-
dure comes at the price of doubling the time complexity of the training procedure.
The described method can also be generalized to work with other parameter
update algorithms [36]. To overcome the necessity of backpropagating through
the complete training procedure, later work allows to perform hyperparameter
updates with respect to a separate validation set interleaved with the training process
[5, 10, 36, 37, 93].

Recent examples of gradient-based optimization of simple model’s hyperparam-
eters [118] and of neural network structures (see Chap. 3) show promising results,
outperforming state-of-the-art Bayesian optimization models. Despite being highly
model-specific, the fact that gradient-based hyperparemeter optimization allows
tuning several hundreds of hyperparameters could allow substantial improvements
in HPO.

1 Hyperparameter Optimization 23

1.6.3 Scalability

Despite recent successes in multi-fidelity optimization, there are still machine
learning problems which have not been directly tackled by HPO due to their scale,
and which might require novel approaches. Here, scale can mean both the size of the
configuration space and the expense of individual model evaluations. For example,
there has not been any work on HPO for deep neural networks on the ImageNet
challenge dataset [127] yet, mostly because of the high cost of training even a
simple neural network on the dataset. It will be interesting to see whether methods
going beyond the blackbox view from Sect. 1.3, such as the multi-fidelity methods
described in Sect. 1.4, gradient-based methods, or meta-learning methods (described
in Chap. 2) allow to tackle such problems. Chap. 3 describes first successes in
learning neural network building blocks on smaller datasets and applying them to
ImageNet, but the hyperparameters of the training procedure are still set manually.

Given the necessity of parallel computing, we are looking forward to new
methods that fully exploit large-scale compute clusters. While there exists much
work on parallel Bayesian optimization [12, 24, 33, 44, 54, 60, 135, 140], except
for the neural networks described in Sect. 1.3.2.2 [141], so far no method has
demonstrated scalability to hundreds of workers. Despite their popularity, and with
a single exception of HPO applied to deep neural networks [91],3 population-
based approaches have not yet been shown to be applicable to hyperparameter
optimization on datasets larger than a few thousand data points.

Overall, we expect that more sophisticated and specialized methods, leaving the
blackbox view behind, will be needed to further scale hyperparameter to interesting
problems.

1.6.4 Overfitting and Generalization

An open problem in HPO is overfitting. As noted in the problem statement (see
Sect. 1.2), we usually only have a finite number of data points available for
calculating the validation loss to be optimized and thereby do not necessarily
optimize for generalization to unseen test datapoints. Similarly to overfitting a
machine learning algorithm to training data, this problem is about overfitting the
hyperparameters to the finite validation set; this was also demonstrated to happen
experimentally [20, 81].

A simple strategy to reduce the amount of overfitting is to employ a different
shuffling of the train and validation split for each function evaluation; this was
shown to improve generalization performance for SVM tuning, both with a holdout
and a cross-validation strategy [95]. The selection of the final configuration can

3See also Chap. 3 where population-based methods are applied to Neural Architecture Search
problems.

24 M. Feurer and F. Hutter

be further robustified by not choosing it according to the lowest observed value,
but according to the lowest predictive mean of the Gaussian process model used in
Bayesian optimization [95].

Another possibility is to use a separate holdout set to assess configurations
found by HPO to avoid bias towards the standard validation set [108, 159].
Different approximations of the generalization performance can lead to different
test performances [108], and there have been reports that several resampling
strategies can result in measurable performance differences for HPO of support
vector machines [150].

A different approach to combat overfitting might be to find stable optima instead
of sharp optima of the objective function [112]. The idea is that for stable optima,
the function value around an optimum does not change for slight perturbations of
the hyperparameters, whereas it does change for sharp optima. Stable optima lead to
better generalization when applying the found hyperparameters to a new, unseen set
of datapoints (i.e., the test set). An acquisition function built around this was shown
to only slightly overfit for support vector machine HPO, while regular Bayesian
optimization exhibited strong overfitting [112].

Further approaches to combat overfitting are the ensemble methods and Bayesian
methods presented in Sect. 1.2.1. Given all these different techniques, there is no
commonly agreed-upon technique for how to best avoid overfitting, though, and it
remains up to the user to find out which strategy performs best on their particular
HPO problem. We note that the best strategy might actually vary across HPO
problems.

1.6.5 Arbitrary-Size Pipeline Construction

All HPO techniques we discussed so far assume a finite set of components
for machine learning pipelines or a finite maximum number of layers in neural
networks. For machine learning pipelines (see the AutoML systems covered in
Part II of this book) it might be helpful to use more than one feature preprocessing
algorithm and dynamically add them if necessary for a problem, enlarging the search
space by a hyperparameter to select an appropriate preprocessing algorithm and
its own hyperparameters. While a search space for standard blackbox optimization
tools could easily include several extra such preprocessors (and their hyperparame-
ters) as conditional hyperparameters, an unbounded number of these would be hard
to support.

One approach for handling arbitrary-sized pipelines more natively is the tree-
structured pipeline optimization toolkit (TPOT [115], see also Chap. 8), which uses
genetic programming and describes possible pipelines by a grammar. TPOT uses
multi-objective optimization to trade off pipeline complexity with performance to
avoid generating unnecessarily complex pipelines.

1 Hyperparameter Optimization 25

A different pipeline creation paradigm is the usage of hierarchical planning; the
recent ML-Plan [101, 108] uses hierarchical task networks and shows competitive
performance compared to Auto-WEKA [149] and Auto-sklearn [34].

So far these approaches are not consistently outperforming AutoML systems
with a fixed pipeline length, but larger pipelines may provide more improvement.
Similarly, neural architecture search yields complex configuration spaces and we
refer to Chap. 3 for a description of methods to tackle them.

Acknowledgements We would like to thank Luca Franceschi, Raghu Rajan, Stefan Falkner and
Arlind Kadra for valuable feedback on the manuscript.

Bibliography

1. Proceedings of the International Conference on Learning Representations (ICLR’18) (2018),
published online: iclr.cc

2. Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G., Davis,
A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard, M., Jia,
Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga, R., Moore, S.,
Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I., Talwar, K., Tucker,
P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden, P., Wattenberg, M., Wicke,
M., Yu, Y., Zheng, X.: TensorFlow: Large-scale machine learning on heterogeneous systems
(2015), https://www.tensorflow.org/

3. Ahmed, M., Shahriari, B., Schmidt, M.: Do we need “harmless” Bayesian optimization
and “first-order” Bayesian optimization. In: NeurIPS Workshop on Bayesian Optimization
(BayesOpt’16) (2016)

4. Alaa, A., van der Schaar, M.: AutoPrognosis: Automated Clinical Prognostic Modeling via
Bayesian Optimization with Structured Kernel Learning. In: Dy and Krause [27], pp. 139–148

5. Almeida, L.B., Langlois, T., Amaral, J.D., Plakhov, A.: Parameter Adaptation in Stochastic
Optimization, p. 111–134. Cambridge University Press (1999)

6. Amazon: Automatic model tuning (2018), https://docs.aws.amazon.com/sagemaker/latest/dg/
automatic-model-tuning.html

7. Bach, F., Blei, D. (eds.): Proceedings of the 32nd International Conference on Machine
Learning (ICML’15), vol. 37. Omnipress (2015)

8. Balcan, M., Weinberger, K. (eds.): Proceedings of the 33rd International Conference on
Machine Learning (ICML’17), vol. 48. Proceedings of Machine Learning Research (2016)

9. Bartlett, P., Pereira, F., Burges, C., Bottou, L., Weinberger, K. (eds.): Proceedings of the
26th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’12) (2012)

10. Baydin, A.G., Cornish, R., Rubio, D.M., Schmidt, M., Wood, F.: Online Learning Rate
Adaption with Hypergradient Descent. In: Proceedings of the International Conference on
Learning Representations (ICLR’18) [1], published online: iclr.cc

11. BBOBies: Black-box Optimization Benchmarking (BBOB) workshop series (2018), http://
numbbo.github.io/workshops/index.html

12. Bergstra, J., Bardenet, R., Bengio, Y., Kégl, B.: Algorithms for hyper-parameter optimization.
In: Shawe-Taylor, J., Zemel, R., Bartlett, P., Pereira, F., Weinberger, K. (eds.) Proceedings of
the 25th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’11). pp. 2546–2554 (2011)

13. Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. Journal of
Machine Learning Research 13, 281–305 (2012)

www.iclr.cc
https://www.tensorflow.org/
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
https://docs.aws.amazon.com/sagemaker/latest/dg/automatic-model-tuning.html
www.iclr.cc
http://numbbo.github.io/workshops/index.html
http://numbbo.github.io/workshops/index.html

26 M. Feurer and F. Hutter

14. Bergstra, J., Yamins, D., Cox, D.: Making a science of model search: Hyperparameter
optimization in hundreds of dimensions for vision architectures. In: Dasgupta and McAllester
[23], pp. 115–123

15. Bertrand, H., Ardon, R., Perrot, M., Bloch, I.: Hyperparameter optimization of deep
neural networks: Combining hyperband with Bayesian model selection. In: Conférence sur
l’Apprentissage Automatique (2017)

16. Bischl, B., Mersmann, O., Trautmann, H., Weihs, C.: Resampling methods for meta-model
validation with recommendations for evolutionary computation. Evolutionary Computation
20(2), 249–275 (2012)

17. Van den Bosch, A.: Wrapped progressive sampling search for optimizing learning algorithm
parameters. In: Proceedings of the sixteenth Belgian-Dutch Conference on Artificial Intelli-
gence. pp. 219–226 (2004)

18. Brochu, E., Cora, V., de Freitas, N.: A tutorial on Bayesian optimization of expensive cost
functions, with application to active user modeling and hierarchical reinforcement learning.
arXiv:1012.2599v1 [cs.LG] (2010)

19. Bürger, F., Pauli, J.: A Holistic Classification Optimization Framework with Feature Selec-
tion, Preprocessing, Manifold Learning and Classifiers., pp. 52–68. Springer (2015)

20. Cawley, G., Talbot, N.: On Overfitting in Model Selection and Subsequent Selection Bias in
Performance Evaluation. Journal of Machine Learning Research 11 (2010)

21. Chandrashekaran, A., Lane, I.: Speeding up Hyper-parameter Optimization by Extrapolation
of Learning Curves using Previous Builds. In: Ceci, M., Hollmen, J., Todorovski, L.,
Vens, C., Džeroski, S. (eds.) Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’17). Lecture Notes in Computer Science, vol. 10534. Springer (2017)

22. Dahl, G., Sainath, T., Hinton, G.: Improving deep neural networks for LVCSR using
rectified linear units and dropout. In: Adams, M., Zhao, V. (eds.) International Conference
on Acoustics, Speech and Signal Processing (ICASSP’13). pp. 8609–8613. IEEE Computer
Society Press (2013)

23. Dasgupta, S., McAllester, D. (eds.): Proceedings of the 30th International Conference on
Machine Learning (ICML’13). Omnipress (2014)

24. Desautels, T., Krause, A., Burdick, J.: Parallelizing exploration-exploitation tradeoffs in
Gaussian process bandit optimization. Journal of Machine Learning Research 15, 4053–4103
(2014)

25. Dewancker, I., McCourt, M., Clark, S., Hayes, P., Johnson, A., Ke, G.: A stratified analysis of
Bayesian optimization methods. arXiv:1603.09441v1 [cs.LG] (2016)

26. Domhan, T., Springenberg, J.T., Hutter, F.: Speeding up automatic hyperparameter optimiza-
tion of deep neural networks by extrapolation of learning curves. In: Yang, Q., Wooldridge,
M. (eds.) Proceedings of the 25th International Joint Conference on Artificial Intelligence
(IJCAI’15). pp. 3460–3468 (2015)

27. Dy, J., Krause, A. (eds.): Proceedings of the 35th International Conference on Machine
Learning (ICML’18), vol. 80. Proceedings of Machine Learning Research (2018)

28. Eberhart, R., Shi, Y.: Comparison between genetic algorithms and particle swarm optimiza-
tion. In: Porto, V., Saravanan, N., Waagen, D., Eiben, A. (eds.) 7th International conference
on evolutionary programming. pp. 611–616. Springer (1998)

29. Eggensperger, K., Feurer, M., Hutter, F., Bergstra, J., Snoek, J., Hoos, H., Leyton-Brown, K.:
Towards an empirical foundation for assessing Bayesian optimization of hyperparameters. In:
NeurIPS Workshop on Bayesian Optimization in Theory and Practice (BayesOpt’13) (2013)

30. Escalante, H., Montes, M., Sucar, E.: Particle Swarm Model Selection. Journal of Machine
Learning Research 10, 405–440 (2009)

31. Escalante, H., Montes, M., Sucar, E.: Ensemble particle swarm model selection. In: Proceed-
ings of the 2010 IEEE International Joint Conference on Neural Networks (IJCNN). pp. 1–8.
IEEE Computer Society Press (2010)

32. Escalante, H., Montes, M., Villaseñor, L.: Particle swarm model selection for authorship
verification. In: Bayro-Corrochano, E., Eklundh, J.O. (eds.) Progress in Pattern Recognition,
Image Analysis, Computer Vision, and Applications. pp. 563–570 (2009)

1 Hyperparameter Optimization 27

33. Falkner, S., Klein, A., Hutter, F.: BOHB: Robust and Efficient Hyperparameter Optimization
at Scale. In: Dy and Krause [27], pp. 1437–1446

34. Feurer, M., Klein, A., Eggensperger, K., Springenberg, J.T., Blum, M., Hutter, F.: Efficient
and robust automated machine learning. In: Cortes, C., Lawrence, N., Lee, D., Sugiyama, M.,
Garnett, R. (eds.) Proceedings of the 29th International Conference on Advances in Neural
Information Processing Systems (NeurIPS’15). pp. 2962–2970 (2015)

35. Fischer, S., Klinkenberg, R., Mierswa, I., Ritthoff, O.: Yale: Yet another learning environment
– tutorial. Tech. rep., University of Dortmund (2002)

36. Franceschi, L., Donini, M., Frasconi, P., Pontil, M.: Forward and Reverse Gradient-Based
Hyperparameter Optimization. In: Precup and Teh [122], pp. 1165–1173

37. Franceschi, L., Frasconi, P., Salzo, S., Grazzi, R., Pontil, M.: Bilevel Programming for
Hyperparameter Optimization and Meta-Learning. In: Dy and Krause [27], pp. 1568–1577

38. Friedrichs, F., Igel, C.: Evolutionary tuning of multiple SVM parameters. Neurocomputing
64, 107–117 (2005)

39. Frohlich, H., Zell, A.: Efficient parameter selection for support vector machines in classifica-
tion and regression via model-based global optimization. In: Prokhorov, D., Levine, D., Ham,
F., Howell, W. (eds.) Proceedings of the 2005 IEEE International Joint Conference on Neural
Networks (IJCNN). pp. 1431–1436. IEEE Computer Society Press (2005)

40. Gardner, J., Guo, C., Weinberger, K., Garnett, R., Grosse, R.: Discovering and Exploiting
Additive Structure for Bayesian Optimization. In: Singh, A., Zhu, J. (eds.) Proceedings of
the Seventeenth International Conference on Artificial Intelligence and Statistics (AISTATS).
vol. 54, pp. 1311–1319. Proceedings of Machine Learning Research (2017)

41. Gardner, J., Kusner, M., Xu, Z., Weinberger, K., Cunningham, J.: Bayesian Optimization with
Inequality Constraints. In: Xing and Jebara [157], pp. 937–945

42. Garrido-Merchán, E., Hernández-Lobato, D.: Dealing with integer-valued variables in
Bayesian optimization with Gaussian processes. arXiv:1706.03673v2 [stats.ML] (2017)

43. Gelbart, M., Snoek, J., Adams, R.: Bayesian optimization with unknown constraints. In:
Zhang, N., Tian, J. (eds.) Proceedings of the 30th conference on Uncertainty in Artificial
Intelligence (UAI’14). AUAI Press (2014)

44. Ginsbourger, D., Le Riche, R., Carraro, L.: Kriging Is Well-Suited to Parallelize Optimization.
In: Computational Intelligence in Expensive Optimization Problems, pp. 131–162. Springer
(2010)

45. Golovin, D., Solnik, B., Moitra, S., Kochanski, G., Karro, J., Sculley, D.: Google Vizier: A
service for black-box optimization. In: Matwin, S., Yu, S., Farooq, F. (eds.) Proceedings of
the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD). pp. 1487–1495. ACM Press (2017)

46. Gramacy, R., Lee, H.: Optimization under unknown constraints. Bayesian Statistics 9(9), 229–
246 (2011)

47. Gretton, A., Robert, C. (eds.): Proceedings of the Seventeenth International Conference on
Artificial Intelligence and Statistics (AISTATS), vol. 51. Proceedings of Machine Learning
Research (2016)

48. Guyon, I., von Luxburg, U., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S., Garnett, R.
(eds.): Proceedings of the 31st International Conference on Advances in Neural Information
Processing Systems (NeurIPS’17) (2017)

49. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Analysis of the IJCNN 2007 agnostic learning
vs. prior knowledge challenge. Neural Networks 21(2), 544–550 (2008)

50. Guyon, I., Saffari, A., Dror, G., Cawley, G.: Model Selection: Beyond the Bayesian/Frequen-
tist Divide. Journal of Machine Learning Research 11, 61–87 (2010)

51. Hansen, N.: The CMA evolution strategy: A tutorial. arXiv:1604.00772v1 [cs.LG] (2016)
52. Hazan, E., Klivans, A., Yuan, Y.: Hyperparameter optimization: A spectral approach. In:

Proceedings of the International Conference on Learning Representations (ICLR’18) [1],
published online: iclr.cc

53. Hernandez-Lobato, D., Hernandez-Lobato, J., Shah, A., Adams, R.: Predictive Entropy
Search for Multi-objective Bayesian Optimization. In: Balcan and Weinberger [8], pp. 1492–
1501

www.iclr.cc

28 M. Feurer and F. Hutter

54. Hernández-Lobato, J., Requeima, J., Pyzer-Knapp, E., Aspuru-Guzik, A.: Parallel and
distributed Thompson sampling for large-scale accelerated exploration of chemical space.
In: Precup and Teh [122], pp. 1470–1479

55. Hernández-Lobato, J., Gelbart, M., Adams, R., Hoffman, M., Ghahramani, Z.: A general
framework for constrained Bayesian optimization using information-based search. The
Journal of Machine Learning Research 17(1), 5549–5601 (2016)

56. Hoeting, J., Madigan, D., Raftery, A., Volinsky, C.: Bayesian model averaging: a tutorial.
Statistical science pp. 382–401 (1999)

57. Horn, D., Bischl, B.: Multi-objective parameter configuration of machine learning algorithms
using model-based optimization. In: Likas, A. (ed.) 2016 IEEE Symposium Series on
Computational Intelligence (SSCI). pp. 1–8. IEEE Computer Society Press (2016)

58. Hutter, F.: Automated Configuration of Algorithms for Solving Hard Computational Prob-
lems. Ph.D. thesis, University of British Columbia, Department of Computer Science,
Vancouver, Canada (2009)

59. Hutter, F., Hoos, H., Leyton-Brown, K.: Sequential model-based optimization for general
algorithm configuration. In: Coello, C. (ed.) Proceedings of the Fifth International Conference
on Learning and Intelligent Optimization (LION’11). Lecture Notes in Computer Science,
vol. 6683, pp. 507–523. Springer (2011)

60. Hutter, F., Hoos, H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y.,
Schoenauer, M. (eds.) Proceedings of the Sixth International Conference on Learning and
Intelligent Optimization (LION’12). Lecture Notes in Computer Science, vol. 7219, pp. 55–
70. Springer (2012)

61. Hutter, F., Hoos, H., Leyton-Brown, K.: An efficient approach for assessing hyperparameter
importance. In: Xing and Jebara [157], pp. 754–762

62. Hutter, F., Hoos, H., Leyton-Brown, K., Murphy, K.: Time-bounded sequential parameter
optimization. In: Blum, C. (ed.) Proceedings of the Fourth International Conference on
Learning and Intelligent Optimization (LION’10). Lecture Notes in Computer Science, vol.
6073, pp. 281–298. Springer (2010)

63. Hutter, F., Osborne, M.: A kernel for hierarchical parameter spaces. arXiv:1310.5738v1
[stats.ML] (2013)

64. Hutter, F., Lücke, J., Schmidt-Thieme, L.: Beyond Manual Tuning of Hyperparameters. KI -
Künstliche Intelligenz 29(4), 329–337 (2015)

65. Igel, C.: Multi-objective Model Selection for Support Vector Machines. In: Coello, C.,
Aguirre, A., Zitzler, E. (eds.) Evolutionary Multi-Criterion Optimization. pp. 534–546.
Springer (2005)

66. Ihler, A., Janzing, D. (eds.): Proceedings of the 32nd conference on Uncertainty in Artificial
Intelligence (UAI’16). AUAI Press (2016)

67. Ilievski, I., Akhtar, T., Feng, J., Shoemaker, C.: Efficient Hyperparameter Optimization
for Deep Learning Algorithms Using Deterministic RBF Surrogates. In: Sierra, C. (ed.)
Proceedings of the 27th International Joint Conference on Artificial Intelligence (IJCAI’17)
(2017)

68. Jamieson, K., Recht, B.: The news on auto-tuning (2016), http://www.argmin.net/2016/06/20/
hypertuning/

69. Jamieson, K., Talwalkar, A.: Non-stochastic best arm identification and hyperparameter
optimization. In: Gretton and Robert [47], pp. 240–248

70. Jenatton, R., Archambeau, C., González, J., Seeger, M.: Bayesian Optimization with Tree-
structured Dependencies. In: Precup and Teh [122], pp. 1655–1664

71. John, G.: Cross-Validated C4.5: Using Error Estimation for Automatic Parameter Selection.
Tech. Rep. STAN-CS-TN-94-12, Stanford University, Stanford University (1994)

72. Jones, D., Schonlau, M., Welch, W.: Efficient global optimization of expensive black box
functions. Journal of Global Optimization 13, 455–492 (1998)

73. Kandasamy, K., Dasarathy, G., Oliva, J., Schneider, J., Póczos, B.: Gaussian Process Bandit
Optimisation with Multi-fidelity Evaluations. In: Lee et al. [87], pp. 992–1000

http://www.argmin.net/2016/06/20/hypertuning/
http://www.argmin.net/2016/06/20/hypertuning/

1 Hyperparameter Optimization 29

74. Kandasamy, K., Dasarathy, G., Schneider, J., Póczos, B.: Multi-fidelity Bayesian Optimisa-
tion with Continuous Approximations. In: Precup and Teh [122], pp. 1799–1808

75. Kandasamy, K., Schneider, J., Póczos, B.: High Dimensional Bayesian Optimisation and
Bandits via Additive Models. In: Bach and Blei [7], pp. 295–304

76. Karnin, Z., Koren, T., Somekh, O.: Almost optimal exploration in multi-armed bandits. In:
Dasgupta and McAllester [23], pp. 1238–1246

77. King, R., Feng, C., Sutherland, A.: Statlog: comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence an International Journal 9(3), 289–333
(1995)

78. Klein, A., Falkner, S., Bartels, S., Hennig, P., Hutter, F.: Fast bayesian hyperparameter
optimization on large datasets. In: Electronic Journal of Statistics. vol. 11 (2017)

79. Klein, A., Falkner, S., Mansur, N., Hutter, F.: RoBO: A flexible and robust Bayesian optimiza-
tion framework in Python. In: NeurIPS workshop on Bayesian Optimization (BayesOpt’17)
(2017)

80. Klein, A., Falkner, S., Springenberg, J.T., Hutter, F.: Learning curve prediction with Bayesian
neural networks. In: Proceedings of the International Conference on Learning Representations
(ICLR’17) (2017), published online: iclr.cc

81. Koch, P., Konen, W., Flasch, O., Bartz-Beielstein, T.: Optimizing support vector machines for
stormwater prediction. Tech. Rep. TR10-2-007, Technische Universität Dortmund (2010)

82. Kohavi, R., John, G.: Automatic Parameter Selection by Minimizing Estimated Error. In:
Prieditis, A., Russell, S. (eds.) Proceedings of the Twelfth International Conference on
Machine Learning, pp. 304–312. Morgan Kaufmann Publishers (1995)

83. Komer, B., Bergstra, J., Eliasmith, C.: Hyperopt-sklearn: Automatic hyperparameter config-
uration for scikit-learn. In: Hutter, F., Caruana, R., Bardenet, R., Bilenko, M., Guyon, I.,
Kégl, B., Larochelle, H. (eds.) ICML workshop on Automated Machine Learning (AutoML
workshop 2014) (2014)

84. Konen, W., Koch, P., Flasch, O., Bartz-Beielstein, T., Friese, M., Naujoks, B.: Tuned data
mining: a benchmark study on different tuners. In: Krasnogor, N. (ed.) Proceedings of the
13th Annual Conference on Genetic and Evolutionary Computation (GECCO’11). pp. 1995–
2002. ACM (2011)

85. Krizhevsky, A., Sutskever, I., Hinton, G.: Imagenet classification with deep convolutional
neural networks. In: Bartlett et al. [9], pp. 1097–1105

86. Krueger, T., Panknin, D., Braun, M.: Fast cross-validation via sequential testing. Journal of
Machine Learning Research (2015)

87. Lee, D., Sugiyama, M., von Luxburg, U., Guyon, I., Garnett, R. (eds.): Proceedings of
the 30th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’16) (2016)

88. Lee, H., Gramacy, R.: Optimization Subject to Hidden Constraints via Statistical Emulation.
Pacific Journal of Optimization 7(3), 467–478 (2011)

89. Li, F.F., Li, J.: Cloud AutoML: Making AI accessible to every business (2018), https://www.
blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/

90. Li, L., Jamieson, K., DeSalvo, G., Rostamizadeh, A., Talwalkar, A.: Hyperband: A
novel bandit-based approach to hyperparameter optimization. Journal of Machine Learning
Research 18(185), 1–52 (2018)

91. Loshchilov, I., Hutter, F.: CMA-ES for hyperparameter optimization of deep neural networks.
In: International Conference on Learning Representations Workshop track (2016), published
online: iclr.cc

92. Lu, X., Gonzalez, J., Dai, Z., Lawrence, N.: Structured Variationally Auto-encoded Optimiza-
tion. In: Dy and Krause [27], pp. 3273–3281

93. Luketina, J., Berglund, M., Greff, K., Raiko, T.: Scalable Gradient-Based Tuning of Continu-
ous Regularization Hyperparameters. In: Balcan and Weinberger [8], pp. 2952–2960

94. Luo, G.: A review of automatic selection methods for machine learning algorithms and hyper-
parameter values. Network Modeling Analysis in Health Informatics and Bioinformatics 5(1)
(2016)

www.iclr.cc
https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
https://www.blog.google/products/google-cloud/cloud-automl-making-ai-accessible-every-business/
www.iclr.cc

30 M. Feurer and F. Hutter

95. Lévesque, J.C.: Bayesian Hyperparameter Optimization: Overfitting, Ensembles and Condi-
tional Spaces. Ph.D. thesis, Université Laval (2018)

96. Lévesque, J.C., Durand, A., Gagné, C., Sabourin, R.: Bayesian optimization for conditional
hyperparameter spaces. In: Howell, B. (ed.) 2017 International Joint Conference on Neural
Networks (IJCNN). pp. 286–293. IEEE (2017)

97. Lévesque, J.C., Gagné, C., Sabourin, R.: Bayesian Hyperparameter Optimization for Ensem-
ble Learning. In: Ihler and Janzing [66], pp. 437–446

98. MacKay, D.: Hyperparameters: Optimize, or Integrate Out?, pp. 43–59. Springer (1996)
99. Maclaurin, D., Duvenaud, D., Adams, R.: Gradient-based Hyperparameter Optimization

through Reversible Learning. In: Bach and Blei [7], pp. 2113–2122
100. Mantovani, R., Horvath, T., Cerri, R., Vanschoren, J., Carvalho, A.: Hyper-Parameter Tuning

of a Decision Tree Induction Algorithm. In: 2016 5th Brazilian Conference on Intelligent
Systems (BRACIS). pp. 37–42. IEEE Computer Society Press (2016)

101. Marcel Wever, F.M., Hüllermeier, E.: ML-Plan for unlimited-length machine learning
pipelines. In: Garnett, R., Vanschoren, F.H.J., Brazdil, P., Caruana, R., Giraud-Carrier, C.,
Guyon, I., Kégl, B. (eds.) ICML workshop on Automated Machine Learning (AutoML
workshop 2018) (2018)

102. Maron, O., Moore, A.: The racing algorithm: Model selection for lazy learners. Artificial
Intelligence Review 11(1–5), 193–225 (1997)

103. McInerney, J.: An Empirical Bayes Approach to Optimizing Machine Learning Algorithms.
In: Guyon et al. [48], pp. 2712–2721

104. McIntire, M., Ratner, D., Ermon, S.: Sparse Gaussian Processes for Bayesian Optimization.
In: Ihler and Janzing [66]

105. Melis, G., Dyer, C., Blunsom, P.: On the state of the art of evaluation in neural language mod-
els. In: Proceedings of the International Conference on Learning Representations (ICLR’18)
[1], published online: iclr.cc

106. Mendoza, H., Klein, A., Feurer, M., Springenberg, J., Hutter, F.: Towards automatically-tuned
neural networks. In: ICML 2016 AutoML Workshop (2016)

107. Michie, D., Spiegelhalter, D., Taylor, C., Campbell, J. (eds.): Machine Learning, Neural and
Statistical Classification. Ellis Horwood (1994)

108. Mohr, F., Wever, M., Höllermeier, E.: ML-Plan: Automated machine learning via hierarchical
planning. Machine Learning 107(8–10), 1495–1515 (2018)

109. Momma, M., Bennett, K.: A Pattern Search Method for Model Selection of Support Vector
Regression. In: Proceedings of the 2002 SIAM International Conference on Data Mining,
pp. 261–274 (2002)

110. Montgomery, D.: Design and analysis of experiments. John Wiley & Sons, Inc, eighth edn.
(2013)

111. Murray, I., Adams, R.: Slice sampling covariance hyperparameters of latent Gaussian models.
In: Lafferty, J., Williams, C., Shawe-Taylor, J., Zemel, R., Culotta, A. (eds.) Proceedings of
the 24th International Conference on Advances in Neural Information Processing Systems
(NeurIPS’10). pp. 1732–1740 (2010)

112. Nguyen, T., Gupta, S., Rana, S., Venkatesh, S.: Stable Bayesian Optimization. In: Kim, J.,
Shim, K., Cao, L., Lee, J.G., Lin, X., Moon, Y.S. (eds.) Advances in Knowledge Discovery
and Data Mining (PAKDD’17). Lecture Notes in Artificial Intelligence, vol. 10235, pp. 578–
591 (2017)

113. Nguyen, V., Gupta, S., Rana, S., Li, C., Venkatesh, S.: Filtering Bayesian optimization
approach in weakly specified search space. Knowledge and Information Systems (2018)

114. Oh, C., Gavves, E., Welling, M.: BOCK: Bayesian Optimization with Cylindrical Kernels. In:
Dy and Krause [27], pp. 3865–3874

115. Olson, R., Bartley, N., Urbanowicz, R., Moore, J.: Evaluation of a Tree-based Pipeline
Optimization Tool for Automating Data Science. In: Friedrich, T. (ed.) Proceedings of the
Genetic and Evolutionary Computation Conference (GECCO’16). pp. 485–492. ACM (2016)

116. Olson, R., La Cava, W., Mustahsan, Z., Varik, A., Moore, J.: Data-driven advice for applying
machine learning to bioinformatics problems. In: Proceedings of the Pacific Symposium in
Biocomputing 2018. pp. 192–203 (2018)

www.iclr.cc

1 Hyperparameter Optimization 31

117. Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., Lin, Z., Desmaison, A.,
Antiga, L., Lerer, A.: Automatic differentiation in PyTorch. In: NeurIPS Autodiff Workshop
(2017)

118. Pedregosa, F.: Hyperparameter optimization with approximate gradient. In: Balcan and
Weinberger [8], pp. 737–746

119. Peng-Wei Chen, Jung-Ying Wang, Hahn-Ming Lee: Model selection of SVMs using GA
approach. In: Proceedings of the 2004 IEEE International Joint Conference on Neural
Networks (IJCNN). vol. 3, pp. 2035–2040. IEEE Computer Society Press (2004)

120. Petrak, J.: Fast subsampling performance estimates for classification algorithm selection.
Technical Report TR-2000-07, Austrian Research Institute for Artificial Intelligence (2000)

121. Poloczek, M., Wang, J., Frazier, P.: Multi-Information Source Optimization. In: Guyon et al.
[48], pp. 4288–4298

122. Precup, D., Teh, Y. (eds.): Proceedings of the 34th International Conference on Machine
Learning (ICML’17), vol. 70. Proceedings of Machine Learning Research (2017)

123. Provost, F., Jensen, D., Oates, T.: Efficient progressive sampling. In: Fayyad, U., Chaudhuri,
S., Madigan, D. (eds.) The 5th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining (KDD’99). pp. 23–32. ACM Press (1999)

124. Rasmussen, C., Williams, C.: Gaussian Processes for Machine Learning. The MIT Press
(2006)

125. Rendle, S.: Factorization machines. In: Webb, G., Liu, B., Zhang, C., Gunopulos, D., Wu, X.
(eds.) Proceedings of the 10th IEEE International Conference on Data Mining (ICDM’06).
pp. 995–1000. IEEE Computer Society Press (2010)

126. Ripley, B.D.: Statistical aspects of neural networks. Networks and chaos—statistical and
probabilistic aspects 50, 40–123 (1993)

127. Russakovsky, O., Deng, J., Su, H., Krause, J., Satheesh, S., Ma, S., Huang, Z., Karpathy,
A., Khosla, A., Bernstein, M., Berg, A., Fei-Fei, L.: Imagenet large scale visual recognition
challenge. International Journal of Computer Vision 115(3), 211–252 (2015)

128. Sabharwal, A., Samulowitz, H., Tesauro, G.: Selecting Near-Optimal Learners via Incremen-
tal Data Allocation. In: Schuurmans, D., Wellman, M. (eds.) Proceedings of the Thirtieth
National Conference on Artificial Intelligence (AAAI’16). AAAI Press (2016)

129. Samanta, B.: Gear fault detection using artificial neural networks and support vector machines
with genetic algorithms. Mechanical Systems and Signal Processing 18(3), 625–644 (2004)

130. Sanders, S., Giraud-Carrier, C.: Informing the Use of Hyperparameter Optimization Through
Metalearning. In: Gottumukkala, R., Ning, X., Dong, G., Raghavan, V., Aluru, S., Karypis,
G., Miele, L., Wu, X. (eds.) 2017 IEEE International Conference on Big Data (Big Data).
IEEE Computer Society Press (2017)

131. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Hyperparameter optimization
with factorized multilayer perceptrons. In: Appice, A., Rodrigues, P., Costa, V., Gama,
J., Jorge, A., Soares, C. (eds.) Machine Learning and Knowledge Discovery in Databases
(ECML/PKDD’15). Lecture Notes in Computer Science, vol. 9285, pp. 87–103. Springer
(2015)

132. Schilling, N., Wistuba, M., Drumond, L., Schmidt-Thieme, L.: Joint Model Choice and
Hyperparameter Optimization with Factorized Multilayer Perceptrons. In: 2015 IEEE 27th
International Conference on Tools with Artificial Intelligence (ICTAI). pp. 72–79. IEEE
Computer Society Press (2015)

133. Sculley, D., Snoek, J., Wiltschko, A., Rahimi, A.: Winner’s curse? on pace, progress, and
empirical rigor. In: International Conference on Learning Representations Workshop track
(2018), published online: iclr.cc

134. Shah, A., Ghahramani, Z.: Pareto Frontier Learning with Expensive Correlated Objectives.
In: Balcan and Weinberger [8], pp. 1919–1927

135. Shahriari, B., Swersky, K., Wang, Z., Adams, R., de Freitas, N.: Taking the human out of the
loop: A review of Bayesian optimization. Proceedings of the IEEE 104(1), 148–175 (2016)

136. Shahriari, B., Bouchard-Cote, A., de Freitas, N.: Unbounded Bayesian optimization via
regularization. In: Gretton and Robert [47], pp. 1168–1176

www.iclr.cc

32 M. Feurer and F. Hutter

137. SIGOPT: Improve ML models 100x faster (2018), https://sigopt.com/
138. Simon, D.: Evolutionary optimization algorithms. John Wiley & Sons (2013)
139. Snoek, J.: Bayesian optimization and semiparametric models with applications to assistive

technology. PhD Thesis, University of Toronto (2013)
140. Snoek, J., Larochelle, H., Adams, R.: Practical Bayesian optimization of machine learning

algorithms. In: Bartlett et al. [9], pp. 2960–2968
141. Snoek, J., Rippel, O., Swersky, K., Kiros, R., Satish, N., Sundaram, N., Patwary, M., Prabhat,

Adams, R.: Scalable Bayesian optimization using deep neural networks. In: Bach and Blei
[7], pp. 2171–2180

142. Snoek, J., Swersky, K., Zemel, R., Adams, R.: Input warping for Bayesian optimization of
non-stationary functions. In: Xing and Jebara [157], pp. 1674–1682

143. Sparks, E., Talwalkar, A., Haas, D., Franklin, M., Jordan, M., Kraska, T.: Automating model
search for large scale machine learning. In: Balazinska, M. (ed.) Proceedings of the Sixth
ACM Symposium on Cloud Computing - SoCC ’15. pp. 368–380. ACM Press (2015)

144. Springenberg, J., Klein, A., Falkner, S., Hutter, F.: Bayesian optimization with robust
Bayesian neural networks. In: Lee et al. [87]

145. Sun, Q., Pfahringer, B., Mayo, M.: Towards a Framework for Designing Full Model Selection
and Optimization Systems. In: Multiple Classifier Systems, vol. 7872, pp. 259–270. Springer
(2013)

146. Swersky, K., Duvenaud, D., Snoek, J., Hutter, F., Osborne, M.: Raiders of the lost architecture:
Kernels for Bayesian optimization in conditional parameter spaces. In: NeurIPS Workshop on
Bayesian Optimization in Theory and Practice (BayesOpt’14) (2014)

147. Swersky, K., Snoek, J., Adams, R.: Multi-task Bayesian optimization. In: Burges, C., Bottou,
L., Welling, M., Ghahramani, Z., Weinberger, K. (eds.) Proceedings of the 27th International
Conference on Advances in Neural Information Processing Systems (NeurIPS’13). pp. 2004–
2012 (2013)

148. Swersky, K., Snoek, J., Adams, R.: Freeze-thaw Bayesian optimization arXiv:1406.3896v1
[stats.ML] (2014)

149. Thornton, C., Hutter, F., Hoos, H., Leyton-Brown, K.: Auto-WEKA: combined selection and
hyperparameter optimization of classification algorithms. In: Dhillon, I., Koren, Y., Ghani,
R., Senator, T., Bradley, P., Parekh, R., He, J., Grossman, R., Uthurusamy, R. (eds.) The
19th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’13). pp. 847–855. ACM Press (2013)

150. Wainer, J., Cawley, G.: Empirical Evaluation of Resampling Procedures for Optimising SVM
Hyperparameters. Journal of Machine Learning Research 18, 1–35 (2017)

151. Wang, J., Xu, J., Wang, X.: Combination of hyperband and Bayesian optimization for
hyperparameter optimization in deep learning. arXiv:1801.01596v1 [cs.CV] (2018)

152. Wang, L., Feng, M., Zhou, B., Xiang, B., Mahadevan, S.: Efficient Hyper-parameter
Optimization for NLP Applications. In: Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing. pp. 2112–2117. Association for Computational
Linguistics (2015)

153. Wang, Z., Hutter, F., Zoghi, M., Matheson, D., de Feitas, N.: Bayesian optimization in a billion
dimensions via random embeddings. Journal of Artificial Intelligence Research 55, 361–387
(2016)

154. Wang, Z., Gehring, C., Kohli, P., Jegelka, S.: Batched Large-scale Bayesian Optimization
in High-dimensional Spaces. In: Storkey, A., Perez-Cruz, F. (eds.) Proceedings of the
21st International Conference on Artificial Intelligence and Statistics (AISTATS). vol. 84.
Proceedings of Machine Learning Research (2018)

155. Wistuba, M., Schilling, N., Schmidt-Thieme, L.: Automatic Frankensteining: Creating Com-
plex Ensembles Autonomously. In: Proceedings of the 2017 SIAM International Conference
on Data Mining (2017)

156. Wolpert, D.: Stacked generalization. Neural Networks 5(2), 241–259 (1992)
157. Xing, E., Jebara, T. (eds.): Proceedings of the 31th International Conference on Machine

Learning, (ICML’14). Omnipress (2014)

https://sigopt.com/

1 Hyperparameter Optimization 33

158. Zabinsky, Z.: Pure Random Search and Pure Adaptive Search. In: Stochastic Adaptive Search
for Global Optimization, pp. 25–54. Springer (2003)

159. Zeng, X., Luo, G.: Progressive sampling-based Bayesian optimization for efficient and
automatic machine learning model selection. Health Information Science and Systems 5(1)
(2017)

160. Zhang, Y., Bahadori, M.T., Su, H., Sun, J.: FLASH: Fast Bayesian Optimization for Data
Analytic Pipelines. In: Krishnapuram, B., Shah, M., Smola, A., Aggarwal, C., Shen, D.,
Rastogi, R. (eds.) Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD). pp. 2065–2074. ACM Press (2016)

Open Access This chapter is licensed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give appropriate
credit to the original author(s) and the source, provide a link to the Creative Commons licence and
indicate if changes were made.

The images or other third party material in this chapter are included in the chapter’s Creative
Commons licence, unless indicated otherwise in a credit line to the material. If material is not
included in the chapter’s Creative Commons licence and your intended use is not permitted by
statutory regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder.

http://creativecommons.org/licenses/by/4.0/

	1 Hyperparameter Optimization
	1.1 Introduction
	1.2 Problem Statement
	1.2.1 Alternatives to Optimization: Ensembling and Marginalization
	1.2.2 Optimizing for Multiple Objectives

	1.3 Blackbox Hyperparameter Optimization
	1.3.1 Model-Free Blackbox Optimization Methods
	1.3.2 Bayesian Optimization
	1.3.2.1 Bayesian Optimization in a Nutshell
	1.3.2.2 Surrogate Models
	1.3.2.3 Configuration Space Description
	1.3.2.4 Constrained Bayesian Optimization

	1.4 Multi-fidelity Optimization
	1.4.1 Learning Curve-Based Prediction for Early Stopping
	1.4.2 Bandit-Based Algorithm Selection Methods
	1.4.3 Adaptive Choices of Fidelities

	1.5 Applications to AutoML
	1.6 Open Problems and Future Research Directions
	1.6.1 Benchmarks and Comparability
	1.6.2 Gradient-Based Optimization
	1.6.3 Scalability
	1.6.4 Overfitting and Generalization
	1.6.5 Arbitrary-Size Pipeline Construction

	Bibliography

