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Abstract

e Long-term water planning is increasingly challenging, since hydrologic conditions
appear to be changing from the recently observed past and water needs in many
locales are highly relative to existing and easily developed supplies.

e Globally coordinated policymaking to address climate change also faces large
uncertainties regarding underlying conditions and possible responses, making tra-
ditional prediction-based planning approaches to be inadequate for the purpose.

e Methods for Decision Making under Deep Uncertainty (DMDU) can be useful for
addressing long-term policy challenges associated with multifaceted, nonlinear,
natural and socio-economic systems.

e This chapter presents two case studies using Robust Decision Making (RDM).

e The first describes how RDM was used as part of a seven-state collaboration to
identify water management strategies to reduce vulnerabilities in the Colorado
River Basin.

e The second illustrates how RDM could be used to develop robust investment
strategies for the Green Climate Fund (GCF)—an international global institution
charged with making investments supporting a global transition toward more sus-
tainable energy systems that will reduce GHG emissions.

e Both case studies describe the development of robust strategies that are adaptive, in
that they identify both near-term decisions and guidance for how these responses
should change or be augmented as the future unfolds.
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7.1 Long-Term Planning for Water Resources and Global
Climate Technology Transfer

Developing water resources to meet domestic, agricultural, and industrial needs has
been a prerequisite for sustainable civilization for millennia. For most of history,
“water managers” have harnessed natural hydrologic systems, which are inherently
highly variable, to meet generally increasing but predictable human needs. More
recently, water managers have worked to mitigate the consequences of such devel-
opment on ecological systems. Traditional water resources planning is based on prob-
abilistic methods, in which future water development needs are estimated based on a
single projection of future demand and estimates of available supplies that are based
on the statistical properties of recorded historical conditions. Different management
strategies are then evaluated and ranked, generally in terms of cost effectiveness,
for providing service at a specified level of reliability. Other considerations, such as
environmental attributes, are also accounted for as necessary (Loucks et al. 1981).

While tremendous achievements have been made in meeting worldwide water
needs, water managers are now observing climate change effects through measurable
and statistically significant changes in hydrology (Averyt et al. 2013). Moreover,
promising new strategies for managing water resources are increasingly based on
new technologies (e.g., desalination, demand management controls), the integration
of natural or green features with the built system, and market-based solutions (Ngo
et al. 2016). These novel approaches in general do not yet have the expansive data
to support accurate estimates of their specific effects on water management systems
or their costs. The modern water utility thus must strive to meet current needs while
preparing for a wide range of plausible future conditions. For most, this means
adapting the standard probabilistic engineering methods perfected in the twentieth
century to (1) consider hydrologic conditions that are likely changing in unknown
ways, and (2) meet societal needs that are no longer increasing at a gradual and
predictable pace.

Water utilities have begun to augment traditional long-term planning approaches
with DMDU methods that can account for deep uncertainty about future hydrologic
conditions, plausible paths of economic development, and technological advances.
These efforts, first begun as research collaborations among policy researchers and
innovative planners (e.g., Groves et al. 2008, 2013), are now becoming more rou-
tine aspects of utility planning. As evidence of this uptake, the Water Utility Cli-
mate Alliance (WUCA), comprised of ten large US water utilities, now recommends
DMDU methods as best practice to support long-term water resources planning
(Raucher and Raucher 2015).

The global climate clearly exerts tremendous influence on the hydrologic systems
under management. Over the past decade, the global community has developed a
consensus that the climate is changing in response to anthropogenic activities, most
significantly the combustion of carbon-based fuels and the release of carbon dioxide
and other greenhouse gasses into the atmosphere (IPCC 2014a). In 2016, nations
around the world adopted the Paris Agreement, with a new consensus that devel-
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opment must be managed in a way that dramatically reduces net greenhouse gas
emissions in order to stave off large and potentially disastrous changes to the climate
(United Nations 2016). As part of this agreement, the Green Climate Fund (GCF)
was established to steer funding toward activities that would encourage the shift from
fossil fuels to more sustainable energy technologies. Governments will also need to
prepare for climate changes that are unavoidable and help adapt many aspects of
civilization (IPCC 2014b).

Climate mitigation and adaptation will require billions of dollars of investments
in new ways to provide for society’s needs—be it energy for domestic use, industry,
and transportation, or infrastructure to manage rising seas and large flood events.
Technological solutions will need to play a large role in helping facilitate the needed
transitions. As with water resources planning, governments will need to plan for deep
uncertainty, and design and adopt strategies that effectively promote the development
and global adoption of technologies for climate mitigation under a wide range of
plausible futures.

This chapter presents two case studies that demonstrate how DMDU methods, in
particular Robust Decision Making (RDM) (see Chap. 2), can help develop robust
long-term strategies. The first case study describes how RDM was used for the
2012 Colorado River Basin Study—a landmark 50-year climate change adaptation
study, helping guide the region toward implementing a robust, adaptive management
strategy for the Basin (Bloom 2015; Bureau of Reclamation 2012; Groves et al.
2013). This case study highlights one of the most extensive applications of an RDM-
facilitated deliberative process to a formal planning study commissioned by the US
Bureau of Reclamation and seven US states. The second case study presents a more
academic evaluation of how RDM can define the key vulnerabilities of global climate
policies and regimes for technology transfer and then identify an adaptive, robust
policy that evolves over time in response to global conditions (Molina-Perez 2016).
It further illustrates how RDM can facilitate a quantitative analysis that employs
simple models yet provides important insights into how to design and implement
long-term policies.

7.2 Review of Robust Decision Making

RDM was the selected methodology for the studies described here, as the decision
contexts are fraught with deep uncertainty, are highly complex, and have a rich set of
alternative policies (c.f. Fig. 1.3 Chap. 1). For such contexts, an “agree on decisions
approach” is particularly useful, as it provides a mechanism for linking the analysis
of deep uncertainty through the identification of preliminary decisions’ vulnerabili-
ties to the definition of an adaptive strategy—characterized by near-term low-regret
actions, signposts, and triggers, and decision pathways for deferred actions. For both
case studies, RDM provides an analytic framework to identify vulnerabilities of cur-
rent strategies in order to identify robust, adaptive strategies—those that will succeed
across the broad range of plausible futures.
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The two case studies also illustrate how RDM can be applied in different sectors.
The water management study emphasizes that RDM addresses both deep uncertainty
and supports an iterative evaluation of robust, adaptive strategies designed to min-
imize regret across the uncertainties. In this case, it does so by selecting among
numerous already existing investment proposals. The second case study describes a
policy challenge different from natural resources and infrastructure management—
promoting global climate technology transfer and uptake—that uses RDM as the
means to discover and define policies anew. Both studies define how the strategies
could adapt over time to achieve greater robustness than a static strategy or policy
could, using information about the vulnerabilities of the tested strategies. This rep-
resents an important convergence between RDM and the Dynamic Adaptive Policy
Pathways (DAPP) methodology described in Chaps. 4 and 9.

7.2.1 Summary of Robust Decision Making

As described in Chap. 2 (Box 2.1), RDM includes four key elements:

e Consider a multiplicity of plausible futures;

e Seek robust, rather than optimal strategies;

e Employ adaptive strategies to achieve robustness; and

e Use computers to facilitate human deliberation over exploration, alternatives, and
trade-offs.

Figure 7.1 summarizes the steps to implement the RDM process, and Fig. 7.2 relates
these steps to the DMDU framework introduced in Chap. 1. In brief, it begins with (1)
a Decision Framing step, in which the key external developments (X), policy levers
or strategies (L), relationships (R), and measures of performance (M), are initially
defined through a participatory stakeholder process, as will be illustrated in the case
studies. Analysts then develop an experimental design, which defines a large set of
futures against which to evaluate one or a few initial strategies. Next, the models
are used to (2) Evaluate strategies in many futures and develop a large database of
simulated outcomes for each strategy across the futures. These results are then inputs
to the (3) Vulnerability analysis, in which Scenario Discovery (SD) algorithms and
techniques help identify the uncertain conditions that cause the strategies to perform
unacceptably. Often in collaboration with stakeholders and decisionmakers, these
conditions are refined to describe “Decision-Relevant Scenarios”. The next step of
RDM (4) explores the inevitable trade-offs among candidate robust, adaptive strate-
gies. This step is designed to be participatory, in which the analysis and interactive
visualization provide decisionmakers and stakeholders with information about the
range of plausible consequences of different strategies, so that a suitably low regret,
robust strategy can be identified. The vulnerability and tradeoff information is used

IChapter 1 (see Fig. 1.2) uses the acronym XPROW for external forces, policies, relationships,
outcomes, and weights.
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Fig. 7.1 RDM process (Adapted from Lempert et al. (2013b)

Robust Decision Making Steps Generic DMDU Steps
1) Decision framing ——> 1) Frame the analysis
2) Evaluate strategies across futures ]—) 2) Perform exploratory uncertainty analysis
3) Vulnerability analysis
4) Tradeoff analysis ——> 3) Choose short-term actions and long-term options
5) New futures and strategies ——> 4) Iterate and re-examine

Fig. 7.2 Mapping of RDM to DMDU steps presented in Chap. 1

to design more robust and adaptive strategies, and to include additional plausible
futures for stress testing in (5) the New futures and strategies step. This can include
hedging actions—those that help improve a strategy’s performance under the vulner-
able conditions—and shaping actions—those designed to reduce the likelihood of
facing the vulnerable conditions. Signposts and triggers are also defined that are used
to reframe static strategies into adaptive strategies that are implemented in response
to future conditions. RDM studies will generally implement multiple iterations of
the five steps in order to identify a set of candidates’ robust, adaptive strategies.

While both case studies highlight the key elements above, they also illustrate how
RDM supports the design of adaptive strategies. Fischbach et al. (2015) provide a
useful summary of how RDM and other DMDU approaches can support the devel-
opment of adaptive plans from those that are simply forward looking, to those that
include plan adjustment.

For example, a static water management strategy might specify a sequence of
investments to make over the next several decades. In some futures, specific later
investments might be unnecessary. In other futures, the investments may be imple-
mented too slowly or may be insufficient. An adaptive water management strategy,
by contrast, might be forward looking or include policy adjustments, consisting of
simple decision rules in which investments are made only when the water supply and
demand balance is modeled to be below a threshold (see Groves (2006) for an early
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example). The RDM process can then determine if this adaptive approach improves
the performance and reduces the cost of the strategy across the wide range of futures.
RDM can also structure the exploration of a very large set of alternatively specified
adaptive strategies—those defining different signposts (conditions that are moni-
tored) or triggers (the specific value(s) for the signpost(s) or conditions that trigger
investments). Lastly, RDM can explore how a more “formal review and continued
learning” approach (Bloom 2015; Swanson et al. 2010) to adaptive strategies might
play out by modeling how decisionmakers might update their beliefs about future
conditions and adjust decisions accordingly.

In the first case study, the RDM uncertainty exploration (Steps 2 and 3) is used
to identify vulnerabilities, and then test different triggers and thresholds defining an
adaptive plan. It further traces out different decision pathways that planners could
take to revise their understanding of future vulnerabilities and act accordingly. This
is done by tying the simulated implementation of different aspects of a strategy to the
modeled observation of vulnerabilities. In the second case study, the RDM process
identifies low-regret climate technology policy elements, and then defines specific
pathways in which the policies are augmented in response to unfolding conditions.

7.3 Case Study 1: Using RDM to Support Long-Term
Water Resources Planning for the Colorado River Basin

The Colorado River is the largest source of water in the southwestern USA, providing
water and power to nearly 40 million people and water for the irrigation of more than
4.5 million acres of farmland across seven states and the lands of 22 Native American
tribes, and is vital to Mexico providing both agricultural and municipal needs (Bureau
of Reclamation 2012). The management system is comprised of 12 major dams,
including Glen Canyon Dam (Lake Powell along the Arizona/Utah boarder) and
Hoover Dam (Lake Mead, at the border of Nevada and Arizona). Major infrastructure
also transports water from the Colorado River and its tributaries to Colorado’s Eastern
Slope, Central Arizona, and Southern California. The 1922 Colorado River Compact
apportions 15 million acre-feet (maf) of water equally among four Upper Basin
States (Colorado, New Mexico, Utah, and Wyoming) and three Lower Basin States
(Arizona, California, and Nevada) (Bureau of Reclamation 1922). Adherence to the
Compact is evaluated by the flow at Lee Ferry—just down-river of the Paria River
confluence. A later treaty in 1944 allots 1.5 maf of water per year to Mexico, with
up to 200 thousand acre-feet of additional waters during surplus conditions. The US
Bureau of Reclamation works closely with the seven Basin States and Mexico to
manage this resource and collectively resolve disputes.

The reliability of the Colorado River Basin system is increasingly threatened
by rising demand and deeply uncertain future supplies. Recent climate research
suggests that future hydrologic conditions in the Colorado River Basin could be
significantly different from those of the recent historical period. Furthermore, climate
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warming already underway and expected to continue will exacerbate periods of
drought across the Southwest (Christensen and Lettenmaier 2007; Nash and Gleick
1993; Seager et al. 2007; Melillo et al. 2014). Estimates of future streamflow based on
paleoclimate records and general circulation models (GCMs) suggest a wide range of
future hydrologic conditions—many which would be significantly drier than recent
conditions (Bureau of Reclamation 2012).

In 2010, the seven Basin States and the US Bureau of Reclamation (Reclamation)
initiated the Colorado River Basin Study (Basin Study) to evaluate the ability of the
Colorado River to meet water delivery and other objectives across a range of futures
(Bureau of Reclamation 2012). Concurrent with the initiation of the Basin Study,
Reclamation engaged RAND to evaluate how RDM could be used to support long-
term water resources planning in the Colorado River Basin. After completion of the
evaluation study, Reclamation decided to use RDM to structure the Basin Study’s
vulnerability and adaptation analyses (Groves et al. 2013). This model of evaluating
DMDU methods through a pilot study and then adopting it to support ongoing plan-
ning is a low-threshold approach for organizations to begin to use DMDU approaches
in their planning activities (Lempert et al. 2013a, b).

The Basin Study used RDM to identify the water management vulnerabilities
with respect to a range of different objectives, including water supply reliability,
hydropower production, ecosystem health, and recreation. Next, it evaluated the per-
formance of a set of portfolios of different management actions that would be trig-
gered as needed in response to evolving conditions. Finally, it defined the key trade-
offs between water delivery reliability and the cost of water management actions
included in different portfolios, and it identified low-regret options for near-term
implementation.

Follow-on work by Bloom (2015) evaluated how RDM could help inform the
design of an adaptive management strategy, both in terms of identifying robust adap-
tation through signposts and triggers and modeling how beliefs and new information
can influence the decision to act. Specifically, Bloom used Bayes’ Theorem to extend
the use of vulnerabilities to analyze how decisionmaker views of future conditions
could evolve. The findings were then incorporated into the specification of a robust,
adaptive management strategy.

7.3.1 Decision Framing for Colorado River Basin Analyses

A simplified XLRM chart (Table 7.1) summarizes the RDM analysis of the Basin
Study and follow-on work by Bloom (2015). Both studies evaluated a wide range
of future hydrologic conditions, some based on historical and paleoclimate records,
others on projections from GCMs. These hydrologic conditions were combined with
six demand scenarios and two operation scenarios to define 23,508 unique futures.
Both studies used Reclamation’s long-term planning model—Colorado River Sim-
ulation System (CRSS)—to evaluate the system under different futures with respect
to a large set of measures of performance. CRSS simulates operations at a monthly
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Table 7.1 Simplified XLRM framing matrix from Colorado River RDM analyses

Exogenous factors (X) Policy levers (L)

Future water demand (6) ‘Water management portfolios (4)
Streamflow under different climate regimes * Up to 40 different water management
(thousands) actions

* Resampled historical record  Signposts and triggers used to specify
* Resampled paleoclimate record investments

* Downscaled global climate model projections
System operations (2)

Relationships (R) Measures of performance (M)

Colorado River Simulation System (CRSS) 10-year average streamflow at Lees Ferry
(Upper Basin reliability)

Lake Mead pool elevation (Lower Basin
reliability)

time-step from 2012 to 2060, modeling the network of rivers, demand nodes, and 12
reservoirs with unique operational rules.

Both the Basin Study and Bloom focused the vulnerability analysis on two key
objectives: (1) ensuring that the 10-year running average of water flow from the Upper
to Lower Basin meets or exceeds 7.5 maf per year (Upper Basin reliability objec-
tive), and (2) maintaining Lake Mead’s pool elevation above 1,000 feet (Lower Basin
reliability objective). Both studies then used CRSS to model how the vulnerabilities
could be reduced through the implementation of alternative water management port-
folios, each comprised of a range of possible water management options, including
municipal and industrial conservation, agricultural conservation, wastewater reuse,
and desalination.

7.3.2  Vulnerabilities of Current Colorado River Basin
Management

Both the Basin Study and Bloom’s follow-on work used CRSS to simulate Basin
outcomes across thousands of futures. They then used SD methods (see Chap. 2)
to define key vulnerabilities. Under the current management of the system, both the
Upper Basin and Lower Basin may fail to meet water delivery reliability objectives
under many futures within the evaluated plausible range. Specifically, if the long-
term average streamflow at Lee Ferry falls below 15 maf and an eight-year drought
with average flows below 13 maf occurs, the Lower Basin is vulnerable (Fig. 7.3).
The corresponding climate conditions leading to these streamflow conditions include
historical periods with less than average precipitation, or those projected climate con-
ditions (which are all at least 2° F warmer) in which precipitation is less than 105%
of the historical average (see Groves et al. 2013). The Basin Study called this vulner-
ability Low Historical Supply, noting that the conditions for this vulnerability had
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Fig. 7.3 One Colorado River lower basin vulnerability—Ilow historical supply

been observed in the historical record. The Basin Study also identified a vulnerabil-
ity for the Upper Basin defined by streamflow characteristics present only in future
projections characterized by Declining Supply. Bloom further parsed the Basin’s vul-
nerabilities to distinguish between Declining Supply and Severely Declining Supply
conditions.

7.3.3 Design and Simulation of Adaptive Strategies

After identifying vulnerabilities, both studies developed and evaluated portfolios of
individual management options that would increase the supply available to the Basin
states (e.g., ocean and groundwater desalination, wastewater reuse, and watershed
management), or reduce demand (e.g., agricultural and urban conservation). For the
Basin Study, stakeholders used a Portfolio Development Tool (Groves et al. 2013)
to define four portfolios, each including a different set of investment alternatives
for implementation. Portfolio B (Reliability Focus) and Portfolio C (Environmental
Performance Focus) represented two different approaches to managing future vul-
nerabilities. Portfolio A (Inclusive) was defined to include all alternatives in either
Portfolios B or C, and Portfolio D (Common Options) was defined to include only
those options in both Portfolios B and C. Options within a portfolio were priori-
tized based on an estimate of cost-effectiveness, defined as the average annual yield
divided by total project cost.
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Fig. 7.4 Example Colorado River Basin adaptive strategy from Bloom (2015)

CRSS modeled these portfolios as adaptive strategies by simulating what invest-
ment decisions a basin manager, or agent, would take under different simulated Basin
conditions. The agent monitors three key signpost variables on an annual basis: Lake
Mead’s pool elevation, Lake Powell’s pool elevation, and the previous five years of
observed streamflow. When these conditions drop below predefined thresholds, the
agent implements the next available water management action from the portfolio’s
prioritized list. To illustrate how this works, Fig. 7.4 shows the effect of the same
management strategy with two different trigger values in a single future. Triangles
represent years in which observations cross the trigger threshold. In this future, the
Aggressive Strategy begins implementing water management actions sooner than the
Baseline Strategy, and Lake Mead stays above 1000 feet. For the Basin Study strate-
gies, a single set of signposts and triggers were used. These strategies were then
evaluated across the 23,508 futures. For each simulated future, CRSS defines the
unique set of investments that would be implemented per the strategy’s investments,
signposts, and triggers. Under different signposts and triggers, different investments
are selected for implementation.

The performance of each strategy is unique in terms of its reliability metric and
cost. Figure 7.5 summarizes reliability across the Declining Supply futures, and
shows the range of 50-year costs for each of the four adaptive strategies. In the figure,
Portfolio A (Inclusive) consists of the widest set of options and thus has the greatest
potential to prevent water delivery vulnerability. It risks, however, incurring the
highest costs. It also contains actions that are controversial and may be unacceptable
for some stakeholders. Portfolio D (Common Options) includes the actions that
most stakeholders agree on—a subset of A. This limits costs, but also the potential
to reduce vulnerabilities. Under these vulnerable conditions, Portfolios A and B
lead to the fewest number of years with critically low Lake Mead levels. The costs,
however, range from $5.5-$7.5 billion per year. Portfolio C, which includes more
environmentally focused alternatives, performs less well in terms of Lake Mead
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Fig. 7.5 Vulnerability versus cost trade-off under Declining Supply conditions for the four Basin
Study portfolios

levels, but leads to a tighter range of costs—between $4.75 and $5.25 billion per year.
Bloom expanded on this analysis by exploring across a range of different investment
signposts and triggers, specified to be more or less aggressive in order to represent
stakeholders and planners with different preferences for cost and reliability. A less
aggressive strategy, for example, would trigger additional investments only under
more severe conditions than a more aggressive strategy.

Figure 7.6 shows the trade-offs across two bookend static strategies (“Current
Management” and “Implement All Actions™) and five adaptive strategies based on
Portfolio A (Inclusive), but with a range of different triggers from Bloom (2015).
Note that the signposts and triggers for the Baseline strategy are those used for the
Basin Study portfolios. The more aggressive the triggers, the fewer futures in which
objectives are missed (left side of figure). However, the range of cost to achieve those
outcomes increases.

7.3.4 Evaluating Regret of Strategies Across Futures

For this case study, we define a robust strategy as one that minimizes regret across a
broad range of plausible future conditions. Regret, in this context, is defined as the
additional amount of total annual supply (volume of water, in maf) that would be
needed to maintain the Lake Mead level at 1000 feet across the simulation. The more
supply that would be needed to maintain the Lake Mead level, the more regret.

The Basin Study adaptive strategies do not completely eliminate regret. Some
strategies still underinvest in the driest futures and overinvest in the wettest futures.
This result stems from both the use of relatively simplistic triggers and the inherent
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inability to predict future conditions based on observations. To illustrate this, Fig. 7.7
shows the percent of futures with low regret as a function of long-term streamflow for
two static strategies (“Current Management” and “Implement All Actions”) and two
of the adaptive strategies shown in Fig. 7.6 (“Baseline” and “Aggressive”). The two
static, non-adaptive strategies have the highest regret in either the high streamflow
conditions (“Implement All Actions”) or the low streamflow conditions (“Current
Management”). By contrast, the two adaptive strategies are more balanced, although
the “Baseline” adaptive strategy has moderate regret in the driest conditions, and the
“Aggressive” strategy is low regret under wetter conditions, both adaptive strategies
perform similarly.
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7.3.5 Updating Beliefs About the Future to Guide Adaptation

There is no single robust choice among the automatic adjustment adaptive strategies
evaluated by Bloom (2015). Each strategy suggests some tradeoff in robustness for
one range of conditions relative to another. Furthermore, strategies with different
triggers reflect different levels of risk tolerance with respect to reliability and costs.
Therefore, a planner’s view of the best choice will be shaped by her preference for
the varying risks and perceptions about future conditions. An adaptive strategy based
on formal review and continued learning would evolve not only in response to some
predefined triggers but also as decisionmakers’ beliefs about future conditions evolve
over time. Bloom models this through Bayesian updating (see Lindley (1972) for a
review of Bayes’ Theorem).

Figure 7.8 shows how a planner with specific expectations about the likelihood
of future conditions (priors) might react to new information about future conditions.
The top panel (line) shows one plausible time series of decadal average streamflow
measured at Lees Ferry. The bars show the running average flow from 2012 through
the end of the specified decade. In this future, flows are around the long-term historical
average through 2020 and then decline over the subsequent decades. The long-term
average declines accordingly to about 12 maf/year—conditions that Bloom classifies
as part of the Severely Declining Supply vulnerability.

The bottom panel shows how a decisionmaker might update her assessment of
the type of future unfolding. In this example, her priors in 2012 were a 50% chance
on the Declining Supply conditions, a 25% chance for the Severely Declining Supply
conditions, and a 25% chance for all other futures. As low flows are observed over
time, her beliefs adjust accordingly. While they do not adjust by 2040 all the way to the
true state—Severely Declining Supply—her assessment of not being in the Declining
Supply or Severely Declining Supply condition goes to zero percent. Another planner
with higher priors for the Severely Declining Supply would have a higher posterior
assessment of the Severely Declining Supply condition by 2040. Planners’ priors
can be based on the best scientific evidence available at the time and their own
understanding of the policy challenge. Because climate change is deeply uncertain,
planners may be unsure about their priors, and even a single planner may wish to
understand the implications of a range of prior beliefs.

7.3.6 Robust Adaptive Strategies, and Implementation
Pathways

Bloom then combined the key findings from the vulnerability analysis and the
Bayesian analysis to describe a robust adaptive strategy in the form of a management
strategy implementation pathway. Specifically, Bloom identified threshold values of
beliefs and observations that would imply sufficient confidence that a particular vul-
nerability would be likely and that a corresponding management response should be
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Fig. 7.8 Example of revising decisionmaker beliefs over time for 3 different prior expectations in
response to declining streamflows

taken. He then used these thresholds to a suggest rule of thumb guide for interpreting
new information and implementing of a robust adaptive strategy.

Figure 7.9 shows one example application of this information to devise a Basin-
wide robust adaptive strategy that guides the investment of additional water supply
yield (or demand reductions). In the figure, the horizontal axis shows each decade,
and the vertical axis shows different identified vulnerabilities (ordered from less
severe to more severe). Each box presents the 90th percentile of yield implemented
for a low-regret strategy across all futures within the vulnerability. This information
serves as recommendations for the amount of additional water supply or demand
reduction that would need to be developed by each decade to meet the Basin’s goals.

Figure 7.9 can be read as a decision matrix, where the dashed lines present one of
many feasible implementation pathways through time. The example pathways show
how Basin managers would develop new supply if the basin were on a trajectory
consistent with the Below Historical Streamflow With Severe Drought vulnerabili-
ty—similar to current Colorado River Basin conditions. By 2030, the Basin managers
would have implemented options to increase net supply by 2.1 maf/year. The figure
then highlights a 2030 decision point. At this point, conditions may suggest that the
Basin is not trending as dry as Below Historical Streamflow with Severe Drought.
Conditions may also suggest that system status is trending even worse. The hori-
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Fig. 7.9 Illustrative robust adaptive strategy for Colorado River from Bloom (2015)

zontal barbell charts in the bottom of the figure show a set of conditions and beliefs
derived from the Bayesian analysis that are consistent with the Severely Declining
Supply scenario. If these conditions are met and beliefs held, then the Basin would
need to move down a row in the figure and increase net supply to more than 3.6 maf
in the 2031-2040 decade. While such a strategy would likely not be implemented
automatically, the analysis presented here demonstrates the conditions to be moni-
tored and the level of new supply that would require formal review, and the range of
actions that would need to be considered at such a point.
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7.3.7 Need for Transformative Solutions

The Basin Study analysis evaluated four adaptive strategies and explored the trade-
offs among them. Based on those findings, the Basin has moved forward on devel-
oping the least-regret options included in those portfolios (Bureau of Reclamation
2015). The follow-on work by Bloom (2015) concurrently demonstrated how the
Basin could take the analysis further and develop a robust adaptive strategy to guide
investments over the coming decade. One important finding from both works is that
there are many plausible futures in which the water management strategies considered
in the Basin Study would not be sufficient to ensure acceptable outcomes. Figure 7.10
shows the optimal strategy for different probabilities of facing a Severely Declining
Supply scenario (horizontal axis), Stationary or Increasing Supply (vertical axis), or
all other conditions (implied third dimension). In general, if the probability of facing
the Severely Declining Supply scenario is 30% likely, then the options evaluated in
the Basin Study will likely be insufficient and more transformative options, such as
pricing, markets, and new technologies, will be needed. Additional iterations of the
RDM analysis could help the Basin evaluate such options.



7 Robust Decision Making (RDM): Application ... 151

7.4 Case Study 2: Using RDM to Develop Climate
Mitigation Technology Diffusion Policies

The historic 2016 Paris Climate Accord had two main policy objectives (United
Nations 2016): (1) maintain global temperature increases below two degrees Celsius,
and (2) stabilize greenhouse gas (GHG) emissions by the end of this century. The
international community also realizes that meeting these aspirations will require
significant and coordinated investment to develop and disseminate technologies to
decarbonize the world’s economies. Climate policies that achieve the Paris goals
will likely include mechanisms to incentivize the use of renewables and energy
efficiency through carbon taxes or trading schemes, as well as investments in the
development and transfer to developing countries of new low-carbon technologies.
These investments could take the form of price subsidies for technology or direct
subsidies for research and development (R&D).

The Green Climate Fund (GCF) was designated to coordinate the global invest-
ments needed to help countries transition from fossil energy technologies (FETs)
toward sustainable energy technologies (SETs). In this context, SETs include all
technologies used for primary energy production that do not result in greenhouse
gas emissions. Examples include: photovoltaic solar panels, solar thermal energy
systems, wind turbines, marine current turbines, tidal power technologies, nuclear
energy technologies, geothermal energy technologies, hydropower technologies, and
low-GHG-intensity biomass.?

Technology-based climate mitigation policy is complex because of the disparity
in social and technological conditions of advanced and emerging nations, the sensi-
tivity of technological pathways to policy intervention, and the wide set of policies
available for intervention. This policy context is also fraught with deep uncertainty.
On the one hand, the speed and extent of future climate change remains highly uncer-
tain. On the other hand, it is impossible to anticipate the pace and scope of future
technological development. Paradoxically, these highly uncertain properties are crit-
ical to determine the strength, duration, and structure of international climate change
mitigation policies and investments.

The presence of both climate and technological deep uncertainty makes it inap-
propriate to use standard probabilistic planning methods in this context, and instead
calls for the use of DMDU methods for long-term policy design. This case study sum-
marizes a study by Molina-Perez (2016), the first comprehensive demonstration of
how RDM methods could be used to inform global climate technology policymaking.
The case study shows how RDM can be used to identify robust adaptive policies (or
strategies) for promoting international decarbonization despite the challenges posed
by the inherent complexity and uncertainty associated with climate change and tech-
nological change. Specifically, the study helps illuminate under what conditions the
GCF’s investments and climate policy can successfully enable the international dif-
fusion of SETs and meet the two objectives of the Paris Accord.

2Note that the SET group of technologies does not include carbon removal and sequestration
technologies from power plant emissions, such as carbon capture and storage (CCS).
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Table 7.2 Simplified XLRM framing matrix for climate technology policy analyses

Exogenous factors (X)

Policy levers (L)

Climate uncertainty (12 scenarios)
Technological factors (300):

« Elasticity of substitution

¢ R&D returns SETs

(PO) Current policies

(P1) Independent carbon tax [Both]

(P2) Independent carbon tax + Independent
Tech/R&D [Both]

¢ R&D returns FETs

* Innovation propensity SETs
* Innovation propensity FETs
 Transferability SETs
 Transferability FETs

(P3) Harmonized carbon tax + Co-Tech
[GCF] + R&D [AR]

(P4) Harmonized carbon tax + Co-Tech
[GCF] + 1. R&D [Both]

(P5) Harmonized carbon tax + Co-R&D
[GCF] + Tech [AR]

(P6) Harmonized carbon tax + Co-R&D
[GCF] + L. Tech [Both]

(P7) Harmonized carbon tax + Co-Tech-
R&D [GCF] System

Measures of performance (M)

Relationships (R)

Exploratory Dynamic Integrated Assessment
Model (EDIAM)

» End-of-century temperature rise
» Stabilization of GHG emissions
* Economic costs of policy intervention

Note SETs = Sustainable Energy Technologies; FETs = Fossil Energy Technologies; GCF = Green
Climate Fund

7.4.1 Decision Framing for Climate Technology Policy
Analysis

To summarize the analysis, Table 7.2 shows a simplified XLRM chart from the Deci-
sion Framing step. The uncertain, exogenous factors include twelve scenarios for
the evolution of the climate system based on endogenously determined global GHG
emission levels (“Climate Uncertainty”), and seven factors governing the devel-
opment and transfer of technologies (“Technological Factors™). The study consid-
ered seven different policies in addition to a no-additional action baseline (“Policy
Levers”). The policies include a mixture of carbon taxes and subsidies for technology,
research, and development. The first two policies consider no cooperation between
regions, whereas the third through seventh policies consider some level of cooper-
ation on taxes and subsidies. An integrated assessment model is used to estimate
global outcome indicators (or measures of performance), including end-of-century
temperatures, GHG emissions, and economic costs of the policies.

7.4.2 Modeling International Technological Change

Molina-Perez (2016) used an integrated assessment model specifically developed
to support Exploratory Modeling and the evaluation of dynamic complexity. This
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Exploratory Dynamic Integrated Assessment Model (EDIAM) focuses on describing
the processes of technological change across advanced and emerging nations, and
how this process connects with economic growth and climate change.

The EDIAM framework depends upon three main mechanisms. The first mecha-
nism determines the volume of R&D investments that are captured by SETs or FETs
(based on principles presented in Acemoglu (2002) and Acemoglu et al. (2012)).
Five forces determine the direction of R&D:

e The “direct productivity effect”—incentivizing research in the sector with the more
advanced and productive technologies

e The “price effect”—incentivizing research in the energy sector with the higher
energy prices

e The “market size effect”—pushing R&D toward the sector with the highest market
size

e The “experience effect”—pushing innovative activity toward the sector that more
rapidly reduces technological production costs

e The “innovation propensity effect”’—incentivizing R&D in the sector that more
rapidly yields new technologies

The remaining two mechanisms describe how technologies evolve in each of the two
economic regions—advanced and emerging. In the advanced region, entrepreneurs
use existing technologies to develop new technologies, an incremental pattern of
change commonly defined in the literature as “building on the shoulders of giants”
(Acemoglu 2002; Arthur 2009). In the emerging region, innovative activity is focused
on closing the technological gap through imitation and adaptation of foreign tech-
nologies. Across both regions, the speed and scope of development is determined
by three distinct technological properties across the FETs and SETSs sectors: R&D
returns, innovation propensity, and innovation transferability. Finally, EDIAM uses
the combination of the three mechanisms to endogenously determine the optimal pol-
icy response for mitigating climate change (optimally given all of the assumptions),
thus making the system highly path-dependent.

7.4.3 Evaluating Policies Across a Wide Range of Plausible
Futures

Molina-Perez used EDIAM to explore how different policies could shape technol-
ogy development and transfer, and how they would reduce GHG emissions and mit-
igate climate change across a range of plausible futures. The study evaluated seven
alternative policies across a diverse ensemble of futures that capture the complex
interactions across the fossil and sustainable energy technologies. The ensemble is
derived using a mixed experimental design of a full factorial sampling of 12 climate
model responses (scenarios) and a 300-element Latin Hypercube sample across the
seven technological factors shown in Table 7.2.
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Fig. 7.11 Temperature and technological productivity outcomes for the optimal climate technology
policy P2 for three futures

Figure 7.11 presents simulation results for the optimal policy for just three of
these futures in which R&D returns are varied and all other factors are held constant.
The left pane shows the global temperature anomaly over time for the best policy
for three values of the relative R&D returns parameter. Only in two of the three
cases is the optimal policy able to keep global temperature increases below 2 °C
through 2100. The right pane shows the evolution of technological productivity for
the advanced and emerging regions. As expected, higher relative R&D returns can
lead to parity in technology productivity under the optimal policies and favorable
exogenous conditions.

Molina-Perez also considered the role of climate uncertainty in determining the
structure and effectiveness of the optimal policy response. For this study, the climate
parameters of EDIAM were calibrated using the CMIP5 climate ensemble (IPCC
2014b; Taylor et al. 2012; Working Group on Coupled Modeling 2015). Each general
circulation model used by the IPCC and included in the CMIPS5 ensemble uses differ-
ent assumptions and parameter values to describe the atmospheric changes resulting
from growing anthropogenic GHG emissions and, as a result, the magnitude of the
estimated changes varies greatly among different modeling groups. For example,
Molina-Perez shows that for a more abrupt climate scenario, such as MIROC-ESM-
CHEM, it is possible that the optimal policy would use a higher mix of carbon taxes,
research subsidies, and technology subsidies than in the case of a less abrupt climate
scenario (e.g., NorESM1-M).
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7.4.4 Key Vulnerabilities of Climate Technology Policies

Following the RDM methodology, Molina-Perez used Scenario Discovery (SD)
methods to isolate the key uncertainties that drive poor policy performance. Specifi-
cally, he expanded on prior SD methods (such as PRIM) by using high-dimensional
stacking methods (Suzuki et al. 2006; Taylor et al. 2006; LeBlanc et al. 1990) to
summarize the vulnerabilities.

In SD with dimensional stacking, the process starts by decomposing each uncer-
tainty dimension into basic categorical levels. These transformed uncertainty dimen-
sions are then combined into “scenario cells” that represent the basic elements of
the uncertainty space. These scenario cells are then combined iteratively with other
cells, yielding a final map of the uncertainty space. Following the SD approach, and
in a similar way to Taylor et al. (2006), coverage and density statistics are estimated
for each scenario cell such that only high-density and high-coverage cells are visu-
alized. Finally, for each axis in the scenario map, the stacking order is determined
using principal component analysis (i.e., the loadings of each principal component
determine which dimensions can be stacked together). Uncertainty dimensions that
can be associated with a principal component are stacked in contiguous montages.

Figure 7.12, for example, shows the vulnerabilities with respect to the two-degree
temperature target identified using high-dimensional stacking for the second policy
(P2), which includes independent carbon taxes, and subsidies for technology and
R&D. The first horizontal montage describes three climate sensitivity bins (low,
medium, and high); the second-order montage describes two relative innovation
propensity bins (high and low); and the third-order montage describes two relative
transferability bins (high and low). The first vertical montage describes three sub-
stitution levels (high, medium, and low); and the second-order montage describes
two R&D returns bins (high and low). The cells are shaded according to the rela-
tive number of futures in which the policy meets the temperature target. The figure
shows that policy P2 is more effective than the others in meeting the target in the
low- and medium-sensitivity climate futures. Evaluations of the vulnerabilities for
the other policies show that each policy regime works better under a different area of
the uncertainty space. For instance, P7, which includes GCF funding for technology
and research and development, meets the temperature objective in futures with low
elasticity of substitution.

The evaluations of vulnerabilities for all seven policies suggest that the implemen-
tation of an international carbon tax (homogenous or not) can induce international
decarbonization, but under many scenarios it fails to do this at a rate that meets
the Paris objectives. As also shown in previous studies, the elasticity of substitution
between SETs and FETs is a key factor determining the success (with respect to
the Paris objectives) of the optimal policy response. However, this study also shows
that technological and climate uncertainties are equally influential. In particular, the
technological progress of SETs relative to FETs can affect the structure and effect
of optimal environmental regulation to the same degree as climate uncertainty.
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Fig. 7.12 Vulnerability map for policy P2 with respect to not exceeding the two-degree temperature
rise target

7.4.5 Developing a Robust Adaptive Climate Technology
Policy

Molina-Perez used a two-step process to identify a robust adaptive climate policy. In
the first step, he identified the policies with the least regret that also do not exceed
a 10% cost threshold across all the uncertainties.® Policy regret was defined as the
difference in consumer welfare* between a specific policy and the best policy for a
given future. Figure 7.13 depicts the lowest-regret policy that meets the cost threshold
for the same uncertainty bins used to characterize the vulnerabilities. The label and
the color legend indicate the corresponding least-regret policy for each scenario cell.
The dark cells refer to the GCF-based policies (P3-P7), while the light cells denote
the independent policy architectures (P1 and P2). Cells with no shading represent
futures for which no policy has costs below the 10% cost threshold.

These results show that the elasticity of substitution of the technological sectors
and climate sensitivity are the key drivers of this vulnerability type. However, the
results also highlight the important role of some of the technological uncertainty
dimensions. For instance, the figure shows that for the majority of scenario cells
with low relative transferability, it is not possible to meet cost and climate targets,
regardless of the other uncertainty dimensions. This exemplifies the importance that
the pace of development of SETSs in the emerging region has for reducing the costs

3Note that the 10% threshold is arbitrarily chosen, and could be the basis for additional exploratory
analysis.
4The utility function of the representative consumers considers as inputs both the quality of the
environment (inverse function of temperature rise) and consumption (proxy for economic perfor-
mance).
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of the best environmental regulation. Similarly, the R&D returns of SETs are also
shown to be an important driver of vulnerability.

As with the Colorado River Basin case study, no single policy is shown to be robust
across all futures. Therefore, in the second step, Molina-Perez defined transition rules
to inform adaptive policies for achieving global decarbonization at a low cost. To do
so0, he traced commonalities among the least-regret policy identified in each of the
scenario cells described in Fig. 7.13. This identifies the combination of uncertainties
that signal a move from one policy option to another. A simple recursive algorithm
is implemented to describe moves from P1 (independent carbon tax) to successively
more comprehensive policies, including significant GCF investments. The algorithm
proceeds by: (1) listing valid moves toward each individual scenario cell from external
scenario cells (i.e., pathways), (2) listing the uncertainty conditions for each valid
move (i.e., uncertainty bins), (3) searching for common uncertainty conditions across
these moves, and (4) identifying transition nodes for the different pathways initially
identified.

Figure 7.14 shows a set of pathways that represents how the global community
might move from one policy to another in response to the changing conditions that
were identified in the vulnerability analysis. In these pathways, independent carbon
taxation in P1 is a first step, because this policy directs the economic agents’ efforts
toward the sustainable energy sector, and because this policy is also necessary to
fund the complementary technology policy programs in both regions (a result from
EDIAM’s modeling framework). In subsequent phases, different pathways are trig-
gered depending on the unfolding climate and technological conditions. For example,
if climate sensitivity is extremely high (8 > 5, abrupt climate change), then it would
be necessary to implement environmental regulations that are above the 10% cost
threshold. In comparison, if climate sensitivity is low (8 < 4, slow climate change),
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then the least-regret policy depends on SETs’ R&D relative returns (yset/yfet). If
SETs’ R&D returns are below FETs” R&D returns (set/yfet < 1, more progress in
FETs), then only high cost policies would be available. On the contrary, if SETs
outperform the R&D returns of FETs, two policy alternatives are available: If SETs’
transferability is higher than FETs’ transferability (vset/vfet > 1, more rapid update
of SETs in emerging nations), then cooperation is not needed, and the individual
comprehensive policy (P2) would meet the policy objectives at a low cost. In the
opposite case (vset/vfet < 1, more rapid update of FETSs in emerging nations), some
cooperation through the GCF (P7) would be required to meet the climate objec-
tives below the 10% cost threshold. Note that these pathways consider only the low
elasticity of substitution futures. Other pathways are suitable for higher elasticity of
substitution futures. Other pathways are suitable for higher elasticity of substitution
futures.

These pathways illustrate clearly that optimal environmental regulation in the
context of climate change mitigation is not a static concept but rather a dynamic one
that must adapt to changing climate and technological conditions. This analysis also
provides a means to identify and evaluate appropriate policies for this dynamic envi-
ronment. The analysis shows that different cooperation regimes under the GCF are
best suited for different combinations of climate and technological conditions, such
that it is possible to combine these different architectures into a dynamic framework
for technological cooperation.
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7.5 Reflections

The complexity and analytic requirements of RDM have been seen by many as an
impediment to more widespread adoption. While there have been many applications
of RDM that use simple models or are modest in the extent of exploration, the first
case study on Colorado River Basin planning certainly was not simple. In fact, this
application is notable because it was both extremely analytically intensive, requiring
two computer clusters many months to perform all the needed simulations, and it
was integrated fully into a multi-month stakeholder process.

As computing becomes more powerful and flexible through the use of high-
performance computing facilities and the cloud, however, near real-time support
of planning processes using RDM-style analytics becomes more tenable. To explore
this possibility, RAND and Lawrence Livermore National Laboratory put on a work-
shop in late 2014 with some of the same Colorado River Basin planners in which a
high-performance computer was used to perform over lunch the equivalent simula-
tions and analyses that were done for the Basin Study over the course of an entire
summer (Groves et al. 2016). Other more recent studies have also begun to use
cloud computing to support large ensemble analyses that RDM studies often require
(Cervigni et al. 2015; Kalra et al. 2015; World Bank Group 2016). Connecting this
near-simultaneous analytic power to interactive visualizations has the potential to
transform planning processes.

These two case studies also highlight how the iterative, exploratory nature of
RDM can support the development of adaptive strategies—an obvious necessity
for identifying truly robust strategies in water management, international technology
policymaking, and many other domains. A simple recipe might describe the approach
presented here in the following way:

1. Define low-regret options for an exhaustive evaluation of automatically adjusting
strategies across a wide range of futures;

2. Identify the vulnerabilities for a strategy that implements just the low-regret
options;

3. Define and evaluate different signposts and triggers (which could include deci-
sionmaker beliefs about evolving conditions) for making the needed policy
adjustments if vulnerabilities appear probable; and

4. Present visualizations of pathways through the decision space to stakeholders
and decisionmakers.

This approach to designing adaptive strategies represents a step toward a convergence
of two DMDU methods presented in this book—RDM (Chap. 2) and Dynamic Adap-
tive Policy Pathways (Chap. 4). Continued merging of DMDU techniques for explo-
ration of uncertainties and policies, and techniques and visualizations for defining
policy pathways, could yield additional benefit.
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