Chapter 9 )
Erroneous Population Forecasts s

Nico Keilman

9.1 Forecast Accuracy

World population in the year 2000 was 6.09 billion, according to recent estimates by
the United Nations (UN 2005). This number is almost 410 million lower than the
year 2000-estimate that the UN expected in 1973. The UN has computed forecasts
for the population of the world since the 1950s. Figure 9.1 shows that the calcula-
tions made in the 1980s were much closer to the current estimate than those
published around 1990. Subsequent forecasts for the world population in 2000
show an irregular pattern: apparently, in 1973 and around 1990 it was rather difficult
to predict world population size and much less so in the mid-1980s.

At first sight, the relative differences in Fig. 9.1 appear small. The highest forecast
came out in 1973. That forecast numbered 6.49 billion, only 6% higher than the
current estimate of 6.09 billion. However, the difference is much larger in terms of
population growth. The 1973 forecast covered the period 1965-2000. During those
35 years, a growth in world population by 3.20 billion was foreseen. According to
the current estimate, the growth was 16% lower: only 2.7 billion persons.

An important reason for lower population growth is that the world’s birth rates
fell stronger than previously thought. Thirty years ago, the UN expected a drop in
total fertility by 1.4 children between the periods 1965-1970 and 1995-2000: from
4.7 to 3.3 children per woman on average. Recent estimates indicate that fertility
initially was higher than previously thought, and that it fell steeper than expected in
that 30-year period, from 4.9 to 2.8.

Accuracy statistics of the type given here are important indicators when judging
the quality of population forecasts. Other aspects, such as the information content
(for instance, does the forecast predict only total population, or also age groups?) and
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Fig. 9.1 Zooming in on the year 2000 world — population at the end of the twentieth century

the usefulness for policy purposes (for instance, does the predicted trend imply
immediate policy measures?) are relevant as well. Nevertheless, the degree to
which the forecast reflects real trends is a key factor in assessing its quality, in
particular when the forecast is used for planning purposes. For example, imagine a
forecast, for which the odds are one against two that it will cover actual trends. This
forecast should be handled much more cautiously than one that can be expected to be
in error only one out of five times.

The purpose of this chapter is to give a broad review of the notions of population
forecast errors and forecast accuracy. Why are population forecasts inaccurate? How
large are the errors involved, when we analyse historical forecasts of fertility,
mortality, and the age structure? Moreover, how can we compute expected errors
in recent forecasts? We shall see that probabilistic population forecasts are necessary
to assess the expected accuracy of a forecast, and that such probabilistic forecasts
quantify expected accuracy and expected forecast errors much better than traditional
deterministic forecasts do. The chapter concludes with some challenges in the field
of probabilistic population forecasting.

The focus in this chapter is on population forecasts at the national level, com-
puted by means of the cohort component method. 1 have largely restricted myself to
national forecasts, because most of the empirical literature on forecast errors and
forecast accuracy deals with forecasts at that level. Notable exceptions, to be
discussed below, are analyses for major world regions by Lutz et al. (1996, 2001),
and for all countries in the world by the US National Research Council (NRC 2000).
The empirical accuracy of subnational population forecasts has been evaluated since
the 1950s (Smith et al. 2001), but the expected accuracy of such forecasts is largely
uncharted terrain, cf. the concluding section. I focus on the cohort component
method of population forecasting, because this method is the standard approach
for population forecasting at the national level (Keilman and Cruijsen 1992). Most of
the empirical evidence stems from industrialized countries, although findings for
less-developed countries will be mentioned occasionally.
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Various terms are in use to express accuracy, and lack thereof. I shall use
inaccuracy and uncertainty as equivalent notions. When a forecast is accurate, its
errors are small. Forecast errors are a means of quantifying forecast accuracy and
forecast uncertainty. Empirical errors may be computed based on a historical
forecast, when its results are compared with actual population data observed some
years after the forecast was computed. For a recent forecast, this is not possible. In
that case, one may compute expected errors, by means of a statistical model.

9.2 Why Population Forecasts Are Inaccurate

Population forecasts are inaccurate because our understanding of demographic
behaviour is imperfect. Keyfitz (1982) assessed various established and rudimentary
demographic theories: demographic transition, effects of development, Caldwell’s
theory concerning education and fertility, urbanization, income distribution, Mal-
thus’ writings on population, human capital, the Easterlin effect, opportunity costs,
prosperity and fertility, and childbearing intentions. He tried to discover whether
these theories had improved demographic forecasting, but his conclusion was
negative. Although many of the theories are extensively tested, they have limited
predictive validity in space and time, are strongly conditional, or cannot be applied
without the difficult prediction of non-demographic factors. Keyfitz’ conclusion
agrees with Ernest Nagel’s opinion from 1961, that “. .. (un)like the laws of physics
and chemistry, generalizations in the social sciences . .. have at best only a severely
restricted scope, limited to social phenomena occurring during a relatively brief
historical epoch with special institutional settings.” Similarly, Raymond Boudon
(1986) concluded that general social science theories do not exist — they are all
partial and local, and Louis Henry (1987) supports that view for the case of
demography. Applied to demographic forecasting, this view implies that uncertainty
is inherent, and not merely the result of our ignorance. Individuals make
unpredictable choices regarding partnership and childbearing, health behaviour,
and migration. Note that the views expressed by Nagel and Boudon are radically
different from Laplace’s view on chance and uncertainty: “Imagine ... an intelli-
gence which could comprehend all the forces by which nature is animated . .. To it
nothing would be uncertain, and the future, as the past, would be present to its eyes. *
(Laplace 1812-1829). This view suggests that our ignorance is temporary, and good
research into human behaviour will increase our understanding and help formulating
accurate forecasts.

Whichever view is correct, demographic behaviour is not well explained as of
today. When explanation is problematic, forecasting is even more difficult. There-
fore, in addition to whatever fragmentary insight demographers obtain from
behavioural sciences, they rely heavily on current real trends in vital processes,
and they extrapolate those trends into the future. Hence, they face a problem when
the indicators show unexpected changes in level or slope. It will not be clear whether
these are caused by random fluctuations, or whether there is a structural change in the
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underlying trends. A trend shift that is perceived as random will first lead to large
forecast errors. This effect is known in forecasting literature as assumption drag
(Ascher 1978). Later, when the new trend is acknowledged, it will be included in the
forecast updates and the errors will diminish. On the other hand, random fluctuations
that are perceived as a trend shift will cause forecast errors, which will have a
fluctuating effect on subsequent forecasts.

9.3 Empirical Evidence from Historical Forecasts

There is a large literature, in which historical population forecasts are evaluated
against observed statistics (Preston 1974; Calot and Chesnais 1978; Inoue and Yu
1979; Keyfitz 1981; Stoto 1983; Pflaumer 1988; Keilman 1997, 1998, 2000, 2001;
Keilman and Pham 2004; National Research Council 2000). These studies have
shown, among others, that forecast accuracy is better for short than for long forecast
durations, and that it is better for large than for small populations. They also learned
us that forecasts of the old and the young tend to be less accurate than those of
intermediate age groups, and that there are considerable differences in accuracy
between regions and components. Finally, poor data quality tends to go together
with poor forecast performance. This relationship is stronger for mortality than for
fertility, and stronger for short-term than for long-term forecasts. Selected examples
of these general findings will be given below.

9.3.1 Forecasts Are More Accurate for Short Than for Long
Forecast Durations

Duration dependence of forecast accuracy is explained by the fact that the more
years a forecast covers, the greater is the chance that unforeseen developments will
produce unexpected changes in fertility, mortality, or migration.

The US National Research Council (NRC) evaluated the accuracy of nine total
population size forecasts for countries of the world. Four of these were published by
the United Nations (between 1973 and 1994), four by the World Bank (between
1972 and 1990), and one by the US Census Bureau (1987). The absolute percentage
error, that is the forecast error irrespective of sign, increased from 5% on average for
5-year ahead forecasts, to 9% 15 years ahead, and to 14% 25 years ahead (NRC
2000). The average was computed over all countries and all forecasts. Developed
countries had errors that were lower, and increased slower by forecast duration: from
2 (5 years ahead) to 4-5 (25 years ahead) %. A striking feature of these errors is that,
even at duration zero, i.e., in the forecast’s base year, the errors are not negligible.
Hence, forecasts start off with an incorrect base line population. For countries in
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Africa and the Middle East this base line error was highest: 5%. Base line errors
reflect poor data quality: when the forecasts were made, demographers worked with
the best data that were available, but in retrospect, those data were revised.

Total fertility showed average errors from 0.4 children per woman after 5 years, to
0.6 and 0.8 children per woman after 15 and 25 years, with higher than average
errors for European countries. In an evaluation of ten TFRforecasts made by the UN
since 1965, I found that for Europe as a whole, TFR errors were lower, and increased
slower: from 0.2 children per woman after 5 years, to 0.5 after 15 years (Keilman
2001). An analysis of the errors observed in TFR forecasts in 14 European countries
made since the 1960s shows that TFR-predictions have been wrong by 0.3 children
per woman for forecasts 15 years ahead, and 0.4 children per woman 25 years ahead
(Keilman and Pham 2004). Life expectancy was wrong by 2.3 (5 years ahead), 3.5
(15 years ahead) and 4.3 (25 years ahead) years on average in the NRC evaluation. In
14 European countries, life expectancy forecasts tended to be too low by 1.0-1.3 and
3.2-3.4 years at forecast horizons of 10 and 20 years ahead, respectively.

9.3.2 Forecasts Are More Accurate for Large Than for Small
Populations

A size effect in empirical errors at the sub national level was established already
50 years ago (White 1954), and reconfirmed repeatedly (see Smith et al. 2001 for an
overview). Schéele (1981) found that the absolute error in small area forecasts within
the Stockholm area was approximately proportional to the square root of population
size, i.e., a power of 0.5 (see also Bandel Bickman and Schéele 1995). Later,
Tayman et al. (1998) confirmed such a power law for small area forecasts in San
Diego County, California, when they found that the mean absolute percentage
forecast error was proportional to population size raised to the power 0.4.

At the international level, the NRC analysis referred to earlier showed that the
absolute percentage error in forecasts of total population size was 5.5% on average,
the average being taken over all countries and all nine forecast rounds. However, for
countries with less than one million inhabitants, the average was 3 percentage points
higher; for countries with a population of at least one million, the error was 0.7
percentage points lower (controlling, among others, for forecast length, year fore-
casted, forecast round, and whether or not the country had had a recent census; see
NRC 2000, Appendix Table B7).

There are three reasons for the size effect in forecast accuracy. First, at the
international scale, forecasters tend to pay less attention to the smallest countries,
and take special care with the largest ones (NRC 2000). Second, both at the
international and the local scale, small countries and areas are stronger affected by
random fluctuations than large ones. In fact, many errors at the lower regional level
cancel after aggregation. This explains irregular patterns and randomness in
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historical series of vital statistics at the lower level, leading to unexpected real
developments after the forecast was produced. Third, for small areas the impact of
migration on total population is strong compared to fertility and mortality, while, at
the same time, migration is the least predictable of the three components.

9.3.3 Forecasts of the Old and the Young Tend to Be Less
Accurate Than Those of Intermediate Age Groups

In medium sized and large countries and regions, international migration has much
less effect on the age structure than fertility or mortality. Therefore, a typical age
pattern is often observed for accuracy. For many developed countries, a plot of
relative forecast errors against age reveals large and positive errors (i.e., too high
forecasts) for young age groups, and large negative errors (too low forecasts) for the
elderly. Errors for intermediate age groups are small. This age effect in forecast
accuracy has been established for Europe, Northern America, and Latin America,
and for countries such as Canada, Denmark, the Netherlands, Norway, and the
United Kingdom (Keilman 1997, 1998). The fall in birth rates in the 1970s came
fully unexpected for many demographers, which led to too high forecasts for young
age groups. At the same time, mortality forecasts were often too pessimistic, in
particular for women — hence the forecasts predicted too few elderly. The relative
errors for the oldest old are often of the same order of magnitude as those for the
youngest age groups: plus or minus 15% or more for forecasts 15 years into the
future.

9.3.4 Accuracy Differs Between Components and Regions

In an analysis of the accuracy of 16 sets of population projections that the UN
published between 1951 and 1998, I found considerable variation among ten large
countries and seven major regions (Keilman 2001). Problems are largest in
pre-transition countries, in particular in Asia. The quality of UN data for total fertility
and the life expectancy has been problematic in the past for China, Pakistan, and
Bangladesh. The poor data quality for these countries went together with large errors
in projected total fertility and life expectancy. For Africa as a whole, data on total
population and age structure have been revised substantially in the past, and this is a
likely reason for the poor performance of the projections in that region. Nigeria, the
only African country in my analysis, underwent major revisions in its data in
connection with the Census of 1991. In turn, historical estimates of fertility and
mortality indicators had to be adjusted, and this explains large projection errors in the
age structure, in total fertility and in the life expectancy for this country. The
problematic data situation for the former USSR is well known, in particular that
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for mortality data. The result was that, on average, life expectancy projections were
too high by 2.9 years, which in turn caused large errors in projected age structures for
the elderly. For Europe and Northern America, data quality is generally good. Yet, as
noted in Sect. 9.3.3, the two regions have large errors in long-range projections of
their age structures, caused by unforeseen trend shifts in fertility and mortality in the
1960s and 1970s.

The analysis of the statistical distribution of observed forecast errors for 14
European countries showed that a normal distribution fitted well for errors in life
expectancies (Keilman and Pham 2004): TFR-errors, on the other hand, were
exponentially distributed. This indicates that the probability for extremely large
error values was greater for the TFR than for the life expectancy. Extreme errors
for net migration are even more likely.

9.4 The Expected Accuracy of Current Forecasts

Forecast users should be informed about the expected accuracy of the numbers they
work with. It focuses their attention on alternative population futures that may have
different implications, and it requires them to decide what forecast horizon to take
seriously. Just because a forecast covers 100 years does not mean that one should
necessarily use that long a forecast (NRC 2000). In that sense, empirical errors
observed in a series of historical forecasts for a certain country can give strong
indications of the accuracy of the nation’s current forecast. However, these historical
errors are just one realization of a statistical process, which applied to the past.
Expected errors for the current forecast can only be assessed when the population
forecast is couched in probabilistic form.

A probabilistic population forecast of the cohort component type requires the
joint statistical distribution of all of its input parameters. Because there are hundreds
of input parameters, one simplifies the probabilistic model in two ways. First, one
focuses on just a few key parameters (for instance, total fertility, life expectancy, net
immigration).] Second, one ignores certain correlations, for instance those between
components, and sometimes also those in the age patterns of fertility, mortality, or
migration.”

'A cohort component forecast that has 1-year age groups requires 35 fertility rates, 200 death rates,
and some 140 parameters for net migration for each forecast year. With age groups and time
intervals equal to 50 years, a forecast for a period of 50 years, say, still requires that one specify the
joint statistical distribution of (7 + 40 + 28) x 10 = 750 parameters.

2For Western countries, there is little or no reason to assume correlation between the components of
fertility, mortality, and migration. Nor is there any empirical evidence of such correlation (Lee and
Tuljapurkar 1994; Keilman 1997). In developing countries, disasters and catastrophes may have an
impact both on mortality, fertility, and migration, and a correlation between the three components
cannot be excluded. There may also be a positive correlation between the levels of immigration and
childbearing in Western countries with extremely high immigration from developing countries.
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In probabilistic forecasts, an important type of correlation is that across time
(serial correlation). Levels of fertility and mortality change only slowly over time.
Thus, when fertility or mortality is high one year, a high level the next year is also
likely, but not 100% certain. This implies a strong, but not perfect serial correlation
for these two components. International migration is much more volatile, but
economic, legal, political, and social conditions stretching over several years affect
migration flows to a certain extent, and some degree of serial correlation should be
expected. In the probabilistic forecasts for the United States (Lee and Tuljapurkar
1994), Finland (Alho 1998), the Netherlands (De Beer and Alders 1999), and
Norway (Keilman et al. 2001, 2002) these correlation patterns were estimated
based on time series models. For Austria (Hanika et al. 1997) and for large world
regions (Lutz and Scherbov 1998a, b) perfect autocorrelation was assumed for the
summary parameters (total fertility, life expectancy, and net migration). This
assumption underestimates uncertainty (Lee 1999). In recent work for world regions,
Lutz, Sanderson, and Scherbov relaxed the assumption of perfect autocorrelation
(Lutz et al. 2001).

Three main methods are in use for computing probabilistic forecasts of the
summary indicators: time series extrapolation, expert judgement, and extrapolation
of historical forecast errors (Lee 1999; NRC 2000). The three approaches are
complementary, and elements of all three are often combined. Time series methods
and expert judgement result in the distribution of the parameter in question around its
expected value. In contrast, an extrapolation of empirical errors gives the distribution
centred around zero (assuming an expected error equal to zero), and the expected
value of the population variable is taken from a deterministic forecast computed in
the traditional manner.

Time series methods are based on the assumption that historical values of the
variable of interest have been generated by means of a statistical model, which also
holds for the future. A widely used method is that of Autoregressive Integrated
Moving Average (ARIMA)-models. These time series models were developed for
short horizons. When applied to long-run population forecasting, the point forecast
and the prediction intervals may become unrealistic (Sanderson 1995). Judgmental
methods (see below) can be applied to correct or constrain such unreasonable
predictions (Lee 1993; Tuljapurkar 1996).

Expert judgement can be used when expected values and corresponding predic-
tion intervals are hard to obtain by formal methods. In demographic forecasting, the
method has been pioneered by Lutz and colleagues (Lutz et al. 1996; Hanika et al.
1997; Lutz and Scherbov 1998a, b). A group of experts is asked to indicate the
probability that a summary parameter, such as the TFR, falls within a certain
pre-specified range for some target year, for instance the range determined by the
high and the low variant of an independently prepared population forecast. The
subjective probability distributions obtained this way from a number of experts are
combined in order to reduce individual bias. A major weakness of this approach, at
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least based upon the experiences from other disciplines, is that experts often are too
confident, i.e., that they tend to attach a too high probability to a given interval
(Armstrong 1985). A second problem is that an expert would have problems with
sensibly guessing whether a certain interval corresponds to probability bounds with
90% coverage versus 95% or 99% (Lee 1999).

Extrapolation of empirical errors requires observed errors from historical fore-
casts. Formal or informal methods may be used to predict the errors for the current
forecast. Keyfitz (1981) and Stoto (1983) were among the first to use this approach in
demographic forecasting. They assessed the accuracy of historical forecasts for
population growth rates. The Panel on Population Projections of the US National
Research Council (NRC 2000) elaborated further on this idea and developed a
statistical model for the uncertainty around total population in UN-forecasts for all
countries of the world. Others have investigated and modelled the accuracy of
predicted TFR, life expectancy, immigration levels, and age structures (Keilman
1997; De Beer 1997). There are two important problems. First, time series of
historical errors are usually rather short, as forecasts prepared in the 1960s or earlier
generally were poorly documented. Second, extrapolation is often difficult because
errors may have diminished over successive forecast rounds as a result of better
forecasting methods.

Irrespective of the method that is used to determine the prediction intervals for all
future fertility, mortality and migration parameters, the next step is to apply these to
the base population in order to compute prediction intervals for future population
size and age pyramids. This can be done in two ways: analytically, and by means of
simulation.

The analytical approach is based on a stochastic cohort component model, in
which the statistical distributions for the fertility, mortality, and migration parame-
ters are transformed into statistical distributions for the size of the population and its
age-sex structure. Alho and Spencer (1985) and Cohen (1986) employ such an
analytical approach, but they need strong assumptions. Lee and Tuljapurkar
(1994) give approximate expressions for the second moments of the distributions.

The simulation approach avoids the simplifying assumptions and the approxi-
mations of the analytical approach. The idea is to compute several hundreds or
thousands of forecast variants (“sample paths”) based on input parameter values for
fertility, mortality, and migration that are randomly drawn from their respective
distributions, and store the results in a database. Early contributions based on the
idea of simulation are those by Keyfitz (1985), Pflaumer (1986, 1988), and
Kuijsten (1988).

In order to illustrate that probabilistic forecasts are useful when uncertainty has to
be quantified, I shall give an example for the population of Norway. I shall compare
the results from a probabilistic forecast with those from a traditional deterministic
one, prepared by Statistics Norway.
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9.5 Probabilistic Forecasts: An Alternative to Forecast
Variants

Technical details of the methods used to construct the probabilistic forecast are
presented elsewhere (Keilman et al. 2001, 2002). Here I shall give a brief summary.

ARIMA time series models were estimated for observed annual values of the
TFR, the life expectancy for men and women, and total immigration and immigra-
tion in Norway since the 1950s. Based on these ARIMA models, repeated stochastic
simulation starting in 1996 yielded 5,000 sample paths for each of these summary
parameters to the year 2050. The predictive distributions for the TFR and the life
expectancy at birth were checked against corresponding empirical distributions
based on historical forecasts published by Statistics Norway in the period
1969-1996. The predicted TFR, life expectancy, and gross migration flows were
broken down into age specific rates and numbers by applying various model
schedules: a Gamma model for age specific fertility, a Heligman-Pollard model for
mortality, and a RogersCastro model for migration. Next, the results of the 5000 runs
of the cohort component model for the period up to 2050 were assembled in a data
base containing the future population of Norway broken down by 1-year age group,
sex, forecast year (1997-2050), and forecast run. For each variable of interest, for
example the total population in 2030, or the old age dependency ratio (OADR) in
2050, one can construct a histogram based on 5000 simulated values, and read off
prediction intervals with any chosen coverage probability.

The results showed odds equal to four against one (80% chance) that Norway’s
population, now 4.5 million, will number between 4.3 and 5.4 million in the year
2025, and 3.7-6.4 million in 2050. Uncertainty was largest for the youngest and the
oldest age groups, because fertility and mortality are hard to predict. As a result,
prediction intervals in 2030 for the population younger than 20 years of age were so
wide, that the forecast was not very informative. International migration showed
large prediction intervals around expected levels, but its impact on the age structure
was modest. In 2050, uncertainty had cumulated so strongly, that intervals were very
large for virtually all age groups, in particular when the intervals are judged in a
relative sense (compared to the median forecast).

Figure 9.2 shows the high and the low bound of the various prediction intervals
for the old age dependency ratio, defined as the population 67 and over relative to
that aged 20-66.> The prediction intervals are those with 95%, 80%, and 67%
coverage. The median of the predictive distributions is also plotted. The intervals
widen rapidly, reflecting that uncertainty increases with time. We see that ageing is
certain in Norway, at least until 2040. In that year, the odds are two against one (67%
interval) that the OADR will be between 0.33 and 0.43, i.e., at least 10 points higher
than today’s value of 0.23. The probability of a ratio in 2040 that is lower than
today’s is close to zero.

3The legal retirement age in Norway is 67.
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Fig. 9.2 Old age dependency ratio, Norway

How do these probabilistic forecast results compare with those obtained by a
traditional deterministic forecast? Statistics Norway’s most recent population fore-
cast contains variants for high population growth and low population growth, among
others (Statistics Norway 2005). The high population growth forecast results from
combining a high fertility assumption with a high life expectancy assumption (i.e.,
low mortality) and a high net immigration assumption. Likewise, the low growth
variant combines low fertility with low life expectancy and low immigration. The
forecast predicts a population aged 67 and over in 2050 between 1,095,000 (low
growth) and 1,406,000 (high growth). However, the corresponding OADR-values
are 0.409 for low population growth, and 0.392 for high population growth. There-
fore, while there is a considerable gap between the absolute numbers of elderly in the
two variants, the relative numbers, as a proportion of the population aged 20-66, are
almost indistinguishable. The interval for the absolute number thus reflects uncer-
tainty in some sense, but the OADR-interval for the same variant pair suggests
almost no uncertainty. On the other hand, the probabilistic forecast results in Fig. 9.2
show a two-thirds OADR-prediction interval in 2050 that stretches from 0.31 to
0.44.*

This example illustrates that it is problematic to use forecast variants from
traditional deterministic forecast methods to express forecast uncertainty. First,
uncertainty is not quantified. Second, the use of high and low variants is inconsistent
from a statistical point of view (Lee 1999, Alho 1998). In the high variant, fertility is
assumed to be high in every year of the forecast period. Similarly, when fertility is

“The median OADR-value of the stochastic forecast in 2050 (0.37) is lower than the medium value
of Statistics Norway’s forecast for that year (0.395). Life expectancy in 2050 rises to 86 years in
Statistics Norway’s forecast, but only to 82.3 years in the median of the stochastic forecast. The
latter forecast was prepared 4 years earlier than Statistics Norway’s forecast.
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Table 9.1 Prediction intervals for retirement age, Norway

Median 67% interval 80% interval 95% interval
OADR = 0.24
2010 64.8 64.5-65.2 64.4-65.3 64.1-65.5
2030 69.2 68.2-70.3 67.9-70.6 67.2-71.3
2050 71.9 69.4-74.4 68.7-75.1 67.0-76.8
OADR = 0.18
2010 67.6 67.2-68.1 67.1-68.2 66.8-68.5
2030 72.0 71.0-73.0 70.7-73.3 70.1-74.0
2050 75.1 72.8-77.2 72.2-77.9 70.7-79.4

low in one year, it is 100% certain that it will be low in the following years, too.
Things are even worse when two or more mortality variants are formulated, in
addition to the fertility variants, so that high/low growth variants result from
combining high fertility with high life expectancy/low fertility with low life expec-
tancy. In that case, any year in which fertility is high, life expectancy is high as well.
In other words, one assumes perfect correlation between fertility and mortality, in
addition to perfect serial correlation for each of the two components. Assumptions of
this kind are unrealistic, and, moreover, they cause inconsistencies: two variants that
are extreme for one variable need not be extreme for another variable.

As a further illustration of the use of stochastic population forecasts when
analyzing pension systems, let me consider the possibility of a flexible retirement
age. When workers postpone retirement, they contribute longer to the pension fund,
and the years they benefit from it become shorter (other factors remaining the same).
Therefore I analyse the following question: which retirement age is necessary in
Norway in the future in order to achieve a constant OADR (see also Sect. 12.4 of the
chapter by Tuljapurkar in this volume for a similar analysis for the United States)? I
will investigate two cases. First I assume a constant OADR equal to 0.24, which is
the highest value observed in the past (around 1990, see Fig. 9.2). Second, I assume
an OADR equal to 0.18. This is the value in 1967, the year when the Norwegian
pension system in its current form was introduced. Since the future age structure is
uncertain, the retirement age necessary to obtain a constant OADR becomes a
stochastic variable. Table 9.1 gives the results.

The table shows that the retirement age in Norway must increase strongly from its
current value of 67 years, if the OADR were to remain constant at 0.24. The median
of 71.9 years in 2050 indicates that the rise is almost 5 years. Yet the uncertainty is
large here. In four out of five cases would the retirement age in 2050 be between
69 and 75 years. In the short run the situation is completely different. The age
structure of the population of Norway is such that the retirement age can decrease to
2010, and yet the ratio of elderly to the population in labour force ages could remain
constant. This finding is almost completely certain. Even the upper bound of the 95%
interval (65.5) is much lower than today’s retirement age.

If one would require an OADR as low as the one in 1967, the median age at
retirement has to increase to no less than 75.1 years in 2050. A higher retirement age
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is necessary even in the short run: the median in 2010 is 67.6 years, and the lower
bound to the 80% prediction interval indicates that the probability that we may can
an increase is about 10% or lower, given the assumptions made.

9.6 Challenges in Probabilistic Population Forecasting

A probabilistic forecast extrapolates observed variability in demographic data to the
future. For a proper assessment of the variability, one needs long series with annual
data of good quality. The minimum is about 50 years, but a longer series is
preferable. At the same time, one would ideally have a long series of historical
forecasts, and estimate empirical distributions of observed forecast errors based on
the old forecasts. There are very few countries that have so good data. Therefore, a
major challenge in probabilistic forecasting is to prepare such forecasts for countries
with poorer data. Two research directions seem promising. First, when time series
analysis cannot be used to compute predictive distributions, one has to rely strongly
on expert opinion. Lutz et al. (1996, 2001) have indicated how this can be done in
practice. An important task here is a systematic elicitation of the experts’ opinions, in
order to avoid too narrow prediction intervals. Second, in case the data from
historical forecasts are lacking, one could replace actual forecasts by naive or
baseline forecasts (Keyfitz 1981; Alho 1998). Historical forecasts often assumed
constant (or nearly constant) levels or growth rates for summary indicators such as
the TFR, the life expectancy, or the level of immigration. Thus we can study how
accurate past fertility forecasts would have been if they had assumed that the base
value had persisted. Similarly, we can compute mortality errors based on an assump-
tion of a linear increase in life expectancy. Such naive error estimates would be
expected to lead to conservative, that is, too large variability estimates, in some cases
only slightly so but in others substantially.

Most applications of probabilistic forecasting so far focus on one country. Very
few have a regional or an international perspective. One important exception is the
work by Lutz et al. (1996, 2001), who used a probabilistic cohort component
approach for 13 regions of the world.” For fertility and mortality, they combined
the three methods mentioned in Sect. 9.4 to obtain predictive distributions for
summary indicators. An important challenge was the probabilistic modelling of
interregional migration, because migration data show large volatility in the trends,
are unreliable, not consistent between countries, or often simply lacking. In their
1996 study, Lutz and colleagues assumed a matrix of constant annual interregional
migration flows, with the 90% prediction bounds corresponding to certain high and

SProbabilistic forecasts of total population size for all countries of the world have been prepared by
the Panel on Population Projections (NRC 2000), but these forecasts do not give age detail.
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low migration gains in each region. In the recent study, net migration into the regions
was modelled as a stochastic vector with a certain autocorrelation structure. A
second challenge was the treatment of interregional correlations for fertility, mor-
tality, and migration. Due to the paucity of the necessary data, these correlations are
difficult to estimate. Therefore, the authors combined qualitative considerations with
sensitivity analysis, and investigated alternative regional correlation levels.

Because of these data problems, the development of a sound method for proba-
bilistic multiregional cohort component forecasting is an important research chal-
lenge. For sub-national forecasts, the problems are probably easier to overcome than
for international forecasts, because the data situation is better in the former case, at
least in a number of developed countries. The way ahead would thus be to collect
better migration data, and to invest efforts in estimating cross-regional correlation
patterns for fertility, mortality, and migration. An alternative strategy could be to
start from a probabilistic cohort component forecast for the larger region, and to
compute such forecasts at the lower regional level (by age and sex) by means of an
appropriate multivariate distribution with expected values corresponding to the
regional shares from an independently prepared deterministic forecast.

Not only regional forecasts, but also other types of population forecasts should be
couched in probabilistic terms, such as labour market forecasts, educational fore-
casts, and household forecasts, to name a few. Very few of such probabilistic
forecasts have been prepared. Lee and Tuljapurkar (2001) have investigated the
expected accuracy of old age security funds forecasts in the United States. A major
topic of research here is to analyse the relative contribution to uncertainty of
demographic factors (fertility, mortality, migration) and non-demographic factors
(labour market participation, educational attainment, residential choices).
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