Chapter 12 ®)
Stochastic Forecasts of Mortality, s
Population and Pension Systems

Shripad Tuljapurkar

12.1 Introduction

This paper discusses the construction of stochastic forecasts of human mortality and
fertility rates and their use in making stochastic forecasts of pension funds. The
method of mortality analysis was developed by Lee and Carter (1992), henceforth
called the LC method. Lee and Tuljapurkar (1994) combined the LC method with a
related fertility forecast to make stochastic population forecasts for the
US. Tuljapurkar and Lee (1999) and Lee and Tuljapurkar (2000) combined these
population forecasts with a number of other forecasts to generate stochastic forecasts
of the US Social Security system.

My goal is to explain the distinctive features, strengths, and shortcomings of the
stochastic method rather than to explain the method. I begin with a discussion of
stochastic forecasts and their differences from scenario forecasts. Then I discuss
mortality forecasts using Swedish mortality data, including a new forecast for
Sweden. I go on to consider briefly how population forecasts are made and their
use in modeling pension systems.

12.2 Stochastic Forecasts

A population forecast made in year T aims to predict population P(t) for later years,
where P includes numbers and composition. The information on which the forecast
is based includes the history of the population and of environmental factors (eco-
nomic, social, etc.). Every forecast maps history into a prediction. Scenario forecasts
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rely on a subjective mapping made by an expert, whereas stochastic forecasts
attempt to make an explicit model of the historical dynamics and project this
dynamic into the future. Stochastic forecasts may rely partly on a subjective mapping
as well. What are the pros and cons of the two approaches?

When historical data contain a strong “signal” that describes the dynamics of a
process, it is essential to use the signal as a predictive mechanism. Equally, it is
important to include information that is not contained in the signal — this residual
information is an important element of uncertainty that should be reflected in the
forecast. The LC method shows that there is such a signal in mortality history. When
there is no strong signal in the historical data, a subjective prediction may be
unavoidable. Fertility history tends to reveal relatively little predictive signal. Even
here, uncertainty ought to be included because history does tell us about uncertainty,
and we can estimate the variability around a subjective prediction.

The use of history to assess uncertainty certainly does make assumptions about
persistence in the dynamic processes that drive the variables we study. This does not
imply that we assume an absence of surprises or discontinuities in the future. Rather
it assumes that all shocks pass through a complex filter (social, economic, and so on)
into demographic behavior, and that future shocks will play out in the same
statistical fashion as past shocks. I would not abandon this assumption without
some demonstration that the filtering mechanisms have changed — witness for
example the stock market bubble in the US markets in 1999-2000 and its subsequent
decline. It may be useful to think about extreme scenarios that restructure aspects of
how the world works — one example is the possibility that genomics may change the
nature of both conception and mortality in fundamental ways — but I regard the
exploration of such scenarios as educational rather than predictive.

I argue strongly for the systematic prediction of uncertainty in the form of
probability distributions. This position does not argue against using subjective
analysis where unavoidable. One way of doing a sound subjectively based analysis
is to follow the work of Keilman (1997, 1998) and Alho and Spencer (1997) and use
a historical analysis of errors in past subjective forecasts to generate error distribu-
tions and project them. The practice of using “high-low” scenarios should be
avoided. Uncertainty accumulates, and must be assessed in that light. In my view,
the best that a scenario can do is suggest extreme values that may apply at a given
time point in the future — for example, demographers are often reluctant to believe
that total fertility rate (TFR) will wander far from 2 over any long interval, so the
scenario bounds are usually an acceptable window around 2, such as 1.5-2.2. Now
this may be plausible as a period interval in the future but in fact tells us nothing
useful about the dynamic consequences of TFR variation over the course of a
projection horizon.

Uncertainty, when projected in a probabilistic manner, provides essential infor-
mation that is as valuable as the central location of the forecast. To start with,
probabilities tell us how rapidly the precision of the forecast degrades as we go
out into the future. It can also be the case that our ability to predict different aspects
of population may differ, and probability intervals tell us about this directly.
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Probabilities also make it possible to use risk metrics to evaluate policy: these are
widely used in insurance, finance, and other applications, and surely deserve a bigger
place in population-related planning and analysis.

12.3 Mortality Forecasts

The LC method seeks a dominant temporal “signal” in historical mortality data in the
form of the simplest model that captures trend and variation in death rates, and seeks
it by a singular-value decomposition applied to the logarithms log m(x, t) of central
death rates. For each age x subtract the sample average a(x) of the logarithm, and
obtain the decomposition

logm(x,t) —a(x) = Zisi u; (x) vi(t).

On the right side above are the real singular values s; > s, ... > 0. The ratio of s%
to the sum of squares of all singular values is the proportion of the total temporal
variance in the transformed death rates that is explained by just the first term in the
singular-value decomposition.

In all the industrialized countries that we have examined, the first singular value
explains well over 90% of the mortality variation. Therefore we have a dominant
temporal pattern, and we write

logm(x,t) = a(x) + b(x) k(t) + E(x, t).

The single factor k(t) corresponds to the dominant first singular value and
captures most of the change in mortality. The far smaller variability from other
singular values is E(x, t).

The dominant time-factor k(t) displays interesting patterns. Tuljapurkar et al.
(2000) analyzed mortality data in this way for the G 7 countries over the period from
approximately 1955-1995. They found that the first singular value in the decompo-
sition explained over 93% of the variation, and that the estimated k(t) in all cases
showed a surprisingly steady linear decline in k(t). The mortality data for Sweden
from 1861 to 1999 constitute one of the longest accurate series, and a similar analysis
in this case reveals two regimes of change in k(t). The estimated k(t) for Sweden is
shown in Fig. 12.1. There is steady decline from 1861 to about 1910 and after 1920
there is again steady decline but at a much faster rate. Note that the approximately
linear long-term declines are accompanied by quite significant short-term fluctua-
tions. It is possible that we can interpret period-specific fluctuations in terms of
particular effects (e.g., changes in particular causes of death) but it is difficult to
project these forward. For example, the change in the pattern in the early 1900s is
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Fig. 12.1 Lee Carter k(t) Sweden 1861 to 1999

consistent with our views of the epidemiological transition, but we do not know if
the future will hold such a qualitative shift. Within the twentieth century we take the
approach of using the dominant linearity coupled with superimposed stochastic
variation.

Mortality decline at any particular age X is proportional to the signal k(t) but its
actual magnitude is scaled by the response profile value b(x). Figure 12.2 shows the
b(x) profiles computed for Swedish data using 50 year spans preceding the dates
1925, 1945, 1965, and 1985. Note that there is a definite time evolution, in which the
age schedules rotate (around an age in the range 40-50) and translate so that their
weight shifts to later ages as time goes by. This shifting corresponds to the known
sequence of historical mortality decline starting with declines initially at the youn-
gest ages and then in later ages over time. An intriguing possibility is that temporal
changes in the b(x) schedules may be described by a combination of a scaling and
translation — a sort of nonlinear mapping over time. An important matter for future
work is to explore the time evolution of the b(x), even though it appears (see below)
that one can make useful forecasts over reasonable time spans of several decades by
relying on a base span of several decades to estimate a relevant b(x).

What accounts for the regular long-term decline in mortality that is observed over
any period of a few decades? It is reasonable to assume that mortality decline in this
century has resulted from a sustained application of resources and knowledge to
public health and mortality reduction. Let us assume, as appears to be the case, that
societies allocate attention and resources to mortality reduction in proportion to
observed levels of mortality at different ages (e.g., immunization programs against
childhood disease, efforts to reduce cardiovascular disease at middle age). Such
allocation would produce an exponential (proportional) change in mortality, though
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Fig. 12.2 b(x) Response factors Sweden

not necessarily at a constant rate over time. Over time, the rate of proportional
decline depends on a balance between the level of resources focused on mortality
reduction, and their marginal effectiveness. Historically, the level of resources has
increased over time but their marginal effectiveness has decreased over time
(because, for example, we are confronted with ever more complex causes of
mortality that require substantial resources or new knowledge). The observation of
linearly declining k(t) — roughly constant long-run exponential rates of decline —
implies that increasing level and decreasing effectiveness have balanced each other
over long times. It is of course possible that the linear pattern of decline we report has
some other basis. For the future, we expect a continued increase in resources spent
on mortality reduction, and a growing complexity of causes of death. The balance
between these could certainly shift if there were departures from history — for
example, if new knowledge is discovered and translated into mortality reductions
at an unprecedented rate. But this century has witnessed an amazing series of
discoveries that have altered medicine and public health, and there is no compelling
reason why the future should be qualitatively different. Therefore, I expect a
continuation of the long-run historical pattern of mortality decline.

The LC method uses the long-term linear decline in k(t) to forecast mortality. A
naive forecast based on the long-run trend is not sensible because the short-term
variation will accumulate over time, so it is essential to employ a stochastic forecast.
In LC, the stochastic term E(t) is modeled as a stationary noise term, and this
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procedure leads to forecasts for Sweden as shown in Fig. 12.3, for life expectancy at
birth, ey, and in Fig. 12.4 for life expectancy at age 65, egs. In both cases we use a
50-year span of historical data prior to a launch date of 1999. The intervals shown are
95% prediction intervals for each forecast year. Notice that there are separate fore-
casts for each sex, as well as a combined-sex forecast. The joint analysis of the two
sexes in an LC framework has not been fully resolved, although Li et al. (2004)
suggest one method for doing this.

Some previous comments on the LC method have asserted that it is simply
equivalent to a linear extrapolation in the log scale of the individual rates at each
age, but it is not. For one thing, the extrapolations would include elements of the E
(t) terms in each age, and these may be larger at some ages than at others. For
another, I take the stochastic variation seriously as an integral part of the forecast,
and the realized long run trend can be rather different depending on where in the
prediction interval one ends up. Without this variability, the forecasts would not be
terribly useful over long horizons.

To illustrate the robustness of the LC method, Lee and Miller (2001) have
analyzed the performance of the method using internal validation. A more extensive
analysis for Sweden echoes their finding that the method is surprisingly robust. To
illustrate, I use different base periods to forecast ey in 1999. I first select a starting
base year, say 1875, and then a launch year which is chosen from the set 1935, 1945,
..., 1995; this gives a total of seven forecasts starting in 1875. We expect that a
forecast for 1999 using the 1875-1935 base period would be much less accurate than
a forecast which uses the 1875-1995 base period. The object of the exercise is to see
whether the projection intervals for e, in 1999 will decrease in some systematic way
as we include more recent (relative to 1999) history and whether they speak to the
accuracy of the method. Figure 12.5 plots the projection intervals obtained in this
way, using each of three starting years (1875, 1900, or 1925) and the seven launch
years indicated above, so for each starting year we have an upper and lower
prediction “fan” for ey in 1999. The figure shows that as we use more recent
histories, we close in on the true 1999 value of e of 79.4 years — the 95% prediction
interval brackets the true value most of the time which is impressive especially when
compared with the historical performance of scenario forecasts. From a practical
point of view, the prediction interval width is under 7 years for launch dates from
1960 to 1980 and any of the starting base years. This means that we may expect a
reasonable performance from LC forecasts for as far as 40 years into the future.

12.4 From Population to Pension Systems and Policy

For a population forecast we must supplement mortality forecasts with similar
forecasts for fertility and if necessary for immigration. These elements can then be
combined in the usual cohort-component procedure to generate stochastic popula-
tion forecasts. Fertility forecasts pose special challenges because there does not seem
to be a strong temporal pattern to fertility dynamics. Lee and Tuljapurkar (1994) use
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Fig. 12.5 Forecasts that use data going back to 1875, 1900, 1925

time series models for fertility to make stochastic forecasts for the US. Their simple
models have been considerably extended by Keilman and Pham (2004) who suggest
several ways of modeling and constraining the volatility of fertility forecasts.

How can stochastic forecasts be used in analyzing pension policy? At a purely
demographic level, it is well known that the old-age dependency ratio is the key
variable that underlies pension costs. As the old-age dependency ratio for a popu-
lation increases, the more retirees-per-worker there are in the population, which
implies greater stress on a pay-as-you-go pension system which relies on today’s
workers to pay the benefits of today’s retirees. An interesting insight into the
demographic impact of aging on the dependency ratio can be created by asking
the following question. Suppose that the age at which people retire is, e.g., 65. If this
“normal retirement age” age cutoff could be changed arbitrarily, how high would we
have to raise it in order to keep the dependency ratio constant? If we have a
population trajectory forecast, then we can simply compute in each year the retire-
ment age, say R(t), at which the old-age dependency ratio would be the same ratio as
in the launch year. When we have stochastic forecasts, there is, in each forecast year
t, a set of random values R(t); in our analysis we look for the integer value of R(t) that
comes closest to yielding the target dependency ratio. Figure 12.6 shows the results
of computing these stochastic R(t) for the US population. What is plotted is actually
three percentiles of the distribution of R(t) in each year, the median value, and the
upper and lower values in a 95% projection interval. The plots show some long steps
because the dependency ratio distribution changes fairly slowly over time. The
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Fig. 12.6 Normal retirement age to maintain US old-age dependency ratio, 1997-2072

smooth line shows the average value of R(t) for each forecast year, which is
surprisingly close to the median. Observe, for example, that there is a 50% chance
that the “normal retirement age” would have to be raised to 74 by 2060 in order to
keep the dependency ratio constant at its 1997 value. There is only a 2%2% chance
that the “normal retirement age” of 69 years would suffice. Given that current US
Social Security policy is only intended to raise the ‘“normal retirement age” to
67 years, and that even the most draconian proposals would only raise it to
69 years, we conclude that changes in the “normal retirement age” are very unlikely
to hold the dependency ratio constant. Anderson et al. (2001) present similar results
for the G7 countries. In Tuljapurkar and Lee (1999) there are additional examples of
how stochastic forecasts can be combined with objective functions to analyze fiscal
questions.

To go beyond this type of analysis we need a full model of the structure of a
pension system which may be “fully funded” or “pay-as-you-go” or some mixture.
Many systems, in order to operate with a margin of security, are modified versions of
pay-as-you-go systems that include a reserve fund. In the United States the OASDI
(Old Age Survivors and Disability Insurance, or Social Security) Trust Fund, the
holdings of the system are federal securities, and the “fund” consists of federally-
held debt. A fund balance earns interest, is subject to withdrawals in the form of
benefit payments, and receives deposits in the form of worker contributions (usually
in the form of tax payments). Lee and Tuljapurkar (2000) discuss such models for
the US Social Security system and also for other fiscal questions. The dynamics of
such models proceed by a straightforward accounting method. Starting with a launch
year (initial year) balance, we forecast contributions and benefit payments for each
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subsequent year, as well as interest earned. This procedure yields a trajectory of fund
balance over time. Future contributions depend both on how many workers contrib-
ute how much to the system. Future benefit payments depend on how many
beneficiaries receive how much in the future. Our population forecasts do not
directly yield a breakdown in terms of workers and retirees. Therefore, we estimate
and forecast per-capita averages by age and sex, for both contributions and benefits.
We combine these age and sex-specific “profiles” with age and sex-specific popu-
lation forecasts to obtain total inflows and outflows for each forecast year.

Contribution profiles evolve over time according to two factors. First, increases in
contributions depend in turn on increases in the real wage. We forecast real wage
increases stochastically (as described below), and contributions increase in propor-
tion to wages. Second, changes in the labor force participation rates also affect
contributions; we forecast labor force participation rates deterministically. Benefit
profiles evolve over time in response to several factors. In our model of the
U.S. Social Security system, we disaggregate benefits into disability benefits and
retirement benefits. Retirement benefit levels reflect past changes in real wages
because they depend on a worker’s lifetime wages. Also, legislated or proposed
changes in the Normal Retirement Age (the age at which beneficiaries become
eligible to collect 100% of their benefits) will reduce benefits at the old NRA.

Demographic variables are obviously not the only source of uncertainty facing
fiscal planners; there are sizable economic uncertainties as well. Taxes and future
benefits usually depend on wage increases (economic productivity) and funds can
accumulate interest or investment returns on tax surpluses. Our models combine
uncertainty in productivity and investment returns by converting productivity to real
1999 dollars, subtracting out increases in the CPI. We then model productivity rates
and investment returns stochastically.

There is substantial correlation between interest rates on government bonds and
returns to equities, so it is important to model these two variables jointly. For our
historical interest rate series we use the actual, effective real interest rate earned by
the trust fund, and for historical stock market returns we use the real returns on the
overall stock market as a proxy. These two series are modeled jointly as a vector
auto-regressive process.

Our stochastic model allows us to simulate many (1000 or more, usually)
trajectories of all variables and obtain time trajectories of the fund balance from
which we estimate probabilities and other statistical measures of the system’s
dynamics. This method may be used to explore the probability that particular policy
outcomes are achieved, for example, that the “fund” stays above a zero balance for a
specified period of years, or that the level of borrowing by the fund does not exceed
some specified threshold.
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