
Chapter 8

A NEW SCAP INFORMATION MODEL
AND DATA MODEL FOR CONTENT
AUTHORS

Joshua Lubell

Abstract The Security Content Automation Protocol (SCAP) data model for
source data stream collections standardizes the packaging of security
content into self-contained bundles for easy deployment. However, no
single data model can satisfy all requirements. The source data stream
collection data model does not adequately meet the needs of SCAP con-
tent authors, and its implementation-specific syntax lacks the ability to
express packaging subtleties critical to software developers and content
authors. This chapter defines a new implementation-neutral information
model that is easier to understand and does a better job at expressing
relationships between objects comprising a source data stream collec-
tion. A new authoring data model for facilitating the implementation
of SCAP content development software applications is derived from the
information model. Also described is an application implementing the
authoring data model that enables SCAP content developers to cre-
ate source data stream collections using a friendly and intuitive syntax,
which is then transformed into SCAP-standard-conforming content.

Keywords: Security Content Automation Protocol, information model, data model

1. Introduction
The Security Content Automation Protocol (SCAP – pronounced ess-cap) is

an ecosystem of interoperable Extensible Markup Language (XML) [31] vocabu-
laries, reference data repositories and software tools [24]. System administrators
– and increasingly operators of manufacturing facilities – use SCAP to secure
servers, workstations, networks and other deployed hardware and software. A
central part of the SCAP ecosystem is the source data stream collection for-
mat, an XML-expressed data model specified in NIST Special Publication (SP)
800-126 (Technical Specification for the Security Content Automation Proto-

The rights of this work are transferred to the extent transferable according to Title 17
U.S.C. 105.

c© This is a U.S. government work and not under copyright protection

in the United States; foreign copyright protection may apply 2018

J. Staggs and S. Shenoi (Eds.): Critical Infrastructure Protection XII, IFIP AICT 542, pp. 127–146, 2018.

https://doi.org/10.1007/978-3-030-04537-1_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-319-99960-9_1&domain=pdf


128 CRITICAL INFRASTRUCTURE PROTECTION XII

Data Stream Collection

Data Stream 2

Component 3

Component 2

Component 1

Component 5

Component 4

Data Stream 1

Figure 1. SCAP data stream collection.

col) [28]. This data model is instrumental for enabling the lossless exchange
of security content between SCAP-conforming software products. However,
no model can single-handedly satisfy the needs of SCAP software developers,
content authors and users. This chapter provides an overview of the NIST
SP 800-126 source data stream collection data model – highlighting where it
succeeds and where it falls short – and then defines supplemental models to
address unmet requirements.

The NIST SP 800-126 data model for source data stream collections defines
how to package (into a self-contained entity) the collective input required for an
SCAP software tool to perform one or more use cases. SCAP use cases include
cyber security functions such as configuration checking and vulnerability detec-
tion. Self-containment is advantageous because it facilitates SCAP deployment
where network connectivity and filesystem access are restricted, as is often the
case for industrial control systems and Industrial Internet of Things (IIoT) en-
vironments. Self-containment also promotes portability – a single SCAP source
data stream collection is easier to distribute reliably to partners, customers and
other third parties than an interdependent set of resources. Self-containment
also supports digital signing of a source data stream collection as a whole in
order to ensure integrity and trustworthiness.

Figure 1 shows the high-level logical relationships within a sample SCAP
source data stream collection. The example has two data streams and five
components. Each component contains XML data conforming to an XML lan-
guage that is part of the SCAP ecosystem. Each data stream corresponds to
a specific SCAP use case. The arrows pointing from data streams to compo-
nents are component references. Multiple data streams can reference the same
component. For example, both the data streams reference Components 2 and 5.

An SCAP source data stream collection bundles components together such
that the components themselves are unmodified from their original states. The
packaging operation is thus reversible, allowing for the extraction of SCAP
content from a collection and the repackaging of content into a new collection



Lubell 129

Table 1. SCAP data model GUID format convention [28].

Object Identifier Format Convention

Data Stream Collection scap reverseDNS collection name

Data Stream scap reverseDNS datastream name

Component Reference scap reverseDNS cref name

Component scap reverseDNS comp name

while simultaneously preserving the original content. Reversibility is a desir-
able property because it promotes interoperable data streams. For example,
suppose an SCAP content developer extracts all the components from a source
data stream collection, including a security checklist component that conforms
to the Extensible Configuration Checklist Description Format (XCCDF) spec-
ification [29]. Suppose the user then employs an XCCDF-compliant software
tool to select a subset of the checklist rules, assign parameters to the rules and
save the resulting XCCDF profile as a separate tailoring component. A tailoring
component enables a named profile to be defined separately from the original
checklist (without modifying the XCCDF checklist), but it is still explicitly
traceable to the original. Next, following best practices for reusing third-party-
developed SCAP content [3], the user repackages the extracted components plus
the newly-created tailoring component into a new SCAP data stream collec-
tion. The reversibility property ensures that none of the components extracted
from the old collection and deployed in the new collection are altered.

SCAP encourages content developers to provide globally-unique identifiers
(GUIDs) for data stream collections, data streams, components and component
references. To this end, the data model requires the identifier format conven-
tions shown in Table 1. An identifier must be an underscore-delimited string
beginning with scap, followed by a reverse domain name system (DNS) style
substring associated with the content author, followed by a substring denoting
the object type being identified (collection, datastream, cref or comp), and end-
ing with an XML NCName. An NCName [32] is any allowable XML name that
does not contain the “:” character. For example, a data stream collection de-
veloped by Example Corporation for Ubuntu Linux version 16.04 (also known
as Xenial Xerus) could have scap com.example collection ubuntu-xenial as its
identifier. By promoting GUIDs, the SCAP specification reduces the likelihood
of conflicting identifiers in a source data stream collection and that an SCAP
content developer would create identifiers that conflict with identifiers created
by other developers from the same organization.

The NIST SP 800-126 data model is beneficial for use in applications that
consume source data streams, such as configuration scanners and vulnerabil-
ity detection software. Self-containment of data streams reduces the need for
network connectivity. Reversibility preserves the integrity of SCAP compo-



130 CRITICAL INFRASTRUCTURE PROTECTION XII

nents. GUID conventions reduce name collisions. The XML representation of
the data model provides additional advantages. It enables software developers
to leverage a wide variety of low-cost XML parsers, validators and transforma-
tion tools, saving them the trouble of having to implement this functionality in
their own software products. Additionally, the XML representation supports
the validation of SCAP content and the verification of software purporting to
be SCAP-conforming as being in compliance with the NIST SP 800-126 re-
quirements.

However, the characteristics of the NIST SP 800-126 data model that are
positives for SCAP software developers can be negatives for developers of SCAP
content:

The GUID formatting conventions result in long and repetitive identi-
fiers. Shorter, context-sensitive identifiers – although dangerous from a
deployment standpoint – make a source data stream collection easier for
humans to author and understand.

The XML syntax favors implementation over human readability. For
example, the NIST SP 800-126 data model uses the XML Catalogs [19]
syntax to define mappings from external uniform resource identifier (URI)
references from within a component to the corresponding location within
the context of a data stream. The mappings are needed to meet the
reversibility and self-containment requirements. Although many XML
tools implement XML Catalogs, the syntax is not human-friendly.

The XML syntax, although naturally hierarchical, is limited in its ability
to express the subtleties of part-whole relationships in an SCAP data
stream collection. These subtleties are critical to software developers and
content authors alike for understanding SCAP data stream collections.

A single data model for source data stream collections is not enough. Al-
though the NIST SP 800-126 data model meets the needs of SCAP configuration
scanner and vulnerability detection software developers, it falls short in meet-
ing the needs of developers who create and manage SCAP content. Therefore,
SCAP needs the following additional models:

Information Model: The information model for source data stream
collections prioritizes human readability over software implementation.

Authoring Data Model: The authoring data model is designed to
create new content and transform it to an SCAP-conforming source data
stream collection.

As stated by Pras and Schoenwaelder in RFC 3444 [22], an information
model and data model are fundamentally different. An information model is
expressed at a conceptual level in order to make the design as clear as possi-
ble to anyone trying to understand the model, regardless of the implementa-
tion context. Therefore, an information model omits implementation details.



Lubell 131

Figure 2. Robots connected to a server running ROS.

In contrast, a data model assumes a specific implementation technology and,
therefore, is expressed in an implementation-specific language such as XML.
Because a data model is at a lower-level of abstraction than an information
model, multiple data models could be derived from a single information model.

This chapter provides an information model for source data stream collec-
tions as well an authoring data model. The information model uses the Unified
Modeling Language (UML) [16] notation. The authoring data model employs
the XML syntax developed using the Darwin Information Typing Architecture
(DITA) [20], a standard for authoring, managing, reusing and transforming
technical content. Several aspects of the authoring model correspond directly
to concepts in the information model described in this chapter, demonstrat-
ing the utility of the information model in developing alternative data models.
The chapter also describes a software application for creating and transforming
an instance of the authoring model into a source data stream collection that
conforms to NIST SP 800-126.

The information model, the authoring data model and the authoring and
transformation application are all motivated by the growing need for increased
SCAP usage in Industrial Internet of Things environments. In this spirit, an
example used in the remainder of this chapter is based on a scenario involv-
ing a hardware-in-the-loop simulation that is part of a larger industrial control
system security testbed [33]. The hardware-in-the-loop simulation involves two
robotic arms that interact with a simulated machining process. The simulated
manufacturing machines communicate with the robot controllers over a local-
area Ethernet network. Each robot is controlled by servers that are deployed
as virtual machines within a hypervisor. The controllers run the Robot Oper-
ating System (ROS) [7, 26], a software framework widely used in research and
increasingly in commercial robotic applications that executes on top of Ubuntu
Linux version 16.04. Figure 2 shows the testbed architecture.

The SCAP source data stream collection example used in the context of
the testbed scenario incoporates an XCCDF checklist with rules to ensure that
AppArmor [2], an Ubuntu Linux kernel enhancement, is installed and config-



132 CRITICAL INFRASTRUCTURE PROTECTION XII

ured properly. Ubuntu servers with high security requirements, such as the
virtualized servers in Figure 2, commonly use AppArmor. Also the access con-
trol method employed by AppArmor works well with ROS [30].

2. Information Model
The source data stream collection information model has the following goals:

Make compositional relationships more explicit. The UML notation al-
lows for this whereas the XML syntax does not.

Omit implementation guidance that gets in the way of human under-
standing, specifically, the GUID conventions. Such guidance is vital for
implementations, but it can make models unnecessarily confusing in a
pedagogical context.

Facilitate the development of other models. An information model should
pave the way for the development of models that are implementation-
focused. The discussion of the authoring model later in this chapter
provides examples of how the authoring model elements and attributes
correspond to their counterparts in the information model.

Figure 3 shows a UML class diagram representing the source data stream
collection information model. A DataStreamCollection contains one or more
DataStream objects and one or more Component objects. The DataStream and
Component objects do not exist outside the scope of DataStreamCollection, as
indicated by the solid diamonds on the links connecting them to the DataStream
Collection. The reverseDNS UML attribute of DataStreamCollection has
as its value the reverse-DNS string used in SCAP identifiers (see Table 1).

A Component contains an object that is a subtype of XMLDocument. The
timestamp UML attribute of a Component specifies when the XMLDocument
was packaged as part of a DataStreamCollection. Thus a Component is
nothing more than a snapshot of XMLDocument at a particular point in time.
XMLDocument is italicized in Figure 3, indicating that it is an abstract class
(which cannot be instantiated). XMLDocument is a generalization of the five
allowable SCAP source data stream component XML document types.

The five subclasses of XMLDocument are:

CPEDictionary: This is an XML representation of a platform (hard-
ware, operating system or software application). Each platform has a
unique Common Platform Enumeration (CPE) identifier.

Benchmark: This is an XML representation of a security checklist (also
called a benchmark), which is valid with respect to the Extensible Con-
figuration Checklist Description Format (XCCDF) specification.

OVALDefs: This is an XML representation of system configuration
information, tests and states, which is valid with respect to the Open
Vulnerability Assessment Language (OVAL) specification [21]. XCCDF



Lubell 133

F
ig

ur
e

3.
S
o
u
rc

e
d
a
ta

st
re

a
m

co
ll
ec

ti
o
n

U
M

L
cl

a
ss

d
ia

g
ra

m
.

O
C
IL

C
P
E
D
ic
ti
o
n
ar
y

Ta
ilo

ri
n
g

O
V
A
L
D
ef
s

B
en

ch
m
ar
k

X
M
L
D
o
cu

m
en

t

M
ap

p
in
g

so
u
rc
eU

R
I

C
o
m
p
o
n
en

t

ti
m
es

ta
m
p

D
at
aS

tr
ea

m

D
at
aS

tr
ea

m
C
o
lle

ct
io
n

re
ve

rs
eD

N
S

d
es

ti
n
at
io
n
U
R
I

0.
.n

h
re
f

ch
ec

kl
is
ts

0.
.n

d
ic
ti
o
n
ar
ie
s

ch
ec

ks

1.
.n

0.
.n

C
o
m
p
o
n
en

tR
ef

1.
.n

1.
.n



134 CRITICAL INFRASTRUCTURE PROTECTION XII

checklist rules use OVAL to determine if the current state of a system
satisfies the rule criteria. XCCDF checklist rules and OVAL definitions
together typically account for most of the XML data in a source data
stream collection.

Tailoring: This is an XML representation of the profiles of a Benchmark,
which is valid with respect to the <Tailoring> element definition of the
XCCDF specification.

OCIL: This is an XML format used by XCCDF rules for checks requir-
ing information collected from a human via a questionnaire. It is valid
with respect to the Open Checklist Interactive Language (OCIL) specifi-
cation. OCIL is used for checking state via human-oriented collection of
information that is not feasibly obtained using OVAL-based methods.

The existence of an XMLDocument is not limited to its existence in the context
of a Component, as indicated in Figure 3 by the hollow diamond on the link
from Component to XMLDocument. What this means is that, in addition to
being part of the Component, the XMLDocument can be part of a Component in
another data stream collection or have a life of its own outside the scope of
SCAP. As a consequence, an XMLDocument in a source data stream collection
may reference another XMLDocument in the same collection, but using a URI
outside the scope of the source data stream collection. For example, a source
data stream collection could incorporate a Benchmark and an OVALDefs with
lives outside the scope of the collection, with the Benchmark using an external
URI to reference the OVALDefs.

The source data stream collection information model handles external URI
references in a manner that maintains the SCAP reversibility and self-contain-
ment requirements discussed in the introductory section. A DataStream con-
tains at least one ComponentRef that references a Component containing an
OVALDefs or OCIL object, and zero or more ComponentRef objects referenc-
ing a Component containing a CPEDictionary object, Benchmark object or
Tailoring object. A ComponentRef may contain zero or more Mapping ob-
jects. A Mapping resolves references from within an XMLDocument to another
XMLDocument. The Mapping accomplishes this by providing the information
needed to translate the URI within the XMLDocument referencing the external
resource to a URI referencing the ComponentRef within the DataStream con-
taining the ComponentRef to which the Mapping belongs. The sourceURI UML
attribute of the Mapping has as its value a URI that matches a referenced URI
in the Component referenced by the ComponentRef that contains the Mapping.
The destinationURI association of the Mapping references a ComponentRef
object.

The UML object diagram in Figure 4 illustrates how the information model
in Figure 3 could be used to describe a source data stream collection in-
corporating the XCCDF checklist introduced above. The XCCDF checklist
xenial-apparmor-xccdf.xml and its referenced oval-definitions.xml are
represented as Benchmark and OVALDefs objects. The OVALDefs object is



Lubell 135

F
ig

ur
e

4.
U

M
L

o
b
je

ct
d
ia

g
ra

m
.

cr
ef
02

:C
o
m
p
o
n
en

tR
ef

:O
V
A
L
D
ef
s

:M
ap

p
in
g

so
u
rc
eU

R
I=
"o

va
l-
d
ef
in
it
io
n
s.
xm

l"

cr
ef
01

:C
o
m
p
o
n
en

tR
ef

co
m
p
01

:C
o
m
p
o
n
en

t

ti
m
es

ta
m
p
="

20
17

-1
1-
30

T
16

:4
0:
08

.0
86

-0
5:
00

"

:D
at
aS

tr
ea

m
C
o
lle

ct
io
n

re
ve

rs
eD

N
S
="

co
m
.e
xa

m
p
le
"

h
re
f

d
es

ti
n
at
io
n
U
R
I

h
re
f

ch
ec

kl
is
ts

ch
ec

ks

co
m
p
02

:C
o
m
p
o
n
en

t
ti
m
es

ta
m
p
="

20
17

-1
1-
30

T
16

:4
0:
08

.0
86

-0
5:
00

"

: D
at
aS

tr
ea

m

:B
en

ch
m
ar
k



136 CRITICAL INFRASTRUCTURE PROTECTION XII

contained in Component comp01 and the Benchmark object is contained in
Component comp02. ComponentRef cref02 contains a Mapping object. This
mapping object is needed because the XCCDF <check> elements of Benchmark
contain URI references to oval-definitions.xml, for example:

<check system="http://oval.mitre.org/XMLSchema/oval-definitions-5">

<check-content-ref href="oval-definitions.xml"

name="oval:com.ubuntu.xenial:def:100"/>

</check>

This <check> element specifies that OVAL definition oval:com.ubuntu.
xenial:def:100 should be used to determine compliance with the XCCDF
rule containing the <check> element, and that the OVAL definition is located
at the relative URI oval-definitions.xml. The Mapping object says that, in-
stead of looking for the OVAL definition in oval-definitions.xml, an SCAP-
conforming software product processing the DataStream object should locate
the OVAL definition within Component comp01 (referenced by ComponentRef
cref01).

3. Authoring Data Model and Application
The Darwin Information Typing Architecture (DITA) [20, 23] has two pri-

mary building blocks: the topic and map XML element types. A topic rep-
resents a chunk of information. A map represents a collection of topics or
other maps. DITA facilitates the reuse of topics and maps, as well as XML
elements and fragments within a topic or map. DITA topic and map types are
specializable. Specialization, which is the inverse of generalization, helps avoid
inconsistencies and enables interoperability [12]. DITA allows for the definition
of new specialized element types based on built-in topic and map types. A spe-
cialized DITA information type refines the existing base type and, therefore,
must be at least as constrained. By adhering to these constraints, specialized
DITA types have the advantage that implementations can easily leverage other
DITA-conforming implementations [11].

The authoring data model defines a new DITA element type for source data
stream collections, which is specialized from the DITA map base type. This
new element type is expressed as a DITA document type shell based on DITA’s
map document type shell. A document type shell defines the elements and
attributes that are allowed in a DITA XML document conforming to the spe-
cialized element type. The data stream collection document type shell follows
the DITA standard’s modular architecture for creating shells, ensuring that the
shell can be used with any DITA-conformant XML authoring tool.

The DITA map type was chosen as the basis for specialization because an
SCAP source data stream collection is inherently map-like. Like a DITA map, a
source data stream collection is essentially a structured collection of references
to components. Maps can use the DITA <topicref> element to reference exter-
nal (non-DITA) resources, as well as to aggregate groups of nested <topicref>
elements. Both these uses of <topicref> correspond to concepts from the in-



Lubell 137

Table 2. Data stream collection DITA document type shell.

Element Specializes Content Model

<DataStreamCollection> <map> @reverseDNS

@scapName

@schematronVersion

<scapComponent>*
<DataStream>+

<scapComponent> <keydef> @keys

@href

<DataStream> <topicref> @scapName

@scapVersion

@useCase

<Dictionaries>?
<Checklists>?
<Checks>

<Dictionaries> <topicref> <CpeListRef>+

<Checklists> <topicref> <BenchmarkRef>+
<TailoringRef>+

<Checks> <topicref> <OvalRef>+
<OcilRef>+

<CpeListRef> <topicref> @keyref

<BenchmarkRef> <ExternalLinks>?
<TailoringRef>

<OvalRef>

<OcilRef>

<ExternalLinks> <topicref> <Uri>+

<Uri> <topicref> @keyref

formation model in Figure 3. A ComponentRef object references a subclass
of XMLDocument, which is an external resource. The DataStreamCollection
composition link pointing to DataStream collects DataStream objects. The
dictionaries, checklists and checks composition links of a DataStream
collect ComponentRef objects. The ComponentRef composition link pointing
to Mapping collects Mapping objects. Therefore, the DITA source data stream
element type defines new elements specialized from <topicref> to represent
data streams, component references, collections of component references and
mappings from URI references within external resources to the appropriate
component references.

Table 2 shows the XML elements and attributes in the source data stream
collection document type shell. The left-hand column contains the element



138 CRITICAL INFRASTRUCTURE PROTECTION XII

names. The middle column presents the DITA map built-in element specialized
to define the element in the left-hand column. All the left-hand columns ele-
ments are specializations of <topicref>, except for <DataStreamCollection>
(which specializes <map>) and <scapComponent> (which specializes <keydef>,
a built-in map element). The right-hand column shows the content model that
constrains each left-hand column element. Names preceded by an @-sign are
required XML attributes. An asterisk following an element means zero or more
occurrences of the element are allowed. A plus sign means one or more oc-
currences are allowed. A question mark means zero or one occurrences are
allowed. For example, <CpeListRef> has a required @keyref attribute and
may optionally contain a single <ExternalLinks> element.

The <scapComponent> element of the document type shell contains no sub-
elements. This is because it has no author-provided content. As mentioned
above, a Component is no more than an XMLDocument with a timestamp added
to it. Since the timestamp is system-generated, the authoring and transforma-
tion application only needs the referenced XML resources external to the data
stream collection DITA map to create NIST SP 800-126 data model component
elements.

In order to understand how the authoring and transformation application
processes an XML instance in a manner that is valid with respect to the au-
thoring data model, consider the following DITA map, which represents the
Xenial AppArmor source data stream collection from Figure 4:

<DataStreamCollection reverseDNS="com.example" scapName="apparmor"

schematronVersion="1.2">

<scapComponent keys="xccdf_apparmor"

href="xenial-apparmor-xccdf.xml"/>

<scapComponent keys="oval_apparmor"

href="oval-definitions.xml"/>

<DataStream scapName="xenial_apparmor" scapVersion="1.3"

useCase="CONFIGURATION">

<Checklists>

<BenchmarkRef keyref="xccdf_apparmor">

<ExternalLinks>

<Uri keyref="oval_apparmor"/>

</ExternalLinks>

</BenchmarkRef>

</Checklists>

<Checks>

<OvalRef keyref="oval_apparmor"/>

</Checks>

</DataStream>

</DataStreamCollection>

The @reverseDNS attribute of the <DataStreamCollection> element re-
sponds directly to its counterpart in Figure 4. @scapName provides the name
portion needed to construct the NIST SP 800-126 data stream collection iden-
tifier according to the GUID conventions in Table 1. @schematronVersion



Lubell 139

specifies the version of the Schematron schema to which the source data stream
collection conforms. This information is needed because NIST SP 800-126 re-
quires a source data stream collection to be valid with respect to a set of rules
defined using Schematron [10], an XML language for expressing and testing
natural language assertions about an XML document type.

The source data stream collection type uses <scapComponent> to associate
a more succinct key name (@keys) with an XML document URI (@href). This
serves multiple purposes. First, it makes source data stream collection DITA
maps easier to maintain. Referencing each URI only once in <scapComponent>
and referencing the associated name elsewhere in @keyref XML attributes add
a level of indirection, reducing the number of DITA map revisions needed if
an XML document URI changes. Second, using the key name in place of the
URI improves readability of the XML. Finally – and most importantly – key
names serve as the name portion of GUIDs generated by the authoring and
transformation application when processing @keyref XML attributes.

<DataStream> has three attributes: (i) @scapName provides the name por-
tion used by the authoring and transformation application to construct the data
stream GUID; (ii) @scapVersion specifies the version of SCAP to which the
data stream conforms (1.3 is the most recent SCAP version); and (iii) @useCase
specifies the SCAP use case.

<Checklists>, which corresponds to the checklists composition link in Fig-
ure 4, contains <BenchmarkRef> elements. The authoring and transforma-
tion application uses <BenchmarkRef> to generate a data stream component
that holds the contents of xenial-apparmor-xccdf.xml and a component
reference. The generated component is simply a wrapper element with an
application-generated timestamp value that contains the XCCDF XML. As
discussed above, the XCCDF <check> elements contain URI references to
oval-definitions.xml. The generated component reference, where sds: and
cat: are XML namespace prefixes mapping to namespaces defined in [28] and
[19], respectively, is as follows:

<sds:component-ref

id="scap_com.example_cref_xccdf_apparmor"

href="#scap_com.example_comp_xccdf_apparmor">

<cat:catalog>

<cat:uri name="oval-definitions.xml"

uri="#scap_com.example_cref_oval_apparmor"/>

</cat:catalog>

</sds:component-ref>

The @id value of the <sds:component-ref> element is a GUID generated
by the authoring and transformation application using the @keyref value of
the DITA map’s <BenchmarkRef>. The @href value refers to the @id of
the <sds:component> that contains the XCCDF checklist XML. The trans-
formation generates <cat:catalog> from the DITA map’s <ExternalLinks>
element and <cat:uri> from the DITA map’s <Uri> element, which corre-
sponds to the Mapping object in Figure 4. The authoring and transforma-



140 CRITICAL INFRASTRUCTURE PROTECTION XII

tion application assigns the @href value of the <scapComponent> whose @keys
attribute value matches <Uri>’s @keyref value to the <cat:uri> @name at-
tribute. <cat:uri>’s @uri attribute is assigned a component reference GUID
prefaced by # whose name substring is the value of the <Uri> element’s
@keyref attribute.

<Checks> and <OvalRef> are transformed similarly to <Checklists> and
<BenchmarkRef>; however, since OVAL definitions do not reference any exter-
nal URIs, there is no embedded <ExternalLinks> element to transform.

The authoring and transformation application was implemented using the
DITA Open Toolkit [5], a specialization-aware, output-producing DITA proces-
sor. The DITA standard requires output-producing processors to merge topics
referenced in a map as well as resolve key references, eliminating the need for
custom transformation code to perform the functions. Specialization-aware
DITA processors are required to do all of the above for specialized DITA docu-
ments by inheriting processing behavior from base types. Therefore, leveraging
the DITA Open Toolkit greatly reduced the coding effort required to build the
authoring and transformation application.

The DITA Open Toolkit has a modular architecture with an extensible plug-
in mechanism for implementing custom document type shells and output for-
mats. Plug-ins can be run in any XML authoring software environment that
uses the DITA Open Toolkit. The authoring and transformation application
was implemented as a NIST SP 800-126 conformant output plug-in. The source
data stream collection document type shell was also implemented as a plug-in.
The authoring and transformation application was successfully deployed in a
commercial XML editor product, which was then used to create the Xenial
AppArmor DITA map example in this chapter as well as other SCAP source
data stream collection examples.

4. Related Efforts and Next Steps
Other recent and ongoing research efforts have fostered the development of

systems of related models for achieving automation and integration. Kulvatun-
you et al. [13] provide examples of standards for smart manufacturing where
alternative models were developed to satisfy different implementation contexts.
Smart manufacturing requires all engineering information to be represented
digitally and to be completely computer interpretable. Two examples provided
by Kulvatunyou and colleagues are ISO 10303-242 [9], a standard for computer-
aided design (CAD) geometry and product manufacturing data, and the Open
Application Group Integration Specification (OAGIS) [17], a suite of informa-
tion standards for interfacing manufacturing systems with business functions
such as sales and finance. ISO 10303-242 includes a low-level data model for
CAD geometry and other CAD-related information, as well as a higher-level
business object model that represents additional information needed for man-
ufacturing and product support, such as part assemblies and bills of materials.
OAGIS defines an abstract implementation-neutral information model for indi-
vidual transaction standards called business object documents (BODs). OAGIS



Lubell 141

also defines multiple data models for implementing business object documents,
including an XML-based model and a JavaScript Object Notation (JSON) [4]
model.

Health Level 7 (HL7) [8] – an organization that promulgates standards for
exchange management and integration of healthcare information – has cre-
ated a standards architecture with an abstract information model from which
implementation-specific data models are derived. The HL7 Reference Informa-
tion Model (RIM) is broad and minimalist, but it provides an integrated view
that facilitates the development of interoperable implementation-specific data
models [6]. The Clinical Document Architecture, an HL7 standard derived from
the HL7 RIM, combines an XML document type with a specialized RIM-based
model to precisely specify clinical information requirements [8].

As part of a study on the challenges of automating security configuration
checklists in manufacturing environments, Lubell and Zimmerman [15] devel-
oped a simple XCCDF checklist modeled in UML. The UML model uses AND,
OR and NOT classes to represent Boolean operations in XCCDF <check> ele-
ments. In a follow-up effort by Lubell [14], a DITA element type developed
for XCCDF rules uses specializations of DITA’s built-in <sectiondiv> topic
element to model Boolean operations. This XCCDF rule element type demon-
strates the power and versatility of DITA specialization, and was a precursor
to the research presented in this chapter.

The DITA XCCDF rule and SCAP data stream collection element types
exemplify the recent trend of using DITA to create and manage intelligent
content. Traditional content management solutions focus on information that is
consumed mainly by humans via print media, the web or (more recently) mobile
devices. Intelligent digital content such as SCAP, however, can be delivered
to a broader range of targets for multiple purposes – not just to humans for
reading – and, therefore, requires higher-precision data models and increased
automation [25]. The increasing prevalence of intelligent content is causing
content management to evolve from being mainly editorial in nature to a more
engineering-focused pursuit [1].

The research discussed in this chapter leads to two questions that merit
future study:

How effective would the proposed information and authoring data models
be in reducing the effort needed to develop and deploy SCAP source
data stream collections in the hardware-in-the-loop testbed environment
discussed in the introduction?

Would expanding the scope of the information and authoring models to
include low-level objects constituting Benchmark and OVALDefs, in addi-
tion to high-level concepts such as DataStream and Component, enable
an authoring solution that is superior to existing approaches?

To answer the first question, the source data stream collection authoring
application could be used to support a NIST-industry collaborative effort to
establish best practices for securing industrial control systems in the manu-



142 CRITICAL INFRASTRUCTURE PROTECTION XII

facturing sector [27]. Two cyber security capabilities within the project scope
– behavioral anomaly detection and industrial control application whitelist-
ing – are addressable using SCAP. For example, a source data stream could
check that AppArmor is installed and properly configured to protect an in-
dustrial control system from a software application hijacked by malware that
causes the application to behave in an aberrant manner. As another example,
a source data stream deployed in an industrial control device could enforce
application whitelisting by checking if installed software packages are on an
approved whitelist. The information model and authoring-model-based appli-
cation could be used to assemble a source data stream collection from existing
XCCDF rules and OVAL definitions for detecting behavioral anomalies and
the presence of unauthorized software. The effort expended could then be
compared against the effort required for manual source data stream collection,
or against third-party software tools that might be available.

Answering the second question would require more effort than answering the
first question and would involve the following modeling and implementation
steps:

Develop information models for XCCDF benchmarks and OVAL defini-
tions. Based on these information models:

– Create DITA specializations corresponding to XCCDF XML schema
elements for representing benchmarks, profiles and rules.

– Create DITA specializations corresponding to OVAL XML schema
elements for representing definitions, criteria, tests and endpoint in-
formation.

Implement an authoring and transformation application that assembles
the collection of DITA documents representing the XCCDF and OVAL
into a source data stream collection conforming to NIST SP 800-126.

The resulting implementation could then be compared against the current
approach used to author and manage content for the SCAP Security Guide
(SSG) [18], an open-source project whose output is a set of SCAP source data
stream collections for Linux distributions and software applications. Contribu-
tors of SCAP Security Guide content use an ad hoc collection of tools created by
the guide developers for authoring content such as XCCDF checklist rules and
OVAL definitions. These tools enable contributors to use a shorthand XML
syntax that is transformed into standards-conforming XCCDF and OVAL con-
tent, which in turn are transformed into a source data stream collection con-
forming to NIST SP 800-126. As discussed in [14], although the SCAP Security
Guide authoring framework has proven successful in producing extensive and
widely-used SCAP content, the framework and tools are complex, difficult for
contributors to understand and hard for SCAP Security Guide developers to
maintain. They also lack the validation capabilities of DITA document shells
and authoring convenience of DITA-specialization-aware XML editing software.



Lubell 143

Although the DITA-based approach shows promise [14], more thorough imple-
mentation and analysis are needed to determine whether or not the preliminary
results are scalable to a larger and more representative corpus of security con-
tent.

5. Conclusions
This chapter describes two original research contributions: (i) a UML in-

formation model representing SCAP source data stream collections; and (ii)
an authoring data model specialized from the DITA map element type and
derived from the UML information model. The illustrative example involving
the secure configuration of servers that control industrial robots demonstrates
that the information model is easier to understand than the XML-based data
model described in NIST SP 800-126, and is also better at expressing composi-
tional relationships in a data stream collection. A DITA Open Toolkit plug-in
implementation of the authoring data model provides a means for creating new
SCAP content in an author-friendly manner and producing output that con-
forms to NIST SP 800-126. The review of related research reveals parallels with
information models and data models developed for manufacturing systems and
for healthcare enterprises, as well as with emerging trends in the field of content
management.

The Industrial Internet of Things is spurring the need to secure an ever-
growing variety of devices, operating systems and software. The diversity re-
quires better tools than those currently available for SCAP content authors.
The proposed source data stream collection information model and authoring
model constitute a first step toward the development of SCAP authoring and
content management solutions that meet the challenges.

This chapter is a contribution of the National Institute of Standards and
Technology (NIST). Certain commercial and third-party products and services
are identified in this chapter to enhance understanding. Such identification does
not imply any recommendation or endorsement by NIST, nor does it imply that
the materials or equipment identified are necessarily the best available for the
purpose.

Acknowledgement
The author wishes to thank the individuals who provided helpful reviews

of earlier drafts of this chapter, especially his NIST colleagues, David Walter-
mire and Timothy Sprock, for their insights regarding SCAP and information
modeling.

References

[1] R. Andersen and T. Batova, The current state of component content man-
agement: An integrative literature review, IEEE Transactions on Profes-
sional Communication, vol. 58(3), pp. 247–270, 2015.



144 CRITICAL INFRASTRUCTURE PROTECTION XII

[2] M. Bauer, Paranoid Penguin: AppArmor in Ubuntu 9, Linux Journal, issue
185, September 1, 2009.

[3] H. Booth, M. Cook, S. Quinn, D. Waltermire and K. Scarfone, Security
Content Automation Protocol (SCAP) Version 1.2 Content Style Guide:
Best Practices for Creating and Maintaining SCAP 1.2 Content, NISTIR
8058 (Draft), National Institute of Standards and Technology, Gaithers-
burg, Maryland, 2015.

[4] T. Bray, The JavaScript Object Notation (JSON) Data Interchange For-
mat, RFC 8259, 2017.

[5] DITA Open Toolkit Project, DITA Open Toolkit (www.dita-ot.org),
2018.

[6] T. Eggebraaten, J. Tenner and J. Dubbels, A health-care data model
based on the HL7 Reference Information Model, IBM Systems Journal,
vol. 46(1), pp. 5–18, 2007.

[7] C. Fairchild and T. Harman, ROS Robotics by Example, Packt Publishing,
Birmingham, United Kingdom, 2016.

[8] Health Level Seven International, About HL7 International, Ann Arbor,
Michigan (www.hl7.org), 2018.

[9] International Organization for Standardization, Industrial Automation
Systems and Integration – Product Data Representation and Exchange
– Part 242: Application Protocol: Managed Model-Based 3D Engineering,
ISO 10303-242:2014, Geneva, Switzerland, 2014.

[10] International Organization for Standardization, Information Technology –
Document Schema Definition Languages (DSDL) – Part 3: Rule-Based Val-
idation – Schematron, ISO/IEC 19757-3:2016, Geneva, Switzerland, 2016.

[11] E. Kimber, DITA for Practitioners, Volume 1, Architecture and Technol-
ogy, XML Press, Laguna Hills, California, 2012.

[12] S. Krima and J. Lubell, Flat versus hierarchical information models in
PLM standardization frameworks, in Product Lifecycle Management for
Digital Transformation of Industries, R. Harik, L. Rivest, A. Bernard, B.
Eynard and A. Bouras (Eds.), Springer, Cham, Switzerland, pp. 121–133,
2016.

[13] B. Kulvatunyou, N. Ivezic and V. Srinivasan, On architecting and com-
posing engineering information services to enable smart manufacturing,
Journal of Computing and Information Science in Engineering, vol. 16(3),
pp. 031002-1–031002-13, 2016.

[14] J. Lubell, Using DITA to create security configuration checklists: A case
study, Proceedings of Balisage: The Markup Conference, vol. 19, 2017.

[15] J. Lubell and T. Zimmerman, Challenges to automating security configu-
ration checklists in manufacturing environments, in Critical Infrastructure
Protection XI, M. Rice and S. Shenoi (Eds.), Springer, Cham, Switzerland,
pp. 225–241, 2017.



Lubell 145

[16] Object Management Group, OMG Unified Modeling Language Version
2.5.1, Needham, Massachusetts (www.omg.org/spec/UML/2.5.1), 2017.

[17] Open Applications Group, OAGi Integration Specification Release 10.4,
Marietta, Georgia (www.oagi.org), 2018.

[18] OpenSCAP Project, SCAP Security Guide: Baseline Compliance Content
in SCAP Formats (github.com/OpenSCAP/scap-security-guide), 2018.

[19] Organization for the Advancement of Structured Information Standards,
XML Catalogs v1.1, OASIS Standard, Burlington, Massachusetts (www.
oasis-open.org/standards#xmlcatalogsv1.1), 2005.

[20] Organization for the Advancement of Structured Information Standards,
Darwin Information Typing Architecture (DITA) v1.3, OASIS Standard,
Burlington, Massachusetts (www.oasis-open.org/standards#ditav1.
3), 2016.

[21] OVAL Project, OVAL Documentation (ovalproject.github.io), 2017.

[22] A. Pras and J. Schoenwaelder, On the Difference Between Information
Models and Data Models, RFC 3444, 2003.

[23] M. Priestley and D. Schell, Specialization in DITA: Technology, process
and policy, Proceedings of the Twentieth Annual International Conference
on Computer Documentation, pp. 164–176, 2002.

[24] S. Radack and R. Kuhn, Managing security: The Security Content Au-
tomation Protocol, IT Professional, vol. 13(1), pp. 9–11, 2011.

[25] A. Rockley and J. Gollner, An intelligent content strategy for the en-
terprise, Bulletin of the American Society for Information Science and
Technology, vol. 37(2), pp. 33–39, 2011.

[26] ROS Industrial Consortium, ROS-Industrial, San Antonio, Texas (rosind
ustrial.org), 2018.

[27] K. Stouffer and J. McCarthy, Capabilities Assessment for Securing Man-
ufacturing Industrial Control Systems, Cybersecurity for Manufacturing,
National Cybersecurity Center of Excellence, National Institute of Stan-
dards and Technology, Gaithersburg, Maryland, 2017.

[28] D. Waltermire, S. Quinn, H. Booth, K. Scarfone and D. Prisaca, The Tech-
nical Specification for the Security Content Automation Protocol (SCAP)
Version 1.3, NIST Special Publication 800-126, Revision 3, National Insti-
tute of Standards and Technology, Gaithersburg, Maryland, 2018.

[29] D. Waltermire, C. Schmidt, K. Scarfone and N. Ziring, Specification for the
Extensible Configuration Checklist Description Format (XCCDF), Version
1.2, NISTIR 7275, Revision 4, National Institute of Standards and Tech-
nology, Gaithersburg, Maryland, 2012.

[30] R. White, H. Christensen and M. Quigley, SROS: Securing ROS over the
wire, in the graph and through the kernel, presented at the IEEE-RAS
International Conference on Humanoid Robots, 2016.



146 CRITICAL INFRASTRUCTURE PROTECTION XII

[31] World Wide Web Consortium, Extensible Markup Language (XML) 1.0
(Fifth Edition), W3C Recommendation, Massachusetts Institute of Tech-
nology, Cambridge, Massachusetts (www.w3.org/TR/REC-xml), November
26, 2008.

[32] World Wide Web Consortium, Namespaces in XML 1.0 (Third Edition),
W3C Recommendation, Massachusetts Institute of Technology, Cam-
bridge, Massachusetts (www.w3.org/TR/xml-names), December 8, 2009.

[33] T. Zimmerman, Metrics and Key Performance Indicators for Robotic Cy-
bersecurity Performance Analysis, NISTIR 8177, National Institute of
Standards and Technology, Gaithersburg, Maryland, 2017.


	8A NEW SCAP INFORMATION MODELAND DATA MODEL FOR CONTENTAUTHORS
	Abstract
	Keywords
	1. Introduction
	2. Information Model
	3. Authoring Data Model and Application
	4. Related Efforts and Next Steps
	5. Conclusions
	Acknowledgement
	References




