
Pole Dancing: 3D Morphs for Tree
Drawings

Elena Arseneva1(B), Prosenjit Bose2, Pilar Cano2,3, Anthony D’Angelo2, Vida
Dujmović4, Fabrizio Frati5, Stefan Langerman6, and Alessandra Tappini7

1 St. Petersburg State University (SPbU), Saint Petersburg, Russia
ea.arseneva@gmail.com

2 Carleton University, Ottawa, Canada
jit@scs.carleton.ca, anthonydangelo@cmail.carleton.ca

3 Universitat Politècnica de Catalunya, Barcelona, Spain
m.pilar.cano@upc.edu

4 University of Ottawa, Ottawa, Canada
vida@cs.mcgill.ca

5 Roma Tre University, Rome, Italy
frati@dia.uniroma3.it

6 Université libre de Bruxelles (ULB), Brussels, Belgium
stefan.langerman@ulb.ac.be

7 Università degli Studi di Perugia, Perugia, Italy
alessandra.tappini@studenti.unipg.it

Abstract. We study the question whether a crossing-free 3D morph
between two straight-line drawings of an n-vertex tree can be constructed
consisting of a small number of linear morphing steps. We look both at
the case in which the two given drawings are two-dimensional and at the
one in which they are three-dimensional. In the former setting we prove
that a crossing-free 3D morph always exists with O(log n) steps, while
for the latter Θ(n) steps are always sufficient and sometimes necessary.

We here refer to pole dancing as a fitness and competitive sport. The authors hope
that many of our readers try this activity themselves, and will in return introduce
many pole dancers to Graph Drawing, thereby alleviating the gender imbalance in both
communities. The authors do not condone any pole activity used for sexual exploitation
or abuse of women or men.
E. A. was partially supported by F.R.S.-FNRS and SNF grant P2TIP2-168563 under
the SNF Early PostDoc Mobility program. P.C. was supported by CONACyT, projects
MINECO MTM2015-63791-R and Gen. Cat. 2017SGR1640. P.B, A.D and V.D. were
supported by NSERC. F.F. was partially supported by MIUR Project “MODE” under
PRIN 20157EFM5C and by H2020-MSCA-RISE project 734922, “CONNECT”. S.L. is
Directeur de Recherches du F.R.S.-FNRS. A.T. was partially supported by the project
“Algoritmi e sistemi di analisi visuale di reti complesse e di grandi dimensioni” - Ric.
di Base 2018, Dip. Ingegneria, Univ. Perugia.

c© Springer Nature Switzerland AG 2018
T. Biedl and A. Kerren (Eds.): GD 2018, LNCS 11282, pp. 371–384, 2018.
https://doi.org/10.1007/978-3-030-04414-5_27

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04414-5_27&domain=pdf
https://doi.org/10.1007/978-3-030-04414-5_27

372 E. Arseneva et al.

1 Introduction

A morph between two drawings of the same graph is a continuous transformation
from one drawing to the other. Thus, any time instant of the morph defines a
different drawing of the graph. Ideally, the morph should preserve the properties
of the initial and final drawings throughout. As the most notable example, a
morph between two planar graph drawings should guarantee that every inter-
mediate drawing is also planar; if this happens, then the morph is called planar.

Planar morphs have been studied for decades and find nowadays appli-
cations in animation, modeling, and computer graphics; see, e.g., [11,12]. A
planar morph between any two topologically-equivalent1 planar straight-line2

drawings of the same planar graph always exists; this was proved for maximal
planar graphs by Cairns [8] back in 1944, and then for all planar graphs by
Thomassen [16] almost forty years later. Note that a planar morph between two
planar graph drawings that are not topologically equivalent does not exist.

It has lately been well investigated whether a planar morph between any
two topologically-equivalent planar straight-line drawings of the same planar
graph always exists such that the vertex trajectories have low complexity. This
is usually formalized as follows. Let Γ and Γ ′ be two topologically-equivalent
planar straight-line drawings of the same planar graph G. Then a morph M is a
sequence 〈Γ1, Γ2, . . . , Γk〉 of planar straight-line drawings of G such that Γ1 = Γ ,
Γk = Γ ′, and 〈Γi, Γi+1〉 is a planar linear morph, for each i = 1, . . . , k − 1.
A linear morph 〈Γi, Γi+1〉 is such that each vertex moves along a straight-line
segment at uniform speed; that is, assuming that the morph happens between
time t = 0 and time t = 1, the position of a vertex v at any time t ∈ [0, 1] is
(1 − t)Γi(v) + tΓi+1(v). The complexity of a morph M is then measured by the
number of its steps, i.e., by the number of linear morphs it consists of.

A recent sequence of papers [3–6] culminated in a proof [2] that a planar
morph between any two topologically-equivalent planar straight-line drawings
of the same n-vertex planar graph can always be constructed consisting of Θ(n)
steps. This bound is asymptotically optimal in the worst case, even for paths.

The question we study in this paper is whether morphs with sub-linear com-
plexity can be constructed if a third dimension is allowed to be used. That is:
Given two topologically-equivalent planar straight-line drawings Γ and Γ ′ of the
same n-vertex planar graph G does a morph M = 〈Γ = Γ1, Γ2, . . . , Γk = Γ ′〉
exist such that: (i) for i = 1, . . . , k, the drawing Γi is a crossing-free straight-line
3D drawing of G, i.e., a straight-line drawing of G in R

3 such that no two edges
cross; (ii) for i = 1, . . . , k − 1, the step 〈Γi, Γi+1〉 is a crossing-free linear morph,
i.e., no two edges cross throughout the transformation; and (iii) k = o(n)? A
morph M satisfying properties (i) and (ii) is a crossing-free 3D morph.

1 Two planar drawings of a connected graph are topologically equivalent if they define
the same clockwise order of the edges around each vertex and the same outer face.

2 A straight-line drawing Γ of a graph G maps vertices to points in a Euclidean space
and edges to open straight-line segments between the images of their end-vertices.
We denote by Γ (v) (by Γ (G′)) the image of a vertex v (of a subgraph G′ of G, resp.).

Pole Dancing: 3D Morphs for Tree Drawings 373

Our main result is a positive answer to the above question for trees. Namely,
we prove that, for any two planar straight-line drawings Γ and Γ ′ of an n-vertex
tree T , there is a crossing-free 3D morph with O(log n) steps between Γ and Γ ′.
More precisely the number of steps in the morph is linear in the pathwidth of T .
Notably, our morphing algorithm works even if Γ and Γ ′ are not topologically
equivalent, hence the use of a third dimension overcomes another important
limitation of planar two-dimensional morphs. Our algorithm morphs both Γ
and Γ ′ to an intermediate suitably-defined canonical 3D drawing; in order to do
that, a root-to-leaf path H of T is moved to a vertical line and then the subtrees
of T rooted at the children of the vertices in H are moved around that vertical
line, thus resembling a pole dance, from which the title of the paper comes.

We also look at whether our result can be generalized to morphs of crossing-
free straight-line 3D drawings of trees. That is, the drawings Γ and Γ ′ now live
in R

3, and the question is again whether a crossing-free 3D morph between Γ
and Γ ′ exists with o(n) steps. We prove that this is not the case: Two crossing-
free straight-line 3D drawings of a path might require Ω(n) steps to be morphed
one into the other. The matching upper bound can always be achieved: For any
two crossing-free straight-line 3D drawings Γ and Γ ′ of the same n-vertex tree
T there is a crossing-free 3D morph between Γ and Γ ′ with O(n) steps.

The rest of the paper is organized as follows. In Sect. 2 we deal with crossing-
free 3D morphs of 3D tree drawings. In Sect. 3 we show how to construct 2-step
crossing-free 3D morphs between planar straight-line drawings of a path. In
Sect. 4 we present our main result about crossing-free 3D morphs of planar tree
drawings. Finally, in Sect. 5 we conclude and present some open problems.

Because of space limitations, some proofs are omitted or just sketched; they
can be found in the full version of the paper.

2 Morphs of 3D Drawings of Trees

In this section we give a tight Θ(n) bound on the number of steps in a crossing-
free 3D morph between two crossing-free straight-line 3D tree drawings.

Theorem 1. For any two crossing-free straight-line 3D drawings Γ , Γ ′ of an
n-vertex tree T , there exists a crossing-free 3D morph from Γ to Γ ′ that consists
of O(n) steps.

Proof (sketch). The proof is by induction on n. The base case, in which n = 1,
is trivial. If n > 1, then we remove a leaf v and its incident edge uv from T ,
Γ , and Γ ′. This results in an (n − 1)-vertex tree T ′ and two drawings Δ and
Δ′ of it. By induction, there is a crossing-free 3D morph between Δ and Δ′.
We introduce v in such a morph so that it is arbitrarily close to u throughout
the transformation; this significantly helps to avoid crossings in the morph. The
number of steps is the one of the recursively constructed morph plus one initial
step to bring v close to u, plus two final steps to bring v to its final position. ��

374 E. Arseneva et al.

(a) (b)

Fig. 1. Illustration for the proof of Theorem 2: (a) The drawing Γ of P , with n = 26;
(b) the link obtained from Γ ; the invisible edges are dashed.

Theorem 2. There exist two crossing-free straight-line 3D drawings Γ, Γ ′ of an
n-vertex path P such that any crossing-free 3D morph from Γ to Γ ′ consists of
Ω(n) steps.

Before proving Theorem 2, we review some definitions and facts from knot
theory; refer, e.g., to the book by Adams [1]. A knot is an embedding of a circle
S1 in R

3. A link is a collection of knots which do not intersect, but which may
be linked together. For links of two knots, the (absolute value of the) linking
number is an invariant that classifies links with respect to ambient isotopies.
Intuitively, the linking number is the number of times that each knot winds
around the other. The linking number is known to be invariant with respect
to different projections of the same link [1]. Given a projection of the link, the
linking number can be determined by orienting the two knots of the link, and
for every crossing between the two knots in the projection adding +1 or −1 if
rotating the understrand respectively clockwise or counterclockwise lines it up
with the overstrand (taking into account the direction).

Proof (Theorem 2). The drawing Γ of P is defined as follows. Embed the first
�n/2� edges of P in 3D as a spiral of monotonically decreasing height. Embed the
rest of P as a same type of spiral affinely transformed so that it goes around one
of the sides of the former spiral. See Fig. 1a. The drawing Γ ′ places the vertices
of P in order along the unit parabola in the plane y = 0.

Cut the edge joining the two spirals (the bold edge in Fig. 1a). Removing
an edge makes morphing easier so any lower bound would still apply. Now close
the two open curves using two invisible edges to obtain a link of two knots;
see Fig. 1b. It is easy to verify that the (absolute value of the) linking number
of this link is Ω(n2): indeed, determining it by the above procedure for the
projection given by Fig. 1 results in the linking number being equal to the number
of crossings between the two links in this projection. In the drawing Γ ′, each of
the two halves of P (and their invisible edges) are separated by a plane and so
their linking number is 0.

In a valid linear morph, the edges of P cannot cross each other, but they can
cross invisible edges. However, during a linear morph between two straight-line

Pole Dancing: 3D Morphs for Tree Drawings 375

3D drawings of a graph G any two non-adjacent edges of G intersect O(1) times.
Thus each invisible edge can only be crossed O(n) times during a linear morph.
A single crossing can only change the linking number by 1. Therefore the linking
number can only decrease by O(n) in a single linear morph. ��

3 Morphing Two Planar Drawings of a Path in 3D

In this section we show how to morph two planar straight-line drawings Γ and
Γ ′ of an n-vertex path P := (v0, . . . vn−1) into each other in two steps.

The canonical 3D drawing of P , denoted by C(P), is the crossing-free straight-
line 3D drawing of P that maps each vertex vi to the point (0, 0, i) ∈ R

3, as shown
in Fig. 2. We now prove the following.

z = 0
y

x

v2

v7

(a) (b)

2

y

x

v2
z = 0

z z

v0 v1

v2
v7

v0

v1

Fig. 2. (a) A straight-line planar drawing Γ of an n-vertex path P and (b) a morph
from Γ to C(P). The vertex trajectories are represented by dotted lines.

Theorem 3. For any two planar straight-line drawings Γ and Γ ′ of an n-vertex
path P , there exists a crossing-free 3D morph M = 〈Γ, C(P), Γ ′〉 with 2 steps.

Proof. It suffices to prove that the linear morph 〈Γ, C(P)〉 is crossing-free, since
the morph 〈C(P), Γ ′〉 is just the morph 〈Γ ′, C(P)〉 played backwards.

Since 〈Γ, C(P)〉 is linear, the speed at which the vertices of P move is uniform
(though it might be different for different vertices). Thus the speed at which their
projections on the z-axis move is uniform as well. Since vi moves uniformly from
(xi, yi, 0) to (0, 0, i), at any time during the motion (except at the time t = 0) we
have z(v0) < z(v1) < . . . < z(vn−1). Therefore, in any intermediate drawing any
edge (vi, vi+1) is separated from any other edge by the horizontal plane through
one of its end-points. Hence no crossing happens during 〈Γ, C(P)〉. ��

376 E. Arseneva et al.

4 Morphing Two Planar Drawings of a Tree in 3D

Let T be a tree with n vertices, arbitrarily rooted at any vertex. In this section
we show that any two planar straight-line drawings of T can be morphed into one
another by a crossing-free 3D morph with O(log n) steps (Theorem 4). Similarly
to Sect. 3, we first define a canonical 3D drawing C(T) of T (see Sect. 4.1), and
then show how to construct a crossing-free 3D morph from any planar straight-
line drawing of T to C(T). We describe the morphing procedure in Sect. 4.2;
then in Sect. 4.3 we present a procedure Space() that carries out the computa-
tions required by the morphing procedure; finally, in Sect. 4.4 we analyze the
correctness and efficiency of both procedures.

Before proceeding, we introduce some necessary definitions and notation. By
a cone we mean a straight circular cone induced by a ray rotated around a fixed
vertical line (the axis) while keeping its origin fixed at a point (the apex) on this
line. The slope φ(C) of a cone C, is the slope of the generating ray as determined
in the vertical plane containing the ray. By a cylinder we always mean a straight
cylinder having a horizontal circle as a base. Such cones or cylinders are uniquely
determined, up to translations, respectively by their apex and slope or by their
height and radius.

For a tree T , let T (v) denote the subtree of T rooted at its vertex v. Also let
|T | denote the number of vertices in T . The heavy-path decomposition [15] of a
tree T is defined as follows. For each non-leaf vertex v of T , let w be the child
of v in T such that |T (w)| is maximum (in case of a tie, we choose the child
arbitrarily). Then (v, w) is a heavy edge; further, each child z of v different from
w is a light child of v, and the edge (v, w) is a light edge. Connected components
of heavy edges form paths, called heavy paths, which may have many incident
light edges. Each path has a vertex, called the head, that is the closest vertex
to the root of T . See Fig. 3 for an example. A path tree of T is a tree whose
vertices correspond to heavy paths in T . The parent of a heavy path P in the
path tree is the heavy path that contains the parent of the head of P . The root
of the path tree is the heavy path containing the root of T . It is well-known [15]
that the height of the path tree is O(log n). We denote by H(T) the root of the
path tree of T ; let v0, . . . , vk−1 be the ordered sequence of the vertices of H(T),
where v0 is the root of T . For i = 0, . . . , k − 1, we let v0

i , . . . , v
ti
i be the light

children of vi in any order. Let L(T) = u0, u1, . . . , ul−1 be the sequence of the
light children of H(T) ordered so that: (i) any light child of a vertex vj precedes
any light child of a vertex vi, if i < j; and (ii) the light child vj+1

i of a vertex vi
precedes the light child vj

i of vi. When there is no ambiguity we refer to H(T)
and L(T) simply as H and L, respectively.

4.1 Canonical 3D Drawing of a Tree

We define the canonical 3D drawing C(T) of a tree T as a straight-line 3D drawing
of T that maps each vertex v of T to its canonical position C(v) defined as follows
(see Fig. 3b). Note that our canonical drawing is equivalent to the “standard”
straight-line upward drawing of a tree [7,9,10].

Pole Dancing: 3D Morphs for Tree Drawings 377

v0

v1
v10

v00

v01
v2v3

v4 v03

H

H3
H1

H0

H2

H4

H

H1 H0
H4

H3

H2

a

b

c

v0

v1

v2

v3

v03

v00

v01

v4

v10

v0

v1

v2

v3

v03

v00

v01

4

v10

4

z

y x

(a)

(b)

y = 0

z = 0

Fig. 3. (a) A tree T ; (left) its heavy edges (bold lines) forming the heavy paths
H = H(T), H0, . . . , H4, and (right) the path tree of T ; (b) C(T) for the tree T
in (a).

First, we set C(v0) = (0, 0, 0) for the root v0 of T . Second, for each i =
1, . . . , k − 1, we set C(vi) = (0, 0, zi−1 + |T (vi−1)| − |T (vi)|), where zi−1 is the
z-coordinate of C(vi−1). Third, for each i = 1, . . . , k−1 and for each light child vj

i

of vi, we determine C(vj
i) as follows. If j = 0, we set C(vj

i) = (1, 0, 1 + zi), where
zi is the z-coordinate of C(vi); otherwise, we set C(vj

i) = (1, 0, zj−1
i + |T (vj−1

i)|),
where zj−1

i is the z-coordinate of C(vj−1
i). Finally, in order to determine the

canonical positions of the vertices in T (vj
i) \ {vj

i }, we recursively construct the
canonical 3D drawing C(T (vj

i)) of T (vj
i), and translate all the vertices by the

same vector so that vj
i is sent to C(vj

i).

Remark 1. Notice that the canonical position C(v) of any vertex v of T is
(dpt(v), 0,dfs(v)). Here dpt(v) is the depth, in the path tree of T , of the node
that corresponds to the heavy path of T that contains v; and dfs(v) is the position
of v in a depth-first search on T in which the children of any vertex are visited
as follows: first visit the light children in reverse order with respect to L, and
then visit the child incident to the heavy edge.

The following lemma is a direct consequence of the construction of C(T).

Lemma 1. The canonical 3D drawing C(T) of T lies on a rectangular grid in
the plane y = 0, where the grid has height n and width equal to the height
h = O(log n) of the path tree of T . Moreover, C(T) is on or above the line z = x.

Remark 2. In the above definition of the canonical 3D drawing C(T), instead
of the heavy-path decomposition of T , we can use the decomposition based on the
Strahler number of T , see [7] where the Strahler number is used under the name
rooted pathwidth of T . With this change, the width of C(T) will be equal to the
Strahler number of T , which is the instance-optimal width of an upward drawing
of a tree [7]. Moreover, since the Strahler number is linear in the pathwidth of T ,

378 E. Arseneva et al.

so is the width of C(T) defined this way. This is clearly not worse, and, for some
instances, much better than the width given by the heavy-path decomposition.

In the below description of the morph we use heavy paths, however we can use
the paths given by Remark 2 instead, without any modification.

4.2 The Procedure Canonize(Γ)

Let Γ = Γ (T) be a planar straight-line drawing of a tree T . Below we give a
recursive procedure Canonize(Γ) that constructs a crossing-free 3D morph from
Γ to the canonical 3D drawing C(T). We assume that Γ is enclosed in a disk
of diameter 1 centered at (0, 0, 0) in the plane z = 0, and that the root v0 of
T is placed at (0, 0, 0) in Γ . This is not a loss of generality, up to a suitable
modification of the reference system.

Step 1 (set the pole). The first step of the procedure Canonize(Γ) aims
to construct a linear morph 〈Γ, Γ1〉, where Γ1 is such that the heavy path
H = (v0, . . . , vk−1) of T lies on the vertical line through Γ (v0) and the sub-
trees of T rooted at the light children of each vertex vi lie on the horizontal
plane through vi. More precisely, the vertices of T are placed in Γ1 as follows.
For i = 0, . . . , k − 1, place vi at the point C(vi). Every vertex that belongs to a
subtree rooted at a light child of vi is placed at a point such that its trajectory
in the morph defines the same vector as the trajectory of vi.3 Below we refer to
Γ1(H) as the pole. The pole will remain still throughout the rest of the morph.

Step 2 (lift). The aim of the second step of the procedure Canonize(Γ) is to
construct a linear morph 〈Γ1, Γ2〉, where Γ2 is such that the drawings of any two
subtrees T (ui) and T (uj) rooted at different light children ui and uj of vertices in
H are vertically and horizontally separated. The separation between Γ2(T (ui))
and Γ2(T (uj)) is set to be large enough so that the recursively computed morphs
Canonize(Γ2(T (ui))) and Canonize(Γ2(T (uj))) do not interfere with each other.

We describe how to construct Γ2. As anticipated, Γ2(vi) = Γ1(vi), for each
vertex vi in H. In order to determine the placement of the vertices not in H
we use l cones C in

u0
, . . . ,C in

ul−1
and l cones Cout

u0
, . . . ,Cout

ul−1
, namely one cone

C in
ut

and one cone Cout
ut

per vertex ut in L. We also use, for each ut, a cylinder
Space(Γ2(T (ut))) that bounds the volume used by Canonize(Γ2(T (ut))). We
defer the computation of these cones and cylinders to Sect. 4.3, and for now
assume that they are already available. For each t = 0, . . . , l−1 and for each j =
0, . . . , t − 1, assume that Γ2(T (uj)) has been computed already – this is indeed
the case when t = 0. Let Pt be the horizontal plane z = |T | − 1 +

∑t−1
j=0 h(uj),

where h(uj) is the height of the cylinder Space(Γ2(T (uj))). The drawing Γ2 maps
the subtree T (ut) to the plane Pt, just outside the cone C in

ut
and just inside the

3 Since the morph 〈Γ, Γ1〉 is linear, the trajectory of any vertex v is simply the line
segment connecting the positions of v in Γ and in Γ1. To define a vector, we orient
the segment towards the position of v in Γ1.

Pole Dancing: 3D Morphs for Tree Drawings 379

cone Cout
ut

. See Fig. 4. We proceed with the formal definition of Γ2. Let v be any
vertex of T (ut) and let (vx, vy, vz) be the coordinates of Γ1(v). Then Γ2(v) is
the point (vx rt

r , vy
rt
r , zt). Here zt is the height of the plane Pt, rt is the radius

of the section of C in
ut

by the plane Pt, and r is the distance from Γ1(vi) to its
closest point of the drawing Γ1(T (ut)), where vi is the parent of ut. See Fig. 4.
Note that the latter closest point can be a point on an edge.

v1

v2

u3

u0

u2

u1

v4

u3
u2

u3

C in
u0

C in
u1

z

x
yv0

v4

i

v2v2u0
v3

Fig. 4. The vertices v0, v1, v2, v3, v4 are in the heavy path H of T . The lower gray disk
has its center at v1 and has radius equal to the distance from Γ1(vi) to its closest point
in Γ1(T (u1)). Blue arrows show the mapping of vertices in subtrees T (u0) and T (u1).

Step 3 (recurse). For each ut ∈ L, we make a recursive call Canonize(Γ2(T (ut))).
The resulting morphs are combined into a unique morph 〈Γ2, . . . , Γ3〉, whose
number of steps is equal to the maximum number of steps in any of the recur-
sively computed morphs. Indeed, the first step of 〈Γ2, . . . , Γ3〉 consists of the
first steps of all the recursively computed morphs that have at least one step;
the second step of 〈Γ2, . . . , Γ3〉 consists of the second steps of all the t recursively
computed morphs that have at least two steps; and so on.

Step 4 (rotate, rotate, rotate). The next morph transforms Γ3 into a drawing Γ4

such that each vertex ut ∈ L is mapped to the intersection of the cone C in
ut

, the
planes y = 0, Pt, and the half-space x > 0. Note that going from Γ3 to Γ4 in
one linear crossing-free 3D morph is not always possible. Refer to Lemma 2 for
the implementation of the morph from Γ3 to Γ4 in O(1) steps. After Step 4 the
whole drawing lies on the plane y = 0.

Step 5 (go down). This step consists of a single linear morph 〈Γ4, Γ5〉, where Γ5

is defined as follows. For every vertex vi in H, Γ5(vi) = Γ4(vi); further, for every
vertex ut ∈ L, all the vertices of T (ut) have the same x- and y-coordinates in Γ5

as in Γ4, however their z-coordinate is decreased by the same amount so that ut

lies on the horizontal plane through C(ut).

380 E. Arseneva et al.

Step 6 (go left). The final part of our morphing procedure consists of a single
linear morph 〈Γ5, Γ6〉, where Γ6 is the canonical 3D drawing C(T) of T . Note
that this linear morph only moves the vertices horizontally.

4.3 The Procedure Space(Γ)

In this section we give a procedure to compute the cylinders and the cones which
are necessary for Steps 2 and 4 of the procedure Canonize(Γ).

We fix a constant c ∈ R with c > 1, which we consider global to the pro-
cedure Canonize(Γ) and its recursive calls; below we refer to c as the global
constant. The global constant c will help us to define the cones so that Step 4 of
Canonize(Γ) can be realized with O(1) linear morphs, see Lemma 2.

The procedure Space(Γ) returns a cylinder that encloses all the intermediate
drawings of the morph determined by Canonize(Γ). At the same time, Space(Γ)
determines the cones C in

ut
and Cout

ut
for every vertex ut ∈ L.

We now describe Space(Γ). Let Γ1 be the result of the application of Step 1
of Canonize(Γ). Figure 5 illustrates our description.

If T is a path, i.e., T = H, return the cylinder of height |T | − 1 and radius 1.
In particular, if T is a single vertex, return the disk of radius 1. Otherwise,
construct the cylinder and the cones in the following fashion:

– Set the current cone C to be an infinite cone of slope 1. The apex of C is
determined as follows: starting with the apex being at the highest point of
the pole, slide C vertically downwards until it touches the drawing Γ1(T (u0)).
That is, the apex of C is at the lowest possible position on the pole such that
the whole drawing Γ1(T (u0)) is outside of C. See Fig. 5a.

– Set the current height h to be |T | − 1.
– Iterate through the light children of H in the order as they appear in L. For

every ut in L:
• Set C in

ut
to be the current cone C.

• Add the height of Space(Γ2(T (ut))) to the current height h.
• Let C ′ be the cone with the same apex as C and with a slope defined

so that the drawing Γ1(T (ut)) is in-between C and C ′, and C is
well-separated from C ′ with the global constant c. That is, φ(C ′) =
min (φ(C)/Sp(ut, Γ1), φ(C)/c), where Sp(ut, Γ1) is the spread of the
drawing Γ1(T (ut)) with respect to the parent vi of ut in H. Namely
Sp(ut, Γ1) is the ratio between the outer and the inner radius of the min-
imum annulus centered at vi and enclosing the drawing Γ1(T (ut)). See
Fig. 5a.

• Let St be the cylinder Space(Γ2(T (ut))) translated so that the center of
its lower base is at the point Γ2(ut).

• Decrease φ(C ′) so that C ′ encloses the entire cylinder St.
• Set Cout

ut
to be the cone C ′.

• If ut is not the last element of L (i.e., t < l − 1), then let ut = vj
i and

define an auxiliary cone C̃ as follows. The apex of C̃ is at Γ1(vx) where
vx is the parent of ut+1; note that vx = vi iff j > 0. The slope of C̃ is the

Pole Dancing: 3D Morphs for Tree Drawings 381

maximum slope that satisfies the following requirement: (i) the slope of
C̃ is at most the slope of C ′. In addition, only for the case when vx = vi,
we require: (ii) in the closed half space z ≤ h, the portion of C̃ encloses
the portion of C ′. See Fig. 5b. Update the cone C to be the lowest vertical
translate of C̃ so that Γ1(T (ut+1)) is still outside the cone.

– Return the cylinder of height h (the current height), and radius equal to the
radius of the section of the current cone C cut by the plane z = h.

4.4 Correctness of the Morphing Procedure

In this section, we analyze the correctness and the efficiency of the procedure
Canonize(Γ) (see Theorem 4) and we give the details of Step 4 (see Lemma 2).

(a)

C C ′z
CC̃ C ′

TranslatedTT C ′

vk

St

(b)

Fig. 5. Illustration for Space(Γ): (a) construction of C and C′; (b) construction of C̃.

Fig. 6. (a) Annuli for the subtrees rooted at u0 and u1; (b) top view of the annuli.

Lemma 2. Step 4 of the procedure Canonize(Γ) can be realized as a crossing-
free 3D morph whose number of steps is bounded from above by a constant that
depends on the global constant c.

382 E. Arseneva et al.

Proof. Let At be the annulus formed by the section of C in
ut

and Cout
ut

cut by the
plane Pt. See Fig. 6. The morph performed in Step 4 consists of a sequence of
linear morphs; in each of these morphs all the vertices of T (ut) are translated
by the same vector. This is done so that ut stays in At during the whole Step
4. Thus, the trajectory of ut during Step 4 defines a polygon inscribed in At.
Since the ratio between the outer and the inner radius of At is at least the global
constant c, we can inscribe a regular O(1)-gon in At, and the trajectory of ut can
be defined so that it follows this O(1)-gon plus at most one extra line segment.

We now prove that since each ut ∈ L stays in At, all the steps of the above
morph are crossing-free. Recall that at any moment during the morph, the draw-
ing of T (ut) is a translation of the canonical 3D drawing C(T (ut)). By Lemma 1,
the space below the line of slope 1 passing through ut in plane y = 0 does not
contain any point of C(T (ut)). Since the slope of Cout

ut
is at most 1, the drawing

of T (ut) is enclosed in Cout
ut

as long as ut is in At. By conditions (i) and (ii) of
Space(Γ), the cone C in

ut+1
encloses Cout

ut
in the closed half-space above Pt. Hence

the edge connecting ut+1 to the pole never touches Cout
ut

above Pt. ��
Theorem 4. For any two plane straight-line drawings Γ, Γ ′ of an n-vertex tree
T , there exists a crossing-free 3D morph from Γ to Γ ′ with O(log n) steps.

Proof (sketch). A 3D morph from Γ to Γ ′ can be constructed as the concate-
nation of Canonize(Γ) with the reverse of Canonize(Γ ′). Hence, it suffices to
prove that Canonize(Γ) is a crossing-free 3D morph with O(log n) steps.

It is easy to see that Steps 1, 5, and 6 of Canonize(Γ) are crossing-free linear
morphs. The proof that Step 2 is a crossing-free linear morph is more involved.
In particular, for any two light children us and ut with s < t of the same vertex
vi of H, the occurrence of a crossing between the edge vius and an edge of T (ut)
during Step 2 can be ruled out by arguing that the same two edges would also
cross in Γ1; this argument exploits the uniformity of the speed in a linear morph
and that the horizontal component of the morph of Step 2 is a uniform scaling.
Lemma 2 ensures that Step 4 is a crossing-free 3D morph with O(1) steps. Thus,
Steps 1, 2, 4, 5, and 6 require a total of O(1) steps. Since the number of morphing
steps of Step 3 of Canonize(Γ) is equal to the maximum number of steps of any
recursively computed morph and since, by definition of heavy path, each tree
T (ut) for which a recursive call Canonize(Γ2(T (ut))) is made has at most n/2
vertices, it follows that Canonize(Γ) requires O(log n) steps. ��

5 Conclusions and Open Problems

In this paper we studied crossing-free 3D morphs of tree drawings. We proved
that, for any two planar straight-line drawings of the same n-vertex tree, there
is a crossing-free 3D morph between them which consists of O(log n) steps.

This result gives rise to two natural questions. First, is it possible to bring
our logarithmic upper bound down to constant? In this paper we gave a positive
answer to this question for paths. In fact our algorithm to morph planar straight-
line tree drawings has a number of steps which is linear in the pathwidth of the

Pole Dancing: 3D Morphs for Tree Drawings 383

tree (see Remark 2), thus for example it is constant for caterpillars. Second, does
a crossing-free 3D morph exist with o(n) steps for any two planar straight-line
drawings of the same n-vertex planar graph? The question is interesting to us
even for subclasses of planar graphs, like outerplanar graphs and planar 3-trees.

We also proved that any two crossing-free straight-line 3D drawings of an
n-vertex tree can be morphed into each other in O(n) steps; such a bound is
asymptotically optimal in the worst case. An easy extension of our results to
graphs containing cycles seems unlikely. Indeed, the existence of a deterministic
algorithm to construct a crossing-free 3D morph with a polynomial number
of steps between two crossing-free straight-line 3D drawings of a cycle would
imply that the unknot recognition problem is polynomial-time solvable. The
unknot recognition problem asks whether a given knot is equivalent to a circle
in the plane under an ambient isotopy. This problem has been the subject of
investigation for decades; it is known to be in NP [13] and in co-NP [14], however
determining whether it is in P has been an elusive goal so far.

Acknowledgments. We thank Therese Biedl for pointing out Remark 2. The research
for this paper started during the Intensive Research Program in Discrete, Combinatorial
and Computational Geometry, which took place in Barcelona, April-June 2018. We
thank Vera Sacristán and Rodrigo Silveira for a wonderful organization and all the
participants for interesting discussions.

References

1. Adams, C.C.: The Knot Book: An Elementary Introduction to the Mathematical
Theory of Knots. American Mathematical Society, Providence (2004)

2. Alamdari, S., et al.: How to morph planar graph drawings. SIAM J. Comput.
46(2), 824–852 (2017)

3. Alamdari, S., et al.: Morphing planar graph drawings with a polynomial number
of steps. In: Khanna, S. (ed.) 24th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA 2013), pp. 1656–1667. SIAM (2013)

4. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Patrignani, M., Roselli,
V.: Morphing planar graph drawings optimally. In: Esparza, J., Fraigniaud, P.,
Husfeldt, T., Koutsoupias, E. (eds.) ICALP 2014. LNCS, vol. 8572, pp. 126–137.
Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-662-43948-7 11

5. Angelini, P., Frati, F., Patrignani, M., Roselli, V.: Morphing planar graph drawings
efficiently. In: Wismath, S., Wolff, A. (eds.) GD 2013. LNCS, vol. 8242, pp. 49–60.
Springer, Cham (2013). https://doi.org/10.1007/978-3-319-03841-4 5

6. Barrera-Cruz, F., Haxell, P., Lubiw, A.: Morphing planar graph drawings with
unidirectional moves. In: Mexican Conference on Discrete Mathematics and Com-
putational Geometry, pp. 57–65 (2013). http://arxiv.org/abs/1411.6185

7. Biedl, T.: Optimum-width upward drawings of trees. arXiv preprint
arXiv:1506.02096 (2015)

8. Cairns, S.S.: Deformations of plane rectilinear complexes. Am. Math. Mon. 51(5),
247–252 (1944)

9. Chan, T.M.: Tree drawings revisited. arXiv preprint arXiv:1803.07185 (2018)
10. Crescenzi, P., Di Battista, G., Piperno, A.: A note on optimal area algorithms for

upward drawings of binary trees. Comput. Geom. 2(4), 187–200 (1992)

https://doi.org/10.1007/978-3-662-43948-7_11
https://doi.org/10.1007/978-3-319-03841-4_5
http://arxiv.org/abs/1411.6185
http://arxiv.org/abs/1506.02096
http://arxiv.org/abs/1803.07185

384 E. Arseneva et al.

11. Floater, M.S., Gotsman, C.: How to morph tilings injectively. J Comput. Appl.
Math. 101(1–2), 117–129 (1999)

12. Gotsman, C., Surazhsky, V.: Guaranteed intersection-free polygon morphing. Com-
put. Graph. 25(1), 67–75 (2001)

13. Hass, J., Lagarias, J.C., Pippenger, N.: The computational complexity of knot and
link problems. J. ACM 46(2), 185–211 (1999)

14. Lackenby, M.: The efficient certification of knottedness and Thurston norm. CoRR,
abs/1604.00290 (2016)

15. Sleator, D.D., Tarjan, R.E.: A data structure for dynamic trees. In: Proceedings of
the Thirteenth Annual ACM Symposium on Theory of Computing, pp. 114–122
(1981)

16. Thomassen, C.: Deformations of plane graphs. J. Comb. Theory, Ser. B 34(3),
244–257 (1983)

	Pole Dancing: 3D Morphs for Tree Drawings
	1 Introduction
	2 Morphs of 3D Drawings of Trees
	3 Morphing Two Planar Drawings of a Path in 3D
	4 Morphing Two Planar Drawings of a Tree in 3D
	4.1 Canonical 3D Drawing of a Tree
	4.2 The Procedure Canonize()
	4.3 The Procedure Space()
	4.4 Correctness of the Morphing Procedure

	5 Conclusions and Open Problems
	References

