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Abstract. In this paper we consider Contact graphs of Paths on a Grid
(CPG graphs), i.e. graphs for which there exists a family of interiorly
disjoint paths on a grid in one-to-one correspondence with their vertex
set such that two vertices are adjacent if and only if the corresponding
paths touch at a grid-point. Our class generalizes the well studied class
of VCPG graphs (see [1]). We examine CPG graphs from a structural
point of view which leads to constant upper bounds on the clique number
and the chromatic number. Moreover, we investigate the recognition and
3-colorability problems for B0-CPG, a subclass of CPG. We further show
that CPG graphs are not necessarily planar and not all planar graphs
are CPG.

1 Introduction

Asinowski et al. [3] introduced the class of vertex intersection graphs of paths on
a grid, referred to as VPG graphs. An undirected graph G = (V,E) is called a
VPG graph if one can associate a path on a grid with each vertex such that two
vertices are adjacent if and only if the corresponding paths intersect on at least
one grid-point. It is not difficult to see that the class of VPG graphs coincides
with the class of string graphs, i.e. intersection graphs of curves in the plane
(see [3]).

A natural restriction which was forthwith considered consists in limiting the
number of bends (i.e. 90◦ turns at a grid-point) that the paths may have: an
undirected graph G = (V,E) is a Bk-VPG graph, for some integer k ≥ 0, if one
can associate a path on a grid having at most k bends with each vertex such
that two vertices are adjacent if and only if the corresponding paths intersect on
at least one grid-point. Since their introduction, Bk-VPG have been extensively
studied (see [2,3,5,7–9,14,15,18–20]).

A notion closely related to intersection graphs is that of contact graphs. Such
graphs can be seen as a special type of intersection graphs of geometrical objects
in which these objects are not allowed to have common interior points but only
to touch each other. Contact graphs of various types of objects have been studied
in the literature (see, e.g., [1,10,11,21–23]). In this paper, we consider Contact
graphs of Paths on a Grid (CPG graphs for short) which are defined as follows.
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(a) Allowed contacts. (b) Forbidden contact.

Fig. 1. Examples of types of contact between two paths (the endpoints of a path are
marked by an arrow).

A graph G is a CPG graph if the vertices of G can be represented by a family of
interiorly disjoint paths on a grid, two vertices being adjacent in G if and only
if the corresponding paths touch, i.e. share a grid-point which is an endpoint of
at least one of the two paths (see Fig. 1). Note that this class is hereditary, i.e.
closed under vertex deletion. Similarly to VPG, a Bk-CPG graph is a CPG graph
admitting a representation in which each path has at most k bends. Clearly, any
Bk-CPG graph is also a Bk-VPG graph.

Aerts and Felsner [1] considered a similar family of graphs, namely those
admitting a Vertex Contact representation of Paths on a Grid (VCPG for short).
The vertices of such graphs can be represented by a family of interiorly disjoint
paths on a grid, but the adjacencies are defined slightly differently: two vertices
are adjacent if and only if the endpoint of one of the corresponding paths touches
an interior point of the other corresponding path (observe that this is equivalent
to adding the constraint forbidding two paths from having a common endpoint,
i.e. contacts as in Fig. 1a on the right). This class has been considered by other
authors as well (see [6,7,14,19,24]).

It is not difficult to see that graphs admitting a VCPG are planar (see [1])
and it immediately follows from the definition that those graphs are CPG graphs.
This containment is in fact strict even when restricted to planar CPG graphs,
as there exist, in addition to nonplanar CPG graphs, planar graphs which are
CPG but do not admit a VCPG.

To the best of our knowledge, the class of CPG graphs has never been studied
in itself and our present intention is to provide some structural properties (see
Sect. 3). By considering a specific weight function on the vertices, we provide
upper bounds on the number of edges in CPG graphs as well as on the clique
number and the chromatic number (see Sect. 3). In particular, we show that B0-
CPG graphs are 4-colorable and that 3-colorability restricted to B0-CPG is
NP-complete (see Sect. 5). We further prove that recognizing B0-CPG graphs is
NP-complete. Additionally, we show that the classes of CPG graphs and planar
graphs are incomparable (see Sect. 4).

2 Preliminaries

Throughout this paper, all considered graphs are undirected, finite and simple.
For any graph theoretical notion not defined here, we refer the reader to [13].
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Let G = (V,E) be a graph with vertex set V and edge set E. The degree of
a vertex v ∈ V , denoted by d(v), is the number of neighbors of v in G. A graph
G is k-regular if the degree of every vertex in G is k ≥ 0. A clique (resp. stable
set) in G is a set of pairwise adjacent (resp. nonadjacent) vertices. The graph
obtained from G by deleting a vertex v ∈ V is denoted by G − v. For a given
graph H, G is H-free if it contains no induced subgraph isomorphic to H.

As usual, Kn (resp. Cn) denotes the complete graph (resp. chordless cycle)
on n vertices and Km,n denotes the complete bipartite graph with bipartition
(V1, V2) such that |V1| = m and |V2| = n. Given a graph G, the line graph of
G, denoted by L(G), is the graph such that each vertex ve in L(G) corresponds
to an edge e in G and two vertices are adjacent in L(G) if and only if their
corresponding edges in G have a common endvertex.

A graph G is planar if it can be drawn in the plane without crossing edges;
such a drawing is then called a planar embedding of G. A planar embedding
divides the plane into several regions referred to as faces. A planar graph is
maximally planar if adding any edge renders it nonplanar. A maximally planar
graph has exactly 2n−4 faces, where n is the number of vertices in the graph. A
graph H is a minor of a graph G, if H can be obtained from G by deleting edges
and vertices and by contracting edges. It is well-known that a graph is planar if
and only if it does not contain K5 or K3,3 as a minor [13].

A coloring of a graph G is a mapping c associating with every vertex u an
integer c(u), called a color, such that c(v) �= c(u) for every edge uv. If at most k
distinct colors are used, c is called a k-coloring. The smallest integer k such that
G admits a k-coloring is called the chromatic number of G, denoted by χ(G).

Consider a rectangular grid G where the horizontal lines are referred to as
rows and the vertical lines as columns. The grid-point lying on row x and column
y is denoted by (x, y). An interior point of a path P on G is a point belonging to
P and different from its endpoints; the interior of P is the set of all its interior
points. A graph G = (V,E) is CPG if there exists a collection P of interiorly
disjoint paths on a grid G such that P is in one-to-one correspondence with V
and two vertices are adjacent in G if and only if the corresponding paths touch;
if every path in P has at most k bends, G is Bk-CPG. The pair R = (G,P) is
a CPG representation of G, and more specifically a k-bend CPG representation
if every path in P has at most k bends. In the following, the path representing
some vertex u in a CPG representation R of a graph G is denoted by PR

u , or
simply Pu if it is clear from the context.

Let G = (V,E) be a CPG graph and R = (G,P) be a CPG representation
of G. A grid-point p is of type I if it corresponds to an endpoint of four paths
in P (see Fig. 2a), and of type II if it corresponds to an endpoint of two paths
in P and an interior point of a third path in P (see Fig. 2b).

For any grid-point p, we denote by τ(p) the number of edges in the subgraph
induced by the vertices whose corresponding paths contain or have p as an
endpoint. Note that this subgraph is a clique and so τ(p) =

(
j
2

)
if j paths touch

at grid-point p.
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(a) Type I.

p

Subtype a

p

Subtype b

(b) Type II.

Fig. 2. Two types of grid-points.

For any path P , we denote by P̊ (resp. ∂(P )) the interior (resp. endpoints)
of P . For a vertex u ∈ V , we define the weight of u with respect to R, denoted
by wR

u or simply wu if it is clear from the context, as follows. Let qiu (i = 1, 2)
be the endpoints of the corresponding path Pu in P and consider, for i = 1, 2,

wi
u = |{P ∈ P | qiu ∈ P̊}| +

1
2

· |{P ∈ P | P �= Pu and qiu ∈ ∂(P )}|.

Then wu = w1
u + w2

u.

Observation 1. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG
representation of G. For any vertex u ∈ V and i = 1, 2, wi

u ≤ 3
2 where equality

holds if and only if qiu is a grid-point of type I or II.

Indeed, the contribution of qiu to wi
u is maximal if all four grid-edges containing

qiu are used by paths of P, which may only happen when qiu is a grid-point of
type I or II.

Remark. In fact, we have wi
u ∈ {0, 1

2 , 1, 3
2} for any vertex u ∈ V and i = 1, 2.

Observation 2. Let G = (V,E) be a CPG graph and R = (G,P) be a CPG
representation of G. Then

|E| ≤
∑

u∈V

wu,

where equality holds if and only if all paths of P pairwise touch at most once.

Indeed, if uv ∈ E, we may assume that either an endpoint of Pu touches the
interior of Pv, or Pu and Pv have a common endpoint. In the first case, the edge
uv is fully accounted for in the weight of u, and in the second case, the edge uv
is accounted for in both wu and wv by one half. The characterization of equality
then easily follows.

3 Structural Properties of CPG Graphs

In this section, we investigate CPG graphs from a structural point of view and
present some useful properties which we will further exploit.
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Lemma 1. A CPG graph is either 6-regular or has a vertex of degree at most 5.

Proof. If G = (V,E) is a CPG graph and R is a CPG representation of G, by
combining Observations 1 and 2, we obtain

∑

u∈V

d(u) = 2|E| ≤ 2
∑

u∈V

wu ≤ 2
∑

u∈V

(
3
2

+
3
2

)
= 6|V |. ��

Remark. We can show that there exists an infinite family of 6-regular CPG
graphs. Due to lack of space, this proof is here omitted but can be found in the
full version [12].

For B1-CPG graphs, we can strengthen Lemma 1 as follows.

Proposition 1. Every B1-CPG graph has a vertex of degree at most 5.

Proof. Let G = (V,E) be a B1-CPG graph and R be a 1-bend CPG representa-
tion of G. Denote by p the upper-most endpoint of a path among the left-most
endpoints in R, and by Px (with x ∈ V ) an arbitrary path having p as an end-
point. Since R is a 1-bend CPG representation, no path uses the grid-edge on
the left of p, for otherwise p would not be a left-most endpoint. Therefore, p con-
tributes to the weight of x with respect to R by at most 1 and, by Observations
1 and 2, we have

∑

u∈V

d(u) = 2|E| ≤ 2(wx +
∑

u�=x

wu) ≤ 6|V | − 1,

which implies the existence of a vertex of degree at most 5. ��
A natural question that arises when considering CPG graphs is whether they
may contain large cliques. It immediately follows from Observation 2 that CPG
graphs cannot contain Kn, for n ≥ 8. This can be further improved as shown in
the next result.

Theorem 1. CPG graphs are K7-free.

Proof. Since the class of CPG graphs is hereditary, it is sufficient to show that
K7 is not a CPG graph. Suppose, to the contrary, that K7 is a CPG graph
and consider a CPG representation R = (G,P) of K7. Observe first that the
weight of every vertex with respect to R must be exactly 2 ·3/2, as otherwise by
Observation 1, we would have

∑
u∈V wu < 3|V | = 21 = |E| which contradicts

Observation 2. This implies in particular that every grid-point corresponding to
an endpoint of a path is either of type I or II. Furthermore, any two paths must
touch at most once, for otherwise by Observation 2, |E| <

∑
u∈V wu = 3|V | =

|E|. Hence, if we denote by PI (resp. PII) the set of grid-points of type I (resp.
type II), then since τ(p) = 6 for all p ∈ PI and τ(p) = 3 for all p ∈ PII , we
have that 6|PI |+3|PII | = 21, which implies |PII | �= 0. Suppose that there exists
a path Pu having one endpoint corresponding to a grid-point of type I and the
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other corresponding to a grid-point of type II. Since the corresponding vertex u
has degree 6, Pu must then properly contain an endpoint of another path which,
as first observed, necessarily corresponds to a grid-point of type II. But vertex
u would then have degree 3 + 2 + 2 as no two paths touch more than once, a
contradiction. Hence, every path has both its endpoints of the same type. But
then, |PI | = 0; indeed, if there exists a path having both its endpoints of type
I, since no two paths touch more than once, this implies that every path has
both its endpoints of type I, i.e. |PII | = 0, a contradiction. Now, if we consider
each grid-point of type II as a vertex and connect any two such vertices when
the corresponding grid-points belong to a same path, then we obtain a planar
embedding of a 4-regular graph on 7 vertices. But this contradicts the fact that
every 4-regular graph on 7 vertices contains K3,3 as a minor (a proof of this
result can be found in the full version [12]). ��
However, CPG graphs may contain cliques on 6 vertices as shown in Proposi-
tion 2. Due to lack of space, its proof is omitted here and can be found in the
full version [12].

Proposition 2. K6 is in B2-CPG \B1-CPG.

We conclude this section with a complexity result pointing towards the fact that
there may not be a polynomial characterization of B0-CPG graphs. Let us first
introduce rectilinear planar graphs: a graph G is rectilinear planar if it admits
a rectilinear planar drawing, i.e. a drawing mapping each edge to a horizontal
or vertical segment.

Theorem 2. Recognition is NP-complete for B0-CPG graphs.

Proof. We show that a graph G is rectilinear planar if and only if its line graph
L(G) is B0-CPG. As Recognition for rectilinear planar graphs was shown to
be NP-complete in [17], this concludes the proof. Suppose G is a rectilinear
planar graph and let D be the collection of horizontal and vertical segments
in a rectilinear planar drawing of G. It is not difficult to see that the contact
graph of D is isomorphic to L(G). Conversely, assume that L(G) is a B0-CPG
graph and consider a 0-bend CPG representation R = (G,P) of L(G). Since
L(G) is K1,3-free [4], every path in P has at most two contact points. Thus,
by eventually shortening paths, we may assume that contacts only happen at
endpoints of paths. Therefore, R induces a rectilinear planar drawing of G, where
each vertex corresponds to a contact point in R and each edge is mapped to its
corresponding path in P. ��

4 Planar CPG Graphs

In this section, we focus on planar graphs and their relation with CPG graphs.
In particular, we show that not every planar graph is CPG and not all CPG
graphs are planar.1

1 We can further show that not all CPG graphs are 1-planar as K7 − E(K3) is CPG
but not 1-planar [25].
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12 3
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6 7e

(a) A nonplanar graph G.

P5 P4

P3

P1

P2

P7

P6

(b) A 0-bend CPG representation of G.

Fig. 3. A B0-CPG graph containing K3,3 as a minor (contract the edge e).

Lemma 2. If G is a CPG graph for which there exists a CPG representation
containing no grid-point of type I or II.a, then G is planar. In particular, if G
is a triangle-free CPG graph, then G is planar.

Proof. Let G = (V,E) be a CPG graph for which there exists a CPG represen-
tation R containing no grid-point of type I or II.a. By considering each path of
R as a curve in the plane, it follows that G is a curve contact graph having a
representation (namely R) in which any point in the plane belongs to at most
three curves. Furthermore, whenever a point in the plane belongs to the interior
of a curve C and corresponds to an endpoint of two other curves, then those two
curves lie on the same side of C (recall that there is no grid-point of type II.a).
Hence, it follows from Proposition 2.1 in [21] that G is planar.

If G is a triangle-free CPG graph, then no CPG representation of G contains
grid-points of type I or II.a. Hence, G is planar. ��
Remark. Since K3,3 is a triangle-free nonplanar graph, it follows from Lemma
2 that K3,3 is not CPG. Therefore, CPG graphs are K3,3-free. Observe however
that for any k ≥ 0, Bk-CPG is not a subclass of planar graphs as there exist
B0-CPG graphs which are not planar (see Fig. 3).

It immediately follows from [7] that all triangle-free planar graphs are B1-
CPG; hence, we have the following corollary.

Corollary 1. If a graph G is triangle-free, then G is planar if and only if G is
B1-CPG.

The next result allows us to detect planar graphs that are not CPG.

Lemma 3. Let G = (V,E) be a planar graph. If G is a CPG graph, then G has
at most 4|V | − 2f + 4 vertices of degree at most 3, where f denotes the number
of faces of G. In particular, if G is maximally planar, then G has at most 12
vertices of degree at most 3.

Proof. Let G = (V,E) be a planar CPG graph and R = (G,P) a CPG repre-
sentation of G. Denote by U the subset of vertices in G of degree at most 3. If
a path Pu, with u ∈ U , touches every other path in P at most once, then, since
at least one endpoint of Pu is then not a grid-point of type I or II, the weight of
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(a) A non CPG maximally planar graph.

1 2

3

4

5

6 7

P1

P2

P4

P3

P6P5

P7

(b) A maximally planar CPG graph.

Fig. 4. Two maximally planar graphs.

u with respect to R is at most 3/2 + 1. Thus, if we assume that this is the case
for all paths whose corresponding vertex is in U , we have by Observation 2

|E| ≤
(

3
2

+ 1
)

|U | + 3(|V | − |U |) = 3|V | − |U |
2

.

On the other hand, if there exists u ∈ U such that Pu touches some path more
than once, then the above inequality still holds as the corresponding edge is
already accounted for. Using the fact that f = |E| − |V | + 2 (Euler’s formula),
we obtain the desired upper bound. Moreover, if G is maximally planar, then
f = 2|V | − 4 and so |U | ≤ 12. ��
Remark. In Fig. 4a, we give an example of a maximally planar graph which is
not CPG due to Lemma 3. It is constructed by iteratively adding a vertex in
a triangular face, starting from the triangle, so that it has exactly 13 vertices
of degree 3. There exist however maximally planar graphs which are CPG (see
Fig. 4b). Note that maximally planar graphs do not admit a VCPG [1].

5 Coloring CPG Graphs

In this section, we provide tight upper bounds on the chromatic number of
Bk-CPG graphs for different values of k and investigate the 3-Colorability
problem for CPG graphs. The proof of the following result is an easy exercise
left to the reader (see the full version [12]).

Theorem 3. CPG graphs are 6-colorable.

Remark. Since K6 is B2-CPG, this bound is tight for Bk-CPG graphs with k ≥ 2.
We leave as an open problem whether this bound is also tight for B1-CPG graphs
(note that it is at least 5 since K5 is B1-CPG).

Theorem 4. B0-CPG graphs are 4-colorable. Moreover, K4 is a 4-chromatic
B0-CPG graph.



On Contact Graphs of Paths on a Grid 325

Proof. Let G be a B0-CPG graph and R = (G,P) a 0-bend CPG representation
of G. Denote by L (resp. C) the set of rows (resp. columns) of G on which lies at
least one path of P. Since the representation contains no bend, if A is a row in
L (resp. column in C), then the set of vertices having their corresponding path
on A induces a collection of disjoint paths in G. If B �= A is another row in L
(resp. column in C), then no path in A touches a path in B. Hence, it suffices to
use two colors to color the vertices having their corresponding path in a row of
L and two other colors to color the vertices having their corresponding path in
a column of C to obtain a proper coloring of G. ��
It immediately follows from a result in [22] that the 3-colorability problem
is NP-complete in CPG, even if the graph admits a representation in which
each grid-point belongs to at most two paths. We conclude this section by a
strengthening of this result.

Theorem 5. 3-Colorability is NP-complete in B0-CPG.

Proof. We exhibit a polynomial reduction from 3-Colorability restricted to
planar graphs of maximum degree 4, which was shown to be NP-complete in [16].

Let G = (V,E) be a planar graph of maximum degree 4. It follows from [26]
that G admits a grid embedding where each vertex is mapped to a grid-point
and each edge is mapped to a grid-path with at most 4 bends, in such a way
that all paths are interiorly disjoint (such an embedding can be obtained in
linear time). Denote by D = (V, E) such an embedding, where V is the set of
grid-points in one-to-one correspondence with V and E is the set of grid-paths in
one-to-one correspondence with E. For any vertex u ∈ V , we denote by (xu, yu)
the grid-point in V corresponding to u and by PN

u (resp. PS
u ) the path of E , if

any, having (xu, yu) as an endpoint and using the grid-edge above (resp. below)
(xu, yu). For any edge e ∈ E, we denote by Pe the path in E corresponding to
e. We construct from D a 0-bend CPG representation R in such a way that the
corresponding graph G′ is 3-colorable if and only if G is 3-colorable.

By eventually adding rows and columns to the grid, we may assume that
the interior of each path P in E is surrounded by an empty region, i.e. no path
P ′ �= P or grid-point of V lies in the interior of this region. In the following,
we denote this region by RP (delimited by red dashed lines in every subsequent
figure) and assume, without loss of generality, that it is always large enough for
the following operations.

We first associate with every vertex u ∈ V a vertical path Pu containing the
grid-point (xu, yu) as follows. If PN

u (resp. PS
u ) is not defined, the top (resp.

lower) endpoint of Pu is (xu, yu + ε) (resp. (xu, yu − ε)) for a small enough ε
so that the segment [(xu, yu), (xu, yu + ε)] (resp. [(xu, yu), (xu, yu − ε)]) touches
no path of E . If PN

u has at least one bend, then the top endpoint of Pu lies at
the border of RPN

u
on column xu (see Fig. 5a). If PN

u has no bend, then the top
endpoint of Pu lies at the middle of PN

u (see Fig. 5b). Similarly, we define the
lower endpoint of Pu according to PS

u : if PS
u has at least one bend, then the

lower endpoint of Pu lies at the border of RPS
u

on column xu, otherwise it lies
at the middle of PS

u .
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(xu, yu)

PN
u

(a) PN
u contains at least one bend.

(xu, yu)

PN
u

(b) PN
u contains no bend.

Fig. 5. Constructing the path Pu corresponding to vertex u (in blue). (Color figure
online)

(a) A path containing one interior ver-
tical segment.

(b) A path containing two interior ver-
tical segments.

Fig. 6. Replacing interior vertical segments by 0-bend paths (in blue). (Color figure
online)

For any path P of E with at least two bends, an interior vertical segment
of P is a vertical segment of P containing none of its endpoints (note that
since every path in E has at most 4 bends, it may contain at most two interior
vertical segments). We next replace every interior segment of P by a slightly
longer vertical path touching the border of RP (see Fig. 6).

We finally introduce two gadgets H (see Fig. 7) and H ′, where H ′ is the
subgraph of H induced by {b, c, 4, 5, 6, 7, 8, 9, 10}, as follows. Denote by P ′ the
set of vertical paths introduced so far and by V ′ the set of vertices of the contact
graph of P ′. Observe that V ′ contains a copy of V and that two vertices are
adjacent in the contact graph of P ′ if and only if they are both copies of vertices
in V and the path P of P corresponding to the edge between these two copies is a
vertical path with no bend. Now, along each path Puv of P such that the vertical
paths Pu and Pv of P ′ do not touch, we add gadgets H and H ′ as follows. Let
P1, . . . , Pk be the vertical paths of P ′ encountered in order when going along
Puv from (xu, yu) to (xv, yv) and let uj be the vertex of V ′ corresponding to
Pj , for 1 ≤ j ≤ k. Note that P1 (resp. Pk) is the path corresponding to vertex
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u = u1 (resp. v = uk) and that Pj , for 2 ≤ j ≤ k − 1, is a path corresponding
to an interior vertical segment of Puv (this implies in particular that k ≤ 4). We
add the gadget H ′ in between u1 and u2 by identifying u1 with b and u2 with
c. Moreover, for any 2 ≤ j ≤ k − 1, we add the gadget H in between uj and
uj+1 by identifying uj with b and uj+1 with a (see Fig. 8 where k = 4 and each
box labeled H (resp. H ′) means that gadget H (resp. H ′) has been added by
identifying the vertex lying to the left of the box to b and the vertex lying on
the right of the box to a (resp. c)).

The resulting graph G′ remains B0-CPG. Indeed, we may add 0-bend CPG
representations of the gadgets H and H ′ inside RPuv

and at different heights so
that they do not touch any other such gadget, as shown in Fig. 9. In the full ver-
sion [12], we give a local example of the resulting 0-bend CPG representation R.

We now show that G is 3-colorable if and only if G′ is. To this end, we prove
the following.

Claim 1

• In any 3-coloring c of H ′, we have c(b) �= c(c).
• In any 3-coloring c of H, we have c(a) = c(b) and c(b) �= c(c).

Proof. Let c : {a, b, c, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10} → {blue, red, green} be a 3-coloring
of H and assume without loss of generality that c(b) = blue. Clearly, at least
two vertices among 4, 6 and 8 have the same color. If vertices 4, 6 and 8 all
have the same color, say red, then either c(7) = blue and c(9) = green, or
c(7) = green and c(9) = blue. Therefore, {c(5), c(10)} = {blue, green} and
since c is adjacent to all three colors, we then obtain a contradiction. Now if
vertices 4 and 8 have the same color, say red, then vertex 6 has color green and
both 7 and 9 have color blue, a contradiction. Hence, either c(4) = c(6) �= c(8)
or c(8) = c(6) �= c(4). By symmetry, we may assume that vertices 4 and 6 have
the same color, say red, and that vertex 8 has color green. This implies that
vertex 7 has color green, vertices 9 and 5 have color blue and vertex 10 has color
red; but then, c(c) = green �= c(b). This proves the first point of the claim.
Observe that each coloring of b and c with distinct colors can be extended to a
3-coloring of H ′ and H.

As for the second point, since vertices 4 and 6 have color red, both 1 and 2
must have color green, and since vertex 8 has color green, vertex 3 must have
color red. Consequently, c(a) = blue = c(b). ♦

We finally conclude the proof of Theorem 5. By Claim 1, if c is a 3-coloring
of G′ then, for any path Puv of P, we have c(u1) �= c(u2) and c(u2) = c(ui) for
all 3 ≤ i ≤ k. Hence, c induces a 3-coloring of G. Conversely, it is easy to see
that any 3-coloring of G can be extended to a 3-coloring of G′. ��
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Fig. 7. The gadget H (left) and a 0-bend CPG representation of it (right).

u = u1
u2 u3

u4 = vH ′ H H

Fig. 8. Adding gadgets H and H ′.

Puj

Puj+1

(a) Adding gadget H.

Pu

Pu2

(b) Adding gadget H ′.

Fig. 9. Locally adding gadgets to control the color of the vertices.

6 Conclusion

We conclude by stating the following open questions:

1. Are B1-CPG graphs 5-colorable?
2. Can we characterize those planar graphs which are CPG?
3. Is Recognition NP-complete for Bk-CPG graphs with k > 0?
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