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Abstract. Consider a random geometric graph over a random point
process in Rd. Two points are connected by an edge if and only if
their distance is bounded by a prescribed distance parameter. We show
that projecting the graph onto a two dimensional plane is expected to
yield a constant-factor crossing number (and rectilinear crossing num-
ber) approximation. We also show that the crossing number is positively
correlated to the stress of the graph’s projection.

1 Introduction

An undirected abstract graph G0 consists of vertices and edges connecting vertex
pairs. An injection of G0 into Rd is an injective map from the vertices of G0

to Rd, and edges onto curves between their corresponding end points but not
containing any other vertex point. For d ≥ 3, we may assume that distinct edges
do not share any point (other than a common end point). For d = 2, we call
the injection a drawing, and it may be necessary to have points where curves
cross. A drawing is good if no pair of edges crosses more than once, nor meets
tangentially, and no three edges share the same crossing point. Given a drawing
D, we define its crossing number cr(D) as the number points where edges cross.
The crossing number cr(G0) of the graph itself is the smallest cr(D) over all
its good drawings D. We may restrict our attention to the rectilinear crossing
number cr(G0), where edge curves are straight lines; note that cr(G0) ≥ cr(G0).

The crossing number and its variants have been studied for several decades,
see, e.g., [30], but still many questions are widely open. We know the crossing
numbers only for very few graph classes; already for cr(Kn), i.e., on complete
graphs with n vertices, we only have conjectures, and for cr(Kn) not even them.
Since deciding cr(G0) is NP-complete [15] (and cr even ∃R-complete [4]), sev-
eral attempts for approximation algorithms have been undertaken. The problem
does not allow a PTAS unless P= NP [6]. For general graphs, we currently do
not know whether there is an α-approximation for any constant α. However, we
can achieve constant ratios for dense graphs [14] and for bounded pathwidth
graphs [3]. Other strong algorithms deal with graphs of maximum bounded
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degree and achieve either slightly sublinear ratios [13], or constant ratios for
further restrictions such as embeddability on low-genus surfaces [16–18] or a
bounded number of graph elements to remove to obtain planarity [7,9,10,12].

We will make use of the crossing lemma, originally due to [2,25]1: There
are constants2 d ≥ 4, c ≥ 1

64 such that any abstract graph G0 on n vertices
and m ≥ dn edges has cr(G0) ≥ cm3/n2. In particular for (dense) graphs with
m = Θ(n2), this yields the asymptotically tight maximum of Θ(m2) crossings.

Random Geometric Graphs (RGGs). We always consider a geometric graph G as
input, i.e., an abstract graph G0 together with a straight-line injection into Rd,
for some d ≥ 2; we identify the vertices with their points. For a 2-dimensional
plane L, the postfix operator |L denotes the projection onto L.

Given a set of points V in Rd, the unit-ball graph (unit-disk graph if d = 2)
is the geometric graph using V as vertices that has an edge between two points
iff balls of radius 1 centered at these points touch or overlap. Thus, points are
adjacent iff their distance is ≤ 2. In general, we may use arbitrary threshold
distances δ > 0. We are interested in random geometric graphs (RGGs), i.e.,
when using a Poisson point process to obtain V for the above graph class 2.

Stress. When drawing (in particular large) graphs with straight lines in practice,
stress is a well-known and successful concept, see, e.g., [5,20,21]: let G be a
geometric graph, d0, d1 two distance functions on vertex pairs—(at least) the
latter of which depends on an injection—and w weights. We have:

stress(G) :=
∑

v1,v2∈V (G),v1 �=v2

w(v1, v2) · (d0(v1, v2) − d1(v1, v2))2. (1)

In a typical scenario, G is injected into R2, d0 encodes the graph-theoretic
distances (number of edges on the shortest path) or some given similarity
matrix, and d1 is the Euclidean distance in R2. Intuitively, in a drawing
of 0 (or low) stress, the vertices’ geometric distances d1 are (nearly) iden-
tical to their “desired” distance according to d0. A typical weight function
w(v1, v2) := d0(v1, v2)−2 softens the effect of “bad” geometric injections for
vertices that are far away from each other anyhow. It has been observed empir-
ically that low-stress drawings tend to be visually pleasing and to have a low
number of crossings, see, e.g., [8,22]. While it may seem worthwhile to approx-
imate the crossing number by minimizing a drawing’s stress, there is no sound
mathematical basis for this approach.

There are different ways to find (close to) minimal-stress drawings in 2D [5].
One way is multidimensional scaling, cf. [20], where we start with an injection
of an abstract graph G0 into some high-dimensional space Rd and asking for
a projection of it onto R2 with minimal stress. It should be understood that
Euclidean distances in a unit-ball graph in Rd by construction closely correspond
to the graph-theoretic distances. In fact, for such graphs it seems reasonable to
1 Incidentally, the lemma allows an intriguingly elegant proof using stochastics [1].
2 The currently best constants d = 7, c = 1

20
are due to [19].
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use the distances in Rd as the given metrics d0, and seek an injection into R2—
whose resulting distances form d1—by means of projection.

Contribution. We consider RGGs for large t and investigate the mean, variance,
and corresponding law of large numbers both for their rectilinear crossing number
and their minimal stress when projecting them onto the plane. We also prove,
for the first time, a positive correlation between these two measures.

While our technical proofs make heavy use of stochastic machinery (sev-
eral details of which have to be deferred to the arXiv version [11]), the conse-
quences are very algorithmic: We give a surprisingly simple algorithm that yields
an expected constant approximation ratio for random geometric graphs even in
the pure abstract setting. In fact, we can state the algorithm already now; the
remainder of this paper deals with the proof of its properties and correctness:

Given a random geometric graph G in Rd (see below for details), we pick a
random 2-dimensional plane L in Rd to obtain a straight-line drawing G|L that
yields a crossing number approximation both for cr(G0) and for cr(G0).

Throughout this paper, we prefer to work within the setting of a Poisson point
process because of the strong mathematical tools from the Malliavin calculus
that are available in this case. It is straightforward to de-Poissonize our results:
this yields asymptotically the same results—even with the same constants—for
n uniform random points instead of a Poisson point process; we omit the details.

2 Notations and Tools from Stochastic Geometry

Let W ⊂ Rd be a convex set of volume vold(W ) = 1. Choose a Poisson dis-
tributed random variable n with parameter t, i.e., En = t. Next choose n points
V = {v1, . . . , vn} independently in W according to the uniform distribution.
Those points form a Poisson point process V in W of intensity t. A Poisson
point process has several nice properties, e.g., for disjoint subsets A,B ⊂ W , the
sets V ∩A and V ∩B are independent (thus also their size is independent). Let V k

�= ,
k ≥ 1, be the set of all ordered k-tuples over V with pairwise distinct elements.
We will consider V as the vertex set of a geometric graph G for the distances
parameter (δt)t>0 with edges E = {{u, v} | u, v ∈ V, u �= v, ‖u−v‖ ≤ δt}, i.e., we
have an edge between two distinct points if and only if their distance is at most
δt. Such random geometric graphs (RGG) have been extensively investigated,
see, e.g., [27,29], but nothing is known about the stress or crossing number of
its underlying abstract graph G0.

A U-statistic U(k, f) :=
∑

v∈V k
�=

f(v) is the sum over f(v) for all k-tuples v.
Here, f is a measurable non-negative real-valued function, and f(v) only depends
on v and is independent of the rest of V . The number of edges in G is a U-statistic
as m = 1

2

∑
v,u∈V,v �=u 1(‖v − u‖ ≤ δt). Likewise, the stress of a geometric graph

as well as the crossing number of a straight-line drawing is a U-statistic, using
2- and 4-tuples of V , respectively. The well-known multivariate Slivnyak-Mecke
formula tells us how to compute the expectation EV over all realizations of the
Poisson process V ; for U-statistics we have, see [31, Cor. 3.2.3]:
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EV

∑

(v1,...,vk)∈V k
�=

f(v1, . . . , vk) = tk
∫

Wk

f(v1, . . . , vk) dv1 · · · dvk. (2)

We already know EV n = EV |V | = t. Solving the above formula for the expected
number of edges, we obtain

EV m = EV |E| =
κd

2
t2δd

t + O(t2δd+1
t surf(W )), (3)

where κd = vold(Bd) is the volume of the unit ball Bd in Rd, and surf(W )
the surface area of W . For n and m, central limit theorems and concentration
inequalities are well known as t → ∞, see, e.g., [27,29].

The expected degree EV deg(v) of a typical vertex v is approximately of order
κd t δd

t (this can be made precise using Palm distributions). This naturally leads
to three different asymptotic regimes as introduced in Penrose’s book [27]:

– in the sparse regime we have limt→∞ t δd
t = 0, thus EV deg(v) tends to zero;

– in the thermodynamic regime we have limt→∞ t δd
t = c > 0, thus EV deg(v)

is asymptotically constant;
– in the dense regime we have limt→∞ t δd

t = ∞, thus EV deg(v) → ∞.

Observe that in standard graph theoretic terms, the thermodynamic regime leads
to sparse graphs, i.e., via (3) we obtain EV m = Θ(t) = Θ(EV n). Similarly, the
dense regime—together with δt → c—leads to dense graphs, i.e., EV m = Θ(t2) =
Θ((EV n)2). Recall that to employ the crossing lemma, we want m ≥ 4n. Also,
the lemma already shows that any good (straight-line) drawing of a dense graph
G0 already gives a constant-factor approximation for cr(G0) (and cr(G0)). In the
following we thus assume a constant 0 < c ≤ t δd

t and δt → 0, i.e., m = o(n2).
The Slivnyak-Mecke formula is a classical tool to compute expectations and

will thus be used extensively throughout this paper. Yet, suitable tools to com-
pute variances came up only recently. They emerged in connection with the
development of the Malliavin calculus for Poisson point processes [23,26]. An
important operator for functions g(V ) of Poisson point processes is the differ-
ence (also called add-one-cost) operator,

Dvg(V ) := g(V ∪ {v}) − g(V ),

which considers the change in the function value when adding a single further
point v. We know that there is a Poincaré inequality for Poisson functionals [23,
32], yielding the upper bound in (4) below. On the other hand, the isometry
property of the Wiener-Itô chaos expansion [24] of an (square integrable) L2-
function g(V ) leads to the lower bound in (4):

t

∫

W

(EV Dvg(V ))2 dv ≤ VarV g(V ) ≤ t

∫

W

EV (Dvg(V ))2 dv. (4)

Often, in particular in the cases we are interested in in this paper, the bounds
are sharp in the order of t and often even sharp in the occurring constant. This
is due to the fact that the Wiener-Itô chaos expansion, the Poincaré inequality,
and the lower bound are particularly well-behaved for Poisson U-statistics [28].
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3 Rectilinear Crossing Number of an RGG

Let L be the set of all two-dimensional linear planes and L ∈ L be a random plane
chosen according to a (uniform) Haar probability measure on L. The drawing
GL := G|L is the projection of G onto L. Let [u, v] denote the segment between
vertex points u, v ∈ V if their distance is at most δt and ∅ otherwise. The
rectilinear crossing number of GL is a U-statistic of order 4:

cr(GL) =
1
8

∑

(v1,v2,v3,v4)∈V 4
�=

1([v1, v2]|L ∩ [v3, v4]|L �= ∅).

Keep in mind that even for the best possible projection we only obtain
minL∈L cr(G|L) ≥ cr(G0). To analyze EV minL∈L cr(G|L) is more complicated
than EL,V cr(G|L); fortunately, we will not require it.

3.1 The Expectation of the Rectilinear Crossing Numbers

For the expectation with respect to the underlying Poisson point process the
Slivnyak-Mecke formula (2) gives

EV cr(GL) =
1
8

t4
∫

W

∫

W 3

1([v1, v2]|L ∩ [v3, v4]|L �= ∅) dv4dv3dv2

︸ ︷︷ ︸
=:IW (v1)

dv1.

Let cd be the constant given by the expectation of the event that two inde-
pendent edges cross. In this paper’s arXiv version [11, Appendix A], we prove in
Proposition 15 that cd ≤ 2πκ2

d, that IW (v1)

δ2d+2
t

is bounded by cd times the volume

of the maximal (d − 2)-dimensional section of W , and that

lim
δt→0

IW (v1)
δ2d+2
t

= cdvold−2((v1 + L⊥) ∩ W ), (5)

where L⊥ is the d − 2 dimensional hyperplane perpendicular to L. Using the
dominated convergence theorem of Lebesgue and Fubini’s theorem we obtain

lim
t→∞

EV cr(GL)
t4δ2d+2

t

=
1
8
cd

∫

W

vold−2((v1 + L⊥) ∩ W ) dv1

=
1
8
cd

∫

W |L

∫

(vL
1 +L⊥)∩W

vold−2((vL
1 + L⊥) ∩ W ) dvL⊥

1 dvL
1

=
1
8
cd

∫

W |L

vold−2((vL
1 + L⊥) ∩ W )2 dvL

1

︸ ︷︷ ︸
=:I(2)(W,L)

.
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Theorem 1. Let GL be the projection of an RGG onto a two-dimensional plane
L. Then, as t → ∞ and δt → 0,

EV cr(GL) =
1
8
cd t4δ2d+2

t I(2)(W,L) + o(δ2d+2
t t4).

For unit-disk graphs, i.e., d = 2, the choice of L is unique and the projection
superfluous. There the expected crossing number is asymptotically c2

8 t4δ6t and
thus of order Θ(m3/n2) which is asymptotically optimal as witnessed by the
crossing lemma. In general, the expectation is of order

t4δ2d+2
t = Θ

(
m3

n2

( m

n2

) 2−d
d

)
.

The extra factor m/n2 can be understood as the probability that two vertices
are connected via an edge, thus measures the “density” of the graph.

3.2 The Variance of the Rectilinear Crossing Numbers

By the variance inequalities (4) for functionals of Poisson point processes we are
interested in the moments of the difference operator of the crossing numbers:

EV Dvcr(GL) =
1
8
EV

∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅) =
1
8
t3IW (v)(6)

EV (Dvcr(GL))2 = EV

(1
8

∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅)
)2

(7)

Plugging (7) into the Poincaré inequality (4) gives

VarV cr(GL) ≤ 1
64

t

∫

W

EV

( ∑

(v2,...,v4)∈V 3
�=

1([v, v2]|L ∩ [v3, v4]|L �= ∅)
)2

dv.

Using calculations from integral geometry (see this paper’s arXiv version [11,
Appendix B]), there is a constant 0 < c′

d ≤ 2πκdcd (given by the expectation of
the event that two pairs of independent edges cross) such that

VarV cr(GL) ≤ 1
64

(
c2d +

c′
d

tδd
t

)
t7δ4d+4

t

∫

W

vold−2((v + L⊥) ∩ W )2
(
1 + o(1)

)
dv

+ O(max{t6δ4d+2
t , t5δ3d+2

t , t4δ2d+2
t }).

We use that tδd
t ≥ c > 0, assume d ≥ 3, and use Fubini’s theorem again.

lim
t→∞

VarV cr(GL)
t7δ4d+4

t

≤ 1
64

(
c2d + c′

d lim
t→∞

1
tδd

t

) ∫

W |L

vold−2((v + L⊥) ∩ W )3 dv

︸ ︷︷ ︸
=:I(3)(W,L)

.
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On the other hand, (6) and the lower bound in (4) gives in our case

VarV cr(GL) ≥ t

∫

W

(EV Dvcr(GL))2 dv

≥ 1
64

t7
∫

W

IW (v)2 dv =
1
64

c2d t7δ4d+4
t I(3)(W,L)(1 + o(1)).

Thus our bounds have the correct order and, in the dense regime where tδd
t → ∞,

are even sharp. Using 0 < c′
d ≤ 2πκdcd we obtain:

Theorem 2. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then, as t → ∞ and δt → 0,

1
64

c2dI
(3)(W,L) ≤ lim

t→∞
VarV cr(GL)

t7δ4d+4
t

≤ 1
64

(
c2d + 2πκdcd lim

t→∞
1

tδd
t

)
I(3)(W,L).

Theorems 1 and 2 show for the standard deviation

σ(cr(GL)) =
√

VarV cr(GL) = Θ(t4δ2d+2
t t−

1
2 ) = Θ(EV cr(GL) (EV n)− 1

2 ),

which is smaller than the expectation by a factor (EV n)− 1
2 = t−

1
2 . Or, equiva-

lently, the coefficient of variation σ(cr(GL))
EV cr(GL) is of order t−

1
2 . As t → ∞, our bounds

on the expectation and variance together with Chebychev’s inequality lead to

P

(∣∣∣∣
cr(GL)
t4δ2d+2

t

− EV cr(GL)
t4δ2d+2

t

∣∣∣∣ ≥ ε

)
≤ VarV cr(GL)

t8δ4d+4
t ε2

→ 0.

Corollary 3 (Law of Large Numbers). For given L, the normalized ran-
dom crossing number converges in probability (with respect to the Poisson point
process V ) as t → ∞,

cr(GL)
t4δ2d+2

t

→ 1
8
cdI

(2)(W,L).

Until now we fixed a plane L and computed the variance with respect to the
random points V . Theorems 1 and 2 allow to compute the expectation and vari-
ance with respect to V and a randomly chosen plane L. For the expectation we
obtain from Theorem 1 and by Fubini’s theorem

EL,V cr(GL) =
1
8
cd t4δ2d+2

t

∫

L
I(2)(W,L) dL + o(t4δ2d+2

t ), (8)

as t → ∞ and δt → 0, where dL denotes integration with respect to the Haar
measure on L. For simplicity we assume in the following that limt→∞(tδd

t )−1 = 0.
We use the variance decomposition VarL,V X = ELVarV X + VarLEV X. By
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ELVarV cr(GL) =
1
64

c2d t7δ4d+4
t

∫

L
I(3)(W,L) dL + o(t7δ4d+4

t ), and

VarLEV cr(GL) = EL(EV cr(GL))2 − (EL,V cr(GL))2

=
1
64

c2d t8δ4d+4
t

⎡

⎢⎣
∫

L
I(2)(W,L)2 dL −

⎛

⎝
∫

L
I(2)(W,L)dL

⎞

⎠
2
⎤

⎥⎦ + o(t8δ4d+4
t )

we obtain

VarL,V cr(GL) =
1
64

c2d t8δ4d+4
t

⎡

⎢⎣
∫

L
I(2)(W,L)2dL −

⎛

⎝
∫

L
I(2)(W,L)dL

⎞

⎠
2
⎤

⎥⎦

+o(t8δ4d+4
t ). (9)

Hölder’s inequality implies that the term in brackets is positive as long as
I(2)(W,L) is not a constant function.

3.3 The Rotation Invariant Case

If W is the ball B of unit volume and thus V is rotation invariant, then
I(2)(B,L) = I(2)(B) is a constant function independent of L, and the lead-
ing term in (9) is vanishing. From (8) we see that in this case the expectation is
independent of L.

EV cr(GL) = ELEV cr(GL) = t4δ2d+2
t I(2)(B) + o(t4δ2d+2

t )

For the variance this implies VarLEV cr(GL) = 0, and hence

VarL,V cr(GL) = ELVarV cr(GL) =
1
64

c2d t7δ4d+4
t I(3)(B) + o(t7δ4d+4

t ).

In this case the variance VarL,V is of the order t−1—and thus surprisingly
significantly—smaller than in the general case.

Theorem 4. Let GL be the projection of an RGG in the ball B ⊂ Rd, d ≥ 3,
onto a two-dimensional uniformly chosen random plane L. Then

EL,V cr(GL) =
1
8
cd t4δ2d+2

t I(2)(B) + o(t4δ2d+2
t ) and

VarL,V cr(GL) =
1
64

c2d t7δ4d+4
t I(3)(B) + o(t7δ4d+4

t ),

as t → ∞, δt → 0 and tδd
t → ∞.

Again, Chebychev’s inequality immediately yields a law of large numbers
which states that with high probability the crossing number of GL in a random
direction is very close to 1

8cd t4δ2d+2
t I(2)(B).
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Corollary 5 (Law of Large Numbers). Let GL be the projection of an RGG
in B ⊂ Rd, d ≥ 3, onto a random two-dimensional plane L. Then the normalized
random crossing number converges in probability (with respect to the Poisson
point process V and to L), as t → ∞,

cr(GL)
t4δ2d+2

t

→ 1
8
cdI

(2)(B).

As known by the crossing lemma, the optimal crossing number is of order
m3

n2 . In our setting this means that we are looking for the optimal direction of
projection which leads to a crossing number of order t4δ3d

t , much smaller than
the expectation EV cr(GL). Chebychev’s inequality shows that if W = B it is
difficult to find this optimal direction and to reach this order of magnitude; using
δt → 0 in the last step we have:

PL,V (cr(GL) ≤ ct4δ3d
t ) ≤ PL,V

(|cr(GL) − EL,V cr(GL)|≥ EL,V cr(GL) − ct4δ3d
t

)

≤ VarL,V cr(GL)
(EL,V cr(GL) − ct4δ3d

t )2
= O(t−1).

Hence a computational näıve approach of minimizing the crossing numbers
by just projecting onto a sample of random planes seems to be expensive. This
suggests to combine the search for an optimal choice of the direction of projection
with other quantities of the RGG. It is a long standing assumption in graph
drawing that there is a connection between the crossing number and the stress
of a graph. Therefore the next section is devoted to investigations concerning
the stress of RGGs.

4 The Stress of an RGG

According to (1) we define the stress of GL as

stress(G,GL) :=
1
2

∑

(v1,v2)∈V 2
�=

w(v1, v2)(d0(v1, v2) − dL(v1, v2))2,

where w(v1, v2) a positive weight-function and d0 resp. dL are the distances
between v1 and v2, resp v1|L and v2|L. As cr(G), stress is a U-statistic, but now
of order two. Using the Slivnyak-Mecke formula, it is immediate that

EV stress(G,GL) =
1
2
t2

∫

W 2

w(v1, v2)(d0(v1, v2) − dL(v1, v2))2dv1dv2

︸ ︷︷ ︸
=:S(1)(W,L)

.
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For the variance, the Poincaré inequality (4) implies

VarV stress(G,GL) ≤ t

∫

W

EV (Dv(stress(G,GL)))2dv

=
1
4
t

∫

W

EV

(
∑

v1∈V

w(v, v1)(d0(v, v1) − dL(v, v1))2
)2

dv

=
1
4
t3

∫

W 3

2∏

i=1

(
w(v, vi)(d0(v, vi) − dL(v, vi))2

)
dv1dv2dv

︸ ︷︷ ︸
=:S(2)(W,L)

+
1
4
t2

∫

W 2

w(v, v1)2(d0(v, v1) − dL(v, v1))4 dv1dv.

Hence the standard deviation of the stress is smaller than the expectation by
a factor t−

1
2 and thus the stress is concentrated around its mean. Again the

computation of the lower bound for the variance in (4) is asymptotically sharp.

VarV stress(G,GL) ≥ t

∫

W

(EV Dv(stress(G,GL)))2dv

=
1
4
t

∫

W

(
EV

∑

v1∈V

w(v, v1)(d0(v, v1) − dL(v, v1))2
)2

dv =
1
4
t3S(2)(W,L).

Theorem 6. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then

EV stress(G,GL) =
1
2

t2 S(1)(W,L) and

VarV stress(G,GL) =
1
4

t3 S(2)(W,L) + O(t2).

The discussions from Sects. 3.2 and 3.3 lead to analogous results for the stress of
the RGG. Using Chebychev’s inequality we could derive a law of large numbers.
Taking expectations with respect to a uniform plane L we obtain:

EL,V stress(G,GL) =
1
2
t2

∫

L
S(1)(W,L)dL,

VarL,V stress(G,GL) =
1
4
t4

⎡

⎢⎣
∫

L
S(1)(W,L)2dL −

⎛

⎝
∫

L
S(1)(W,L)dL

⎞

⎠
2
⎤

⎥⎦ + O(t3).

Again, the term in brackets is only vanishing if W = B. In this case

VarL,V stress(G,GL) = ELVarV stress(G,GL) =
1
4
t3S(2)(B) + O(t2).
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5 Correlation Between Crossing Number and Stress

It seems to be widely conjectured that the crossing number and the stress should
be positively correlated. Yet it also seems that a rigorous proof is still missing.
It is the aim of this section to provide the first proof of this conjecture, in the
case where the graph is a random geometric graph.

Clearly, by the definition of cr and stress we have

Dv cr(GL) ≥ 0 and Dv stress(G,GL) ≥ 0,

for all v and all realizations of V . Such a functional F satisfying Dv(F ) ≥ 0
is called increasing. The Harris-FKG inequality for Poisson point processes [23]
links this fact to the correlation of cr(GL) and stress(G,GL).

Theorem 7. Because stress and cr are increasing we have

EV cr(GL)stress(G,GL) ≥ EV cr(GL)EV stress(G,GL),

and thus the correlation is positive.

We immediately obtain that the covariance is positive and is of order at most

CovV

(
cr(GL), stress(GL)

) ≤
√
VarV cr(GL)VarV stress(G,GL)

≤ 1
16

cd

(
1 +

2πκd

cd
lim

t→∞
1

tδd
t

) 1
2
t5δ2d+2

t I(3)(W,L)
1
2 S(2)(W,L)

1
2 + o(t5δ2d+2

t ).

In [11, Appendix C] we use Mehler’s formula to prove a lower bound:

CovV

(
cr(GL), stress(G,GL)

)≥ t5

16

∫

W 2

IW (v)w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv.

We combine this bound with (5), divide by the standard deviations from Theo-
rems 2 and 6 and obtain the asymptotics for the correlation coefficient:

Theorem 8. Let GL be the projection of an RGG in Rd, d ≥ 3, onto a two-
dimensional plane L. Then

lim
t→∞CorrV (cr(GL), stress(G,GL))

≥

∫

W 2

vold−2((v + L⊥) ∩ W )w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv

(1 + 2πκd

cd
limt→∞ 1

tδd
t
)

1
2 I(3)(W,L)

1
2 S(2)(W,L)

1
2

.

It can be shown that this bound is even tight and asymptotically gives the correct
correlation coefficient.
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5.1 The Rotation Invariant Case

In principle the bounds for the covariance in the Poisson point process V given
above can be used to compute covariance bounds in L and V when L is not fixed
but random. For this we could use the covariance decomposition

CovL,V (X,Y ) = ELCovV (X,Y ) + CovL(EV X,EV Y ).

Here we concentrate again on the case when W = B is the ball of unit volume
and thus V is rotation invariant. Then CovL(EV cr(GL),EV stress(GL)) = 0, and
as an immediate consequence of Theorem 8 we obtain

Corollary 9. Let GL be the projection of an RGG in B ⊂ Rd, d ≥ 3, onto
a two-dimensional random plane L. Then the correlation between the crossing
number and the stress of the RGG is positive with

lim
t→∞CorrL,V (cr(GL), stress(G,GL))

≥
∫

B2 vold−2(v + L⊥) ∩ B)w(v, v1)(d0(v, v1) − dL(v, v1))2dv1dv

(1 + 2πκd

cd
limt→∞ 1

tδd
t
)

1
2 I(3)(B)

1
2 S(2)(B)

1
2

.

In particular, the correlation does not vanish as t → ∞. This gives the first proof
we are aware of, that there is a strict positive correlation between the crossing
number and the stress of a graph. Hence, at least for RGGs, the method to
optimize the stress to obtain good crossing numbers can be supported by rigorous
mathematics.

6 Consequences and Conclusion

Apart from providing precise asymptotics for the crossing numbers of draw-
ings of random geometric graphs, the main findings are the positive covariance
and the non-vanishing correlation between the stress and the crossing number
of the drawing of a random geometric graph. Of interest would be whether
CovL(cr(GL), stress(G,GL)) > 0 for arbitrary graphs G. Yet there are simple
examples of graphs G where this is wrong. Yet we could ask in a slightly weaker
form whether at least EV CovL(cr(GL), stress(GL)) > 0, but we have not been
able to prove that.

We may coarsely summarize the gist of all the above findings algorithmi-
cally in the context of crossing number approximation, ignoring precise numeric
terms that can be found above. We yield the first (expected) crossing number
approximations for a rich class of randomized graphs:

Corollary 10. Let G be a random geometric graph in R2 (unit-disk graph) as
defined above. With high probability, the number of crossings in its natural
straight-line drawing is at most a constant factor away from cr(G0) and cr(G0).
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Corollary 11. Let G be a random geometric graph in Rd (unit-ball graph) as
defined above. We obtain a straight-line drawing D by projecting it onto a ran-
domly chosen 2D plane. With high probability, the number of crossings in D is
at most a factor α away from cr(G0) and cr(G0). Thereby, α is only dependent
on the graph’s density.

Corollary 12. Let G be a random geometric graph and use its natural distances
in Rd as input for stress minimization. The stress is positively correlated to the
crossing number. Loosely speaking, a drawing of G with close to minimal stress
is expected to yield a close to minimal number of crossings.
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9. Chimani, M., Hliněný, P.: Inserting multiple edges into a planar graph. In: Pro-
ceedings of International SYmposium on Computational Geometry (SoCG) 2016,
pp. 30:1–30:15. LIPIcs 51 (2016)
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