Queue Layouts of Planar 3-Trees

Jawaherul Md. Alam ${ }^{1}$, Michael A. Bekos ${ }^{2}$, Martin Gronemann ${ }^{3(\boxtimes)}$, Michael Kaufmann ${ }^{2}$, and Sergey Pupyrev ${ }^{1}$
${ }^{1}$ Department of Computer Science, University of Arizona, Tucson, USA
jawaherul@gmail.com, spupyrev@gmail.com
${ }^{2}$ Institut für Informatik, Universität Tübingen, Tübingen, Germany
\{bekos,mk\}@informatik.uni-tuebingen.de
${ }^{3}$ Institut für Informatik, Universität zu Köln, Köln, Germany
gronemann@informatik.uni-koeln.de

Abstract

A queue layout of a graph G consists of a linear order of the vertices of G and a partition of the edges of G into queues, so that no two independent edges of the same queue are nested. The queue number of G is the minimum number of queues required by any queue layout of G. In this paper, we continue the study of the queue number of planar 3-trees. As opposed to general planar graphs, whose queue number is not known to be bounded by a constant, the queue number of planar 3-trees has been shown to be at most seven. In this work, we improve the upper bound to five. We also show that there exist planar 3-trees, whose queue number is at least four; this is the first example of a planar graph with queue number greater than three.

1 Introduction

In a queue layout [12], the vertices of a graph are restricted to a line and the edges are drawn at different half-planes delimited by this line, called queues. The task is to find a linear order of the vertices along the underlying line and a corresponding assignment of the edges of the graph to the queues, so that no two independent edges of the same queues are nested; see Fig. 1. Recall that two edges are called independent if they do not share an endvertex. The queue number of a graph is the smallest number of queues that are required by any queue layout of the graph. Note that queue layouts form the "dual" concept of stack layouts [14], which do not allow two edges of the same stack to cross.

Apart from the intriguing theoretical interest, queue layouts find applications in several domains $[2,11,15,20]$. As a result, they have been studied extensively over the years $[3,5,9,10,12,16-21]$. An important open problem in this area is whether the queue number of planar graphs is bounded by a constant. A positive answer to this problem would have several important implications, e.g., (i) that every n-vertex planar graph admits a $\mathcal{O}(1) \times \mathcal{O}(1) \times \mathcal{O}(n)$ straight-line grid drawing [22], (ii) that every Hamiltonian bipartite planar graph admits a 2 layer drawing and an edge-coloring of bounded size, such that edges of the same

Fig. 1. (a) The Goldner-Harary planar 3-tree, and (b) a 5 -queue layout of it produced by our algorithm, in which edges of different queues are colored differently. (Color figure online)
color do not cross [8], and (iii) that the queue number of k-planar graphs is also bounded by a constant [9]. The best-known upper bound is due to Dujmović [4], who showed that the queue number of an n-vertex planar graph is at most $\mathcal{O}(\log n)$ (improving upon an earlier bound by Di Battista et al. [3]).

It is worth noting that many subclasses of planar graphs have bounded queue number. Every tree has queue number one [12], outerplanar graphs have queue number at most two [11], and series-parallel graphs have queue number at most three [18]. Surprisingly, planar 3-trees have queue number at most seven [21], although they were conjectured to have super-constant queue number by Pemmaraju [16]. As a matter of fact, every graph that admits a 1 -queue layout is planar with at most $2 n-3$ edges; however, testing this property is $\mathcal{N} \mathcal{P}$ complete [11]; for a survey refer to [9].

Our Contribution. In Sect. 2, we improve the upper bound on the queue number of planar 3-trees from seven [21] to five; recall that a planar 3-tree is a triangulated plane graph G with $n \geq 3$ vertices, such that G is either a 3-cycle, if $n=3$, or has a vertex whose deletion gives a planar 3 -tree with $n-1$ vertices, if $n>3$. In Sect. 3, we show that there exist planar 3 -trees, whose queue number is at least four, thus strengthening a corresponding result of Wiechert [21] for general (that is, not necessarily planar) 3-trees. We stress that our lower bound is also the best known for planar graphs. Table 1 puts our results in the context of existing bounds. We conclude in Sect. 4 with open problems.

Preliminaries. For a pair of distinct vertices u and v, we write $u \prec v$, if u precedes v in a linear order. We also write $\left[v_{1}, v_{2}, \ldots, v_{k}\right]$ to denote that v_{i} precedes v_{i+1} for all $1 \leq i<k$. Assume that F is a set of $k \geq 2$ independent edges $\left(s_{i}, t_{i}\right)$ with $s_{i} \prec t_{i}$, for all $1 \leq i \leq k$. If the linear order is $\left[s_{1}, \ldots, s_{k}, t_{k}, \ldots, t_{1}\right]$, then we say that F is a k-rainbow, while if the linear order is $\left[s_{1}, \ldots, s_{k}, t_{1}, \ldots, s_{k}\right]$, we say that F is a k-twist. The edges of F form a k-necklace, if $\left[s_{1}, t_{1}, \ldots, s_{k}, t_{k}\right]$; see Fig. 2a. A preliminary result for queue layouts is the following.

Lemma 1 (Heath and Rosenberg [12]). A linear order of the vertices of a graph admits a k-queue layout if and only if there exists no $(k+1)$-rainbow.

Table 1. Queue numbers of various subclasses of planar graphs

Graph class	Upper bound		Lower bound	
	Old	New	Old	New
Tree	$1[12]$		$1[12]$	
Outerplanar	$2[11]$		$2[12]$	
Series-parallel	$3[18]$		$3[21]$	
Planar 3-tree	$7[21]$	$\mathbf{5}$ [Theorem 1]	$3[21]$	$\mathbf{4}$ [Theorem 2]
Planar	$\mathcal{O}(\log n)[4]$		$3[21]$	$\mathbf{4}$ [Theorem 2]

Central in our approach is also the following construction by Dujmovic et al. [7] for internally-triangulated outerplane graphs; for an illustration see Figs. 2b-c.

Lemma 2 (Dujmović, Pór, Wood [7]). Every internally-triangulated outerplane graph, G, admits a straight-line outerplanar drawing, $\Gamma(G)$, such that the y-coordinates of vertices of G are integers, and the absolute value of the difference of the y-coordinates of the endvertices of each edge of G is either one or two. Furthermore, the drawing can be used to construct a 2-queue layout of G.

Let $\langle u, v, w\rangle$ be a face of a drawing $\Gamma(G)$ produced by the construction of Lemma 2, where G is an internally triangulated outerplane graph. Up to renaming of the vertices of this face, we may assume that $|y(u)-y(v)|=|y(u)-y(w)|=$ $1,|y(v)-y(w)|=2$ and $y(v)>y(w)$. We refer to vertex u as to the anchor of the face $\langle u, v, w\rangle$ of $\Gamma(G) ; v$ and w are referred to as top and bottom, respectively. It is easy to verify that drawing $\Gamma(G)$ can be converted to a 2-queue layout of G as follows: (i) for any two distinct vertices u and v of $G, u \prec v$, if and only if the y-coordinate of u is strictly greater than the one of v, or the y-coordinate of u is equal to the one of v, and u is to the left of v in $\Gamma(G)$, (ii) edge (u, v) is assigned to the first (second) queue if and only if the absolute value of the difference of the y-coordinates of u and v is one (two, respectively) in $\Gamma(G)$.

Finally, let $\langle u, v, w\rangle$ and $\left\langle u^{\prime}, v^{\prime}, w^{\prime}\right\rangle$ be two faces of $\Gamma(G)$, such that u and u^{\prime} are their anchors, v and v^{\prime} are their top vertices, and w and w^{\prime} are their bottom vertices. If u and u^{\prime} are distinct and $u \prec u^{\prime}$ in the 2-queue layout, then $v \prec v^{\prime}$ (if $v \neq v^{\prime}$) and $w \prec w^{\prime}$ (if $w \neq w^{\prime}$). The property clearly holds, if u and u^{\prime} do not have the same y-coordinate. Otherwise, the property holds, since $\Gamma(G)$ is planar.

2 The Upper Bound

In this section, we prove that the queue number of every planar 3-tree is at most five. Our approach is inspired by the algorithm of Wiechert [21] to compute 7queue layouts for general (not necessarily planar) 3-trees. To reduce the number of required queues in the produced layouts, we make use of structural properties of the input graph. In particular, we put the main ideas of the algorithm of

Fig. 2. (a) 3-rainbow, 3-twist and 3-necklace (from top to bottom); (b) an internallytriangulated outerplane graph G_{0}; the dotted-gray edges are added to make it biconnected; its gray-shaded faces contain components c_{1}, c_{2} and c_{3} of G_{1}; (c) the drawing $\Gamma\left(G_{0}\right)$ by Lemma 2; the vertex-labels indicate the linear order of its 2 -queue layout; the anchor vertices of faces $\langle 9,10,12\rangle,\langle 3,5,9\rangle$ and $\langle 4,8,9\rangle$ are $10,5,8$, respectively.

Wiechert [21] into a peeling-into-levels approach (see, e.g., [23]), according to which the vertices and the edges of the input graph are partitioned as follows: (i) vertices incident to the outerface are at level zero, (ii) vertices incident to the outerface of the graph induced by deleting all vertices of levels $0, \ldots, i-1$ are at level i, (iii) edges between same-level vertices are called level edges, and (iv) edges between vertices of different levels are called binding edges.

To keep the description simple, we first show how to compute a 5 -queue layout of a planar 3 -tree G, assuming that G has only two levels. Then, we extend our approach to more than two levels. We conclude by discussing the differences between the approach of Wiechert [21] and ours; we also describe which properties of planar 3 -trees we exploited to reduce the required number of queues.

The Two-Level Case. We start with the (intuitively easier) case in which the given planar 3 -tree G consists of two levels, L_{0} and L_{1}. Since we use this case as a tool to cope with the general case of more than two levels, we consider a slightly more general scenario. In particular, we make the following assumptions (see Fig. 2b): (A.1) the graph G_{0} induced by the vertices of level L_{0} is outerplane and internally-triangulated, and (A.2) each connected component of the graph G_{1} induced by the vertices of level L_{1} is outerplane and resides within a (triangular) face of G_{0}. Without loss of generality we may also assume that G_{0} is biconnected, as otherwise we can augment it to being biconnected by adding (level- L_{0}) edges without affecting its outerplanarity. Note that in a planar 3tree, graph G_{0} is simply a triangle (and not an outerplane graph, as we have assumed), and as a result G_{1} is a single outerplane component. Our algorithm maintains the following invariants:
I. 1 the linear order is such that all vertices of L_{0} precede all vertices of L_{1};
I. 2 the level edges use two queues, \mathcal{Q}_{0} and \mathcal{Q}_{1};
I. 3 the binding edges use three queues, $\mathcal{Q}_{2}, \mathcal{Q}_{3}$, and \mathcal{Q}_{4}.

In the following lemma, we show how to determine a (partial) linear order of the vertices of levels L_{0} and L_{1} that satisfies the first two invariants of our algorithm.

Lemma 3. There is an order of vertices of level L_{0} and a partial order of vertices of level L_{1} such that I. 1 and I.2 are satisfied.

Proof. To compute an order that satisfies I.1, we construct two orders, one for the vertices of level L_{0} (that satisfies I.2) and one for the vertices of level L_{1} (that also satisfies I.2), and then we concatenate them so that the vertices of L_{0} precede the vertices of L_{1}.

To compute an order of the vertices of L_{0} satisfying I.2, we apply Lemma 2, as by our initial assumption A.1, graph G_{0} is internally-triangulated and outerplane. Thus, I. 2 is satisfied for the vertices of level L_{0}. To compute an order of the vertices of L_{1} satisfying I.2, we apply Lemma 2 individually for every connected component of G_{1}, which can be done by our initial assumption A.2. Then the resulting orders are concatenated (as defined by next Lemma4). Since for every two connected components of G_{1}, all vertices of the first one either precede or follow all vertices of the second one, we can use the same two queues (denoted by \mathcal{Q}_{0} and \mathcal{Q}_{1} in I.2) for all the vertices of L_{1}. Therefore, I. 2 is satisfied.

Next, we complete the order of the vertices of G, in a way that the binding edges between L_{0} and L_{1} require at most three additional queues so as to satisfy I.3.

Lemma 4. Given the linear order of the vertices of level L_{0} and the partial order of the vertices of level L_{1} produced by Lemma 3, there is a total order of the vertices of L_{0} and L_{1} that extends their partial orders and an assignment of the binding edges between L_{0} and L_{1} into three queues such that I. 3 is satisfied.

Fig. 3. The 5 -queue layout for the graph in Fig. 2; since $5 \prec 8$ and $8 \prec 10$ in the order of the vertices of level L_{0} as seen in Fig. 2, c_{2} precedes c_{3}, and c_{3} precedes c_{1}. (Color figure online)

Proof. Consider a connected component c of G_{1}. By our initial assumption A.2, component c resides within a triangular face $\langle u, v, w\rangle$ of G_{0}. Let u, v and w be the anchor, top and bottom vertices of the face, respectively. We assign the binding edges incident to u to queue \mathcal{Q}_{2}, the ones incident to v to queue \mathcal{Q}_{3} and the ones incident to w to queue \mathcal{Q}_{4}; see the blue, red, and green edges in Fig. 3.

Next we describe how to compute the relative order of the connected components of G_{1}. Let c and c^{\prime} be two such components. By our initial assumption A.2, c and c^{\prime} reside within two triangular faces $\langle u, v, w\rangle$ and $\left\langle u^{\prime}, v^{\prime}, w^{\prime}\right\rangle$ of G_{0}. Assume that u and u^{\prime} are the anchors of the two faces, v, v^{\prime} are top and w, w^{\prime} are bottom vertices. If $u \neq u^{\prime}$, then c precedes c^{\prime} if and only if $u \prec u^{\prime}$ in the order of L_{0}.

If $u=u^{\prime}$, we have $v \neq v^{\prime}$ or $w \neq w^{\prime}$. If $v \neq v^{\prime}$, then c precedes c^{\prime} if and only if $v \prec v^{\prime}$ in the order of L_{0}. Otherwise (that is, $u=u^{\prime}$ and $v=v^{\prime}$), c precedes c^{\prime} if and only if $w \prec w^{\prime}$ in the order of L_{0}. We claim that for the resulting order of L_{1}, I. 3 is satisfied, that is, no two edges of each of $\mathcal{Q}_{2}, \mathcal{Q}_{3}$ and \mathcal{Q}_{4} are nested.

We start our proof with \mathcal{Q}_{2}. Consider two independent edges $(x, y) \in \mathcal{Q}_{2}$ and $\left(x^{\prime}, y^{\prime}\right) \in \mathcal{Q}_{2}$, where $x, x^{\prime} \in L_{0}$ and $y, y^{\prime} \in L_{1}$ (see the blue edges in Fig. 3 incident to 5 and 8). By construction of \mathcal{Q}_{2}, x and x^{\prime} are anchors of two different faces f_{x} and $f_{x^{\prime}}$ of G_{0} (see the faces of Fig. 2c that contain c_{2} and c_{3}). Without loss of generality we assume that $x \prec x^{\prime}$ in the order of L_{0}. Then, the two components c_{y} and $c_{y^{\prime}}$ of G_{1}, that reside within f_{x} and $f_{x^{\prime}}$ and contain y and y^{\prime}, are such that all vertices of c_{y} precede all vertices of $c_{y^{\prime}}$ (in Fig. 3, $x=5$ precedes $y=8$; thus, $c_{y}=c_{2}$ precedes $c_{y^{\prime}}=c_{3}$). Since $y \in c_{y}$ and $y^{\prime} \in c_{y^{\prime}}$, edges (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ do not nest.

We continue our proof with \mathcal{Q}_{3} (the proof for \mathcal{Q}_{4} is similar). Let (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ be two independent edges of \mathcal{Q}_{3}, where $x, x^{\prime} \in L_{0}$ and $y, y^{\prime} \in L_{1}$ (see the red edges in Fig. 3 incident to 3 and 4). By construction of \mathcal{Q}_{3}, x and x^{\prime} are the top vertices of two different faces f_{x} and $f_{x^{\prime}}$ of G_{0} (see the faces of Fig. 2c that contain c_{2} and c_{3}). Let c_{y} and $c_{y^{\prime}}$ be the components of G_{1} that reside within f_{x} and $f_{x^{\prime}}$ and contain y and y^{\prime}. Finally, let u and u^{\prime} be the anchors of f_{x} and $f_{x^{\prime}}$, respectively. Suppose first that $u \neq u^{\prime}$ and assume that $u \prec u^{\prime}$ in the order of L_{0}. Since $u \prec u^{\prime}$, it follows that $x \prec x^{\prime}$ and that all vertices of c_{y} precede all vertices of $c_{y^{\prime}}$ (in Fig. 3, $u=5$ precedes $u^{\prime}=8$, which implies that $x=3$ precedes $x^{\prime}=4$; thus, $c_{y}=c_{2}$ precedes $c_{y}^{\prime}=c_{3}$). Since $y \in c_{y}$ and $y^{\prime} \in c_{y^{\prime}}$, it follows that (x, y) and $\left(x^{\prime}, y^{\prime}\right)$ are not nested. Suppose now that $u=u^{\prime}$ and assume that $x \prec x^{\prime}$ in the order of L_{0}. Since $u=u^{\prime}$ and $x \prec x^{\prime}$, all vertices of c_{y} precede all vertices of $c_{y^{\prime}}$. Since $y \in c_{y}$ and $y^{\prime} \in c_{y^{\prime}}$, it follows that (x, y) and (x^{\prime}, y^{\prime}) are not nested. Hence, I. 3 is satisfied, which concludes the proof.

Lemmas 3 and 4 conclude the two-level case. Before we proceed with the multi-level case, we make a useful observation. To satisfy I.3, we did not impose any restriction on the order of the vertices of each connected component of G_{1} (any order that satisfies I. 2 for level L_{1} would be suitable for us, that is, not necessarily the one constructed by Lemma 2). What we fixed, was the relative order of these components. We are now ready to proceed to the multi-level case.

The Multi-level Case. We now consider the general case, in which our planar 3 -tree G consists of more than two levels, say $L_{0}, L_{1}, \ldots, L_{\lambda}$ with $\lambda \geq 2$. Let G_{i} be the subgraph of G induced by the vertices of level $L_{i} ; i=0,1, \ldots, \lambda$. The connected components of each graph G_{i} are internally-triangulated outerplane graphs that are not necessarily biconnected: Clearly, this holds for G_{0}, which is a triangle. Assuming that for some $i=1, \ldots, \lambda$, graph G_{i-1} has the claimed property, we observe that each connected component of G_{i} resides within a facial triangle of G_{i-1}. Since each non-empty facial triangle of G_{i-1} in G induces a planar 3-tree [13], the claim follows by observing that the removal of the outer face of a planar 3-tree yields a plane graph, whose outer vertices induce an internally-triangulated outerplane graph.

For the recursive step of our algorithm, assume that for some $i=0, \ldots, \lambda-1$ we have a 5 -queue layout for each of the connected components of the graph H_{i+1} induced by the vertices of $L_{i+1}, \ldots, L_{\lambda}$, that satisfies the following invariants.
M. 1 the linear order is such that all vertices of L_{j} precede all vertices of L_{j+1} for every $j=i+1, \ldots, \lambda-1$;
M. 2 the level edges of $L_{i+1}, \ldots, L_{\lambda}$ use two queues, \mathcal{Q}_{0} and \mathcal{Q}_{1};
M. 3 for every $j=i+1, \ldots, \lambda-1$, the binding edges between L_{j} and L_{j+1} use three queues, $\mathcal{Q}_{2}, \mathcal{Q}_{3}$, and \mathcal{Q}_{4}.

Based on these layouts, we show how to construct a 5 -queue layout (satisfying M.1-M.3) for each of the connected components of the graph H_{i} induced by the vertices of $L_{i}, \ldots, L_{\lambda}$. Let C_{i} be such a component. By definition, C_{i} is delimited by a connected component c_{i} of G_{i} which is internally-triangulated and outerplane. If none of the faces of c_{i} contains a connected component of H_{i+1}, then we compute a 2-queue layout of it using Lemma 2. Consider now the more general case, in which some of the faces of c_{i} contain connected components of H_{i+1}. By M.1-M.3, we have computed 5 -queue layouts for all the connected components, say d_{1}, \ldots, d_{k}, of H_{i+1} that reside within the faces of c_{i}.

(a) For each of d_{1}, \ldots, d_{k} all vertices of L_{j} precede all vertices of $L_{j+1} ; j=i+1, \ldots, \lambda-1$

(b) The computed linear order based on $p_{i}, \ldots, p_{\lambda}$

Fig. 4. Illustrations for the proof of Theorem 1.

We proceed by applying the two-level algorithm to the subgraph of C_{i} induced by the vertices of c_{i} and the vertices incident to the outer faces of d_{1}, \ldots, d_{k}. By the last observation we made in the two-level case, this will result in: (a) a linear order $\mathcal{O}\left(c_{i}\right)$ of the vertices of c_{i}, (b) a relative order of the components d_{1}, \ldots, d_{k}, (c) an assignment of the (level- L_{i}) edges of c_{i} into \mathcal{Q}_{0} and \mathcal{Q}_{1}, and (d) an assignment of the binding edges between c_{i} and each of d_{1}, \ldots, d_{k} into $\mathcal{Q}_{2}, \mathcal{Q}_{3}$ and \mathcal{Q}_{4}. Up to renaming, we assume that d_{1}, \ldots, d_{k} is the computed order of these components; see Fig. 4a.

By (c) and (d), all edges of C_{i} are assigned to $\mathcal{Q}_{0}, \ldots, \mathcal{Q}_{4}$, since the edges of d_{1}, \ldots, d_{k} have been recursively assigned to these queues. Next, we partition the order of vertices of C_{i} into $\lambda-i+1$ disjoint intervals, say $p_{i}, \ldots, p_{\lambda}$, such that p_{μ} precedes p_{ν} if and only if $\mu \prec \nu$. All the (level- L_{i}) vertices of c_{i} are contained in p_{i} in the order $\mathcal{O}\left(c_{i}\right)$ by (a). For $j=i+1, \ldots, \lambda, p_{j}$ contains the vertices of L_{j} of each of the components d_{1}, \ldots, d_{k}, such that the vertices of L_{j} of d_{μ} precede
the vertices of L_{j} of d_{ν} if and only if $\mu \prec \nu$; see Fig. 4b. The proof that M.1-M. 3 are satisfied can be found in the full version [1]. We summarize in the following.

Theorem 1. Every planar 3-tree has queue number at most 5.
We note here that queue layouts are closely related to track layouts; for definitions refer to [7]. The following result follows immediately from a known result by Dujmović, Morin, Wood [6]; see the full version [1] for details.

Corollary 1. The track number of a planar 3-tree is at most 4000.
Differences with Wiechert's Algorithm. Wiechert's algorithm [21] builds upon a previous algorithm by Dujmović et al. [6]. Both yield queue layouts for general k-trees, using the breadth-first search (BFS) starting from an arbitrary vertex r of G. For each $d>0$ and each connected component C induced by the vertices at distance d from r, create a node (called bag) "containing" all vertices of C; two bags are adjacent if there is an edge of G between them. For a k-tree, the result is a tree of bags T, called tree-partition, so that (P.1) every node of T induces a connected ($k-1$)-tree, and (P.2) for each non-root node $x \in T$, if $y \in T$ is the parent of x, then the vertices in y having a neighbor in x form a clique of size k. Both algorithms order the bags of T, such that the vertices of the bags at distance d from r precede those at distance $d+1$. The vertices within each bag are ordered by induction using P.1.

The algorithms differ in the way the edges are assigned to queues; the more efficient one by Wiechert [21] uses $2^{k}-1$ queues (2^{k-1} for the inter- and $2^{k-1}+1$ for the intra-bag edges), which is worst-case optimal for 1 - and 2 -trees.

If G is a planar 3-tree and the BFS is started from a dummy vertex incident to the three outervertices of G, then the intra- and inter-bag edges correspond to the level and binding edges of our approach, while the bags at distance d from r in T correspond to different connected components of level d.

To reduce the number of queues, we observed that in G (i) every node of T induces a connected outerplanar graph, while (ii) each clique of size three by P. 2 is a triangular face of G. By the first observation, we reduced the number of queues for intra-bag edges; by the second, we combined orders from different bags more efficiently.

3 The Lower Bound

In the following, we prove that the queue number of planar 3 -trees is at least four. To this end, we will define recursively a subgraph of a planar 3-tree G and we will show that it contains at least one 4 -rainbow in any ordering. Starting with a set of T independent edges $\left(s_{i}, t_{i}\right)$ with $1 \leq i \leq T$ and T to be determined later, we connect their endpoints to two unique vertices, say A and B, which we assume to be neighboring. We refer to these edges as (s, t)-edges.

As a next step, we stellate each triangle $\left\langle A, s_{i}, t_{i}\right\rangle$ with a vertex x_{i}, that is, we introduce vertex x_{i} and connect it to A, s_{i}, and t_{i}. Symmetrically, we also

Fig. 5. Construction of graph G_{T} : Each gray subgraph in (a) corresponds to a copy of the graph of (b).
stellate each triangle $\left\langle B, s_{i}, t_{i}\right\rangle$ with a vertex y_{i}. Afterwards, we add one more level, that is, we stellate each of the triangles $\left\langle A, s_{i}, t_{i}\right\rangle,\left\langle B, s_{i}, t_{i}\right\rangle,\left\langle A, x_{i}, s_{i}\right\rangle$, $\left\langle A, x_{i}, t_{i}\right\rangle,\left\langle B, y_{i}, s_{i}\right\rangle$ and $\left\langle B, y_{i}, t_{i}\right\rangle$ with vertices $\alpha_{i}, \beta_{i}, p_{i}, q_{i}, u_{i}$ and v_{i}, respectively; see Fig. 5b. We further stellate $\left\langle s_{i}, t_{i}, \alpha_{i}\right\rangle$ with α_{i}^{\prime} and then $\left\langle s_{i}, t_{i}, \alpha_{i}^{\prime}\right\rangle$ with $\alpha_{i}^{\prime \prime}$. Symmetrically, we stellate $\left\langle s_{i}, t_{i}, \beta_{i}\right\rangle$ with β_{i}^{\prime} and $\left\langle s_{i}, t_{i}, \beta_{i}^{\prime}\right\rangle$ with $\beta_{i}^{\prime \prime}$.

Let G_{T} be the graph constructed so far. We refer to vertices A and B as the poles of G_{T} and we assume that G_{T} admits a 3-queue layout \mathcal{Q}. By symmetry, we may assume that $A \prec B$ and that $s_{i} \prec t_{i}$ for each edge $\left(s_{i}, t_{i}\right)$. Consider a single edge $\left(s_{i}, t_{i}\right)$ and the relative order of its endvertices to A and B. Then, there exist six possible permutations: (P.1) $s_{i} \prec A \prec B \prec t_{i}$, (P.2) $A \prec s_{i} \prec B \prec t_{i}$, (P.3) $s_{i} \prec A \prec t_{i} \prec B$, (P.4) $A \prec B \prec s_{i} \prec t_{i}$, (P.5) $s_{i}, \prec t_{i} \prec A \prec B$, and (P.6) $A \prec s_{i} \prec t_{i} \prec B$.

By the pigeonhole principle and by setting $T=6 l$, we may claim that at least one of the permutations P.1-P. 6 applies to at least l edges. We will show that if too many (s, t)-edges share one of the permutations P.1-P.5, then there exists a 4 -rainbow, contradicting the fact that \mathcal{Q} is a 3 -queue layout for G_{T}. This implies that if T is large enough, then for at least one (s, t)-edge of G_{T} permutation P. 6 applies. Based on this fact, we describe later how to augment the graph that we have constructed so far using a recursive construction such that we can also rule out permutation P.6. Thereby, proving the claimed lower bound of four. We start with an auxiliary lemma.

Lemma 5. In every queue that contains r^{2} independent edges, there exists either an r-twist or an r-necklace.

Proof. Assume that no r-twist exists, as otherwise the lemma holds. We will prove the existence of an r-necklace. Let $\left(s_{1}, t_{1}\right), \ldots,\left(s_{r^{2}}, t_{r^{2}}\right)$ be the r^{2} independent edges. Assume w.l.o.g. that $s_{i} \prec s_{i+1}$ for each $i=1, \ldots, r^{2}-1$. Consider the edge $\left(s_{1}, t_{1}\right)$. Since s_{1} is the first vertex in the order and no two edges nest, each vertex t_{i}, with $i>1$, is to the right of t_{1}. Since no r-twist exists, vertex s_{r} is to the right of t_{1}. Thus, $\left(s_{1}, t_{1}\right)$ and $\left(s_{r}, t_{r}\right)$ do not cross. The removal of
$\left(s_{1}, t_{1}\right), \ldots,\left(s_{r-1}, t_{r-1}\right)$ makes s_{r} first. By applying this argument $r-1$ times, we obtain that $\left(s_{1}, t_{1}\right),\left(s_{r}, t_{r}\right), \ldots\left(s_{(r-1)^{2}+1}, t_{(r-1)^{2}+1}\right)$ form an r-necklace.

Applying the pigeonhole principle to a k-queue layout, we obtain the following.

Corollary 2. Every k-queue layout with at least $k r^{2}$ independent edges contains at least one r-twist or at least one r-necklace.

We exploit this result for permutations P.1-P. 6 as follows. Recall that \mathcal{Q} is a 3-queue layout for G_{T}. So, if we set $T=18 r^{2}$ for an $r>0$ of our choice, then at least $3 r^{2}(s, t)$-edges of G_{T} share the same permutation. Moreover, these edges are by construction independent. Therefore, by Corollary 2 at least r of them form a necklace or a twist (while also sharing the same permutation). In the following, we show that if $r(s, t)$-edges, say w.l.o.g. $\left(s_{1}, t_{1}\right), \ldots,\left(s_{r}, t_{r}\right)$, form a necklace or a twist (for an appropriate choice of r) and simultaneously share one of the permutations P.1-P.5, then a 4-rainbow is inevitably induced, which contradicts the fact that \mathcal{Q} is a 3-queue layout. We consider each case separately.

Case P.1: Let $r=8$. It suffices to consider the case, in which $\left(s_{1}, t_{1}\right), \ldots,\left(s_{8}, t_{8}\right)$ form a twist, since in general for $r>1$ the necklace case is impossible. Hence, the order is $\left[s_{1} \ldots s_{8} A B t_{1} \ldots t_{8}\right]$. We show that x_{4} always yields a 4 -rainbow; Fig. 6 shows the three subcases arising when x_{4} is such that $x_{4} \prec B$ holds. Clearly, each yields a 4 -rainbow. Since we did not use the edge (x_{4}, A), by symmetry, a 4 -rainbow is also obtained when $B \prec x_{4}$.

Case P.2: As in the previous case, we set $r=8$ and we only consider the case, in which $\left(s_{1}, t_{1}\right), \ldots,\left(s_{8}, t_{8}\right)$ form a twist, since the necklace case is again impossible. Hence, the order is $\left[A s_{1} \ldots s_{8} B t_{1} \ldots t_{8}\right]$. One may verify that placing x_{4} and x_{5} to the left of t_{8} always results in a 4 -rainbow (see the full version [1] for details). For the case in which x_{4} and x_{5} are preceded by t_{8}, we distinguish between if $x_{4} \prec x_{5}$ holds or not. Both result in a 4 -rainbow.

Case P.3: This case can be ruled out like Case P. 2 due to symmetry.

Fig. 6. Illustration for the Case P. 1 when $x_{4} \prec B$ holds.

Case P.4: Let $r=10$. We distinguish two subcases based on whether the edges $\left(s_{1}, t_{1}\right), \ldots,\left(s_{10}, t_{10}\right)$ form a twist or a necklace (in contrast to the previous case, here both cases are possible).

Fig. 7. Illustration for the Case P. 4 when $z_{4 \ldots 7} \prec t_{9}$ holds.

We start with the twist case. Hence, the order is $\left[A B s_{1} \ldots s_{10} t_{1} \ldots t_{10}\right]$. Let $Z_{4 \ldots 7}=\left\{x_{4}, \ldots, x_{7}\right\} \cup\left\{y_{4}, \ldots y_{7}\right\}$ and let $z_{4 \ldots 7}$ be any element of $Z_{4 \ldots 7}$. Similar to the previous case, we sweep from left to right and rule out easy subcases. However, we have to ensure that we do not use any edge from $z_{4 \ldots 7}$ to A or B in order to keep the roles of x_{i} and y_{i} interchangeable. Figure 7 shows that we may assume that $t_{9} \prec z_{4 \ldots 7}$, that is, all x_{4}, \ldots, x_{7} and y_{4}, \ldots, y_{7} are preceded by t_{9}.

Next, we show that we can always construct a 3 -rainbow spanning $\left(s_{8}, t_{8}\right)$, which then yields the desired 4 -rainbow. Let us take a closer look at the ordering of the 8 vertices in $Z_{4 \ldots 7}$. To prevent the creation of a 3 -rainbow that spans $\left(s_{8}, t_{8}\right)$, we claim that the ordering has to comply with two requirements: (R.1) the indices of the first 7 elements of $Z_{4 \ldots 7}$ are non-decreasing, and (R.2) for the last 7 elements of $Z_{4 \ldots 7}$, it must hold that all x precede all y. Assume to the contrary, that R. 1 does not hold. Hence, there exists a pair of vertices, say w.l.o.g $x_{j} \prec x_{i}$, with $i<j$ and x_{i} is not the last element of $Z_{4 \ldots 7}$. Then, $\left[s_{i} \ldots s_{j} \ldots x_{j} \ldots x_{i}\right]$ forms a 2-rainbow and together with the last element of $Z_{4 \ldots 7}$ that is adjacent to either A or B, we obtain a 3 -rainbow spanning $\left(s_{8}, t_{8}\right)$; a contradiction. Assume now that R. 2 does not hold. Then, there exists a pair $y_{i} \prec x_{j}$ with y_{i} not being the first element. Let the first element be x_{l}. Then, $\left[A \ldots B \ldots s_{l} \ldots x_{l} \ldots y_{i} \ldots x_{j}\right]$ is a 3-rainbow spanning $\left(s_{8}, t_{8}\right)$; a contradiction.

Now, we show that R. 1 and R. 2 cannot simultaneously hold, which implies the existence of a 4-rainbow. Consider the last element of $Z_{4 \ldots 7}$. Assume that R. 1 and R. 2 both hold. By R.2, we may deduce that the last three elements of $Z_{4 \ldots 7}$ belong to $\left\{y_{4}, \ldots y_{7}\right\}$. Let them be y_{i}, y_{j}, y_{ℓ} as they appear from left to right. Then, by R. 1 we have that $i<j$. Consider now x_{j}. By R. $1, y_{i} \prec x_{j}$ must hold. This contradicts the fact that y_{i}, y_{j}, y_{ℓ} are the last three elements of $Z_{4 \ldots 7}$.

We continue with the necklace case. Here, the order is $\left[A B s_{1} t_{1} \ldots s_{10} t_{10}\right]$. We make several observations about the ordering in the form of propositions; their formal proofs can be found in the full version [1].

Proposition 1. Let w be a neighbor of s_{i} and t_{i} for $3 \leq i \leq 8$. Then, either $s_{i-1} \prec w \prec t_{i+1}$ holds, or $s_{10} \prec w$.

Proposition 2. Let w and z be two vertices that form a K_{4} with s_{i} and t_{i}, for $3 \leq i \leq 8$. Then, at least one of the following holds: $s_{10} \prec w$ or $s_{10} \prec z$.

Proposition 3. Let w, z be neighbors of both s_{i}, t_{i}, for $3 \leq i \leq 8$. Then, at most one of w and z is between s_{i-1} and s_{i} or between t_{i} and t_{i-1}. Furthermore, if one of w and z is between s_{i-1} and s_{i} or between t_{i} and t_{i-1}, then the other is not between s_{i} and t_{i}.

Proposition 4. For $4 \leq i \leq 8$, each vertex from the set $\left\{x_{i}, y_{i}, p_{i}, q_{i}, u_{i}, v_{i}\right\}$ is between s_{i-1} and t_{i+1}.

(a) $x_{i} \prec s_{i} \prec t_{i} \prec y_{i}$

(b) $s_{i} \prec x_{i} \prec y_{i} \prec t_{i}$

Fig. 8. Contradiction for placing $x_{i}, y_{i}, p_{i}, q_{i}, u_{i}, v_{i}$ in range $\left(s_{i-1}, t_{i+1}\right), 4 \leq i \leq 8$.

By Proposition 4 , for $4 \leq i \leq 8$, each vertex from $\left\{s_{i}, t_{i}, x_{i}, y_{i}, p_{i}, q_{i}, u_{i}, v_{i}\right\}$ is in $\left(s_{i-1}, t_{i+1}\right)$. Then, the edges between these vertices cannot form a 2 -rainbow, as otherwise this 2-rainbow along with the two edges $\left(A, t_{10}\right)$ and $\left(B, s_{10}\right)$ would form a 4-rainbow. Assume w.l.o.g. that $x_{i} \prec y_{i}$. Then, by Proposition 3, one of the following two conditions hold: (i) $x_{i} \prec s_{i} \prec t_{i} \prec y_{i}$, (ii) $s_{i} \prec x_{i} \prec y_{i} \prec t_{i}$; see Fig. 8. In both cases, p_{i} must precede both x_{i} and s_{i}, as otherwise either $\left(p_{i}, s_{i}\right),\left(x_{i}, t_{i}\right)$, or $\left(p_{i}, x_{i}\right),\left(s_{i}, t_{i}\right)$ would form a 2 -rainbow; see Fig. 8 . But then there is no valid position for q_{i} without creating a 2 -rainbow in either case, resulting together with $\left(A, t_{10}\right)$ and $\left(B, s_{10}\right)$ in a 4 -rainbow.

Case P.5: This case can be ruled out like Case P. 4 due to symmetry.
From the above case analysis it follows that if r is at least 10 (which implies that T is at least 1,800), then for at least one (s, t)-edge of G_{T} permutation P. 6 applies, that is, there exists $1 \leq i_{0} \leq T$ such that $A \prec s_{i_{0}} \prec t_{i_{0}} \prec B$. Notice that the edges (A, B) and $\left(s_{i_{0}}, t_{i_{0}}\right)$ form a 2 -rainbow.

We proceed by augmenting graph G_{T} as follows. For each edge $\left(s_{i}, t_{i}\right)$ of G_{T}, we introduce a new copy of G_{T}, which has s_{i} and t_{i} as poles. Let G_{T}^{\prime} be the augmented graph and let $\left(s_{1}^{\prime}, t_{1}^{\prime}\right), \ldots,\left(s_{T}^{\prime}, t_{T}^{\prime}\right)$ be the (s, t)-edges of the copy of graph G_{T} in G_{T}^{\prime} corresponding to the edge ($s_{i_{0}}, t_{i_{0}}$) of the original graph G_{T}. Then, by our arguments above there exists $1 \leq i_{0}^{\prime} \leq T$ such that $s_{i_{0}} \prec s_{i_{0}}^{\prime} \prec t_{i_{0}}^{\prime} \prec t_{i_{0}}$. Hence, the edges $(A, B),\left(s_{i_{0}}, t_{i_{0}}\right)$ and $\left(s_{i_{0}}^{\prime}, t_{i_{0}}^{\prime}\right)$ form a 3-rainbow, since $A \prec s_{i_{0}} \prec t_{i_{0}} \prec B$ holds. If we apply the same augmentation procedure to graph G_{T}^{\prime}, then we guarantee that the resulting graph $G_{T}^{\prime \prime}$, which is clearly a subgraph of a planar 3-tree, has inevitably a 4 -rainbow. Hence, either G_{T} does not admit a 3-queue layout, as we initially assumed, or $G_{T}^{\prime \prime}$ does not admit a 3 -queue layout. In both cases, Theorem 2 follows.

Theorem 2. There exist planar 3-trees that have queue number at least 4.

4 Conclusions

In this work, we presented improved bounds on the queue number of planar 3 -trees. Three main open problems arise from our work. The first one concerns the exact upper bound on the queue number of planar 3 -trees. Does there exist a planar 3 -tree, whose queue number is five (as our upper bound) or the queue number of every planar 3-tree is four (as our lower bound example)? The second problem is whether the technique that we developed for planar 3-trees can be extended so to improve the upper bound for the queue number of general (that is, non-planar) k-trees, which is currently exponential in k [21]. Finally, the third problem is the central question in the area. Is the queue number of general planar graphs (that is, that are not necessarily planar 3 -trees) bounded by a constant?

References

1. Alam, J.M., Bekos, M.A., Gronemann, M., Kaufmann, M., Pupyrev, S.: Queue layouts of planar 3-trees. CoRR abs/1808.10841 (2018)
2. Bhatt, S.N., Chung, F.R.K., Leighton, F.T., Rosenberg, A.L.: Scheduling tree-dags using FIFO queues: a control-memory trade-off. J. Parallel Distrib. Comput. 33(1), 55-68 (1996)
3. Di Battista, G., Frati, F., Pach, J.: On the queue number of planar graphs. SIAM J. Comput. 42(6), 2243-2285 (2013)
4. Dujmović, V.: Graph layouts via layered separators. J. Comb. Theory Ser. B 110, 79-89 (2015)
5. Dujmović, V., Frati, F.: Stack and queue layouts via layered separators. J. Graph Algorithms Appl. 22(1), 89-99 (2018)
6. Dujmović, V., Morin, P., Wood, D.R.: Layout of graphs with bounded tree-width. SIAM J. Comput. 34(3), 553-579 (2005)
7. Dujmović, V., Pór, A., Wood, D.R.: Track layouts of graphs. Discret. Math. Theor. Comput. Sci. 6(2), 497-522 (2004)
8. Dujmović, V., Wood, D.R.: Tree-partitions of k-trees with applications in graph layout. In: Bodlaender, H.L. (ed.) WG 2003. LNCS, vol. 2880, pp. 205-217. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-540-39890-5_18
9. Dujmović, V., Wood, D.R.: Stacks, queues and tracks: layouts of graph subdivisions. Discret. Math. Theor. Comput. Sci. 7(1), 155-202 (2005)
10. Hasunuma, T.: Laying out iterated line digraphs using queues. In: Liotta, G. (ed.) GD 2003. LNCS, vol. 2912, pp. 202-213. Springer, Heidelberg (2004). https://doi. org/10.1007/978-3-540-24595-7_19
11. Heath, L.S., Leighton, F.T., Rosenberg, A.L.: Comparing queues and stacks as mechanisms for laying out graphs. SIAM J. Discrete Math. 5(3), 398-412 (1992)
12. Heath, L.S., Rosenberg, A.L.: Laying out graphs using queues. SIAM J. Comput. 21(5), 927-958 (1992)
13. Mondal, D., Nishat, R.I., Rahman, M.S., Alam, M.J.: Minimum-area drawings of plane 3-trees. J. Graph Algorithms Appl. 15(2), 177-204 (2011)
14. Ollmann, T.: On the book thicknesses of various graphs. In: Hoffman, F., Levow, R., Thomas, R. (eds.) Southeastern Conference on Combinatorics, Graph Theory and Computing. Congressus Numerantium, vol. VIII, p. 459 (1973)
15. Pach, J., Thiele, T., Tóth, G.: Three-dimensional grid drawings of graphs. In: DiBattista, G. (ed.) GD 1997. LNCS, vol. 1353, pp. 47-51. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-63938-1_49
16. Pemmaraju, S.V.: Exploring the powers of stacks and queues via graph layouts. Ph.D. thesis, Virginia Tech (1992)
17. Pupyrev, S.: Mixed linear layouts of planar graphs. In: Frati, F., Ma, K.-L. (eds.) GD 2017. LNCS, vol. 10692, pp. 197-209. Springer, Cham (2018). https://doi.org/ 10.1007/978-3-319-73915-1_17
18. Rengarajan, S., Veni Madhavan, C.E.: Stack and queue number of 2-trees. In: Du, D.-Z., Li, M. (eds.) COCOON 1995. LNCS, vol. 959, pp. 203-212. Springer, Heidelberg (1995). https://doi.org/10.1007/BFb0030834
19. Shahrokhi, F., Shi, W.: On crossing sets, disjoint sets, and pagenumber. J. Algorithms 34(1), 40-53 (2000)
20. Tarjan, R.E.: Sorting using networks of queues and stacks. J. ACM 19(2), 341-346 (1972)
21. Wiechert, V.: On the queue-number of graphs with bounded tree-width. Electr. J. Comb. 24(1) (2017). P1.65
22. Wood, D.R.: Queue layouts, tree-width, and three-dimensional graph drawing. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol. 2556, pp. 348-359. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-36206-1_31
23. Yannakakis, M.: Embedding planar graphs in four pages. J. Comput. Syst. Sci. 38(1), 36-67 (1989)
