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Abstract. We study the following classes of beyond-planar graphs: 1-
planar, IC-planar, and NIC-planar graphs. These are the graphs that
admit a 1-planar, IC-planar, and NIC-planar drawing, respectively. A
drawing of a graph is 1-planar if every edge is crossed at most once.
A 1-planar drawing is IC-planar if no two pairs of crossing edges share
a vertex. A 1-planar drawing is NIC-planar if no two pairs of crossing
edges share two vertices.

We study the relations of these beyond-planar graph classes to right-
angle crossing (RAC ) graphs that admit compact drawings on the grid
with few bends. We present four drawing algorithms that preserve the
given embeddings. First, we show that every n-vertex NIC-planar graph
admits a NIC-planar RAC drawing with at most one bend per edge on
a grid of size O(n) ×O(n). Then, we show that every n-vertex 1-planar
graph admits a 1-planar RAC drawing with at most two bends per edge
on a grid of size O(n3)×O(n3). Finally, we make two known algorithms
embedding-preserving; for drawing 1-planar RAC graphs with at most
one bend per edge and for drawing IC-planar RAC graphs straight-line.

1 Introduction

In graph theory and graph drawing, beyond-planar graph classes have expe-
rienced increasing interest in recent years. A prominent example is the class
of 1-planar graphs, that is, graphs that admit a drawing where each edge is
crossed at most once. The 1-planar graphs were introduced by Ringel [18] in
1965; Kobourov et al. [15] surveyed them recently. Another example that has
received considerable attention are RACk graphs, that is, graphs that admit a
poly-line drawing where all crossings are at right angles and each edge has at
most k bends. The RACk graphs were introduced by Didimo et al. [7]. Using
right-angle crossings and few bends is motivated by several cognitive studies
suggesting a positive correlation between large crossing angles or small curve
complexity and the readability of a graph drawing [13,14,17].

The full version of this paper is available on arXiv [4] and the appendices are given
therein.
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We investigate the relationships between (certain subclasses of) 1-planar
graphs and RACk graphs that admit drawings on a polynomial-size grid. The
prior work and our contributions are summarized in Fig. 2. A broader overview
of beyond-planar graph classes is given in a recent survey by Didimo et al. [8].

(a) RAC0

drawing.
(b) IC-planar

drawing.
(c) NIC-planar

drawing.
(d) 1-planar
drawing.

(e) 1-planar
RAC1 drawing.

Fig. 1. Examples of different types of drawings. Figure 1d and e show drawings of the
same graph. Figure 1e is taken from the Annotated Bibliography on 1-Planarity [15].

Basic Terminology. A mapping Γ is called a drawing of the graph G = (V,E) if
each vertex v ∈ V is mapped to a point in R

2 and each edge uv is mapped to a
simple open Jordan curve in R

2 such that the endpoints of this curve are Γ (u)
and Γ (v). For convenience, we will refer to the points and simple open Jordan
curves of a drawing as vertices and edges. The topologically connected regions
of R

2 \ Γ are the faces of Γ . The unbounded face of Γ is its outer face; the
other faces are inner faces. Each face defines a circular list of bounding edges
(resp. edge sides), which we call its boundary list. Two drawings of a graph G are
equivalent when they have the same set of boundary lists for their inner faces and
outer faces. Each equivalence class of drawings of G is an embedding. A k-bend
(poly-line) drawing is a drawing in which every edge is drawn as a connected
sequence of at most k + 1 line segments. The (up to) k inner vertices of an edge
connecting these line segments are called bend points or bends. A 0-bend drawing
is more commonly referred to as a straight-line drawing. A drawing on the grid
of size w×h is a drawing where every vertex, bend point, and crossing point has
integer coordinates in the range [0, w] × [0, h]. In any drawing we require that
vertices, bends, and crossings are pairwise distinct points. A drawing is 1-planar
if every edge is crossed at most once. A 1-planar drawing is independent-crossing
planar (IC-planar) if no two pairs of crossing edges share a vertex. A 1-planar
drawing is near-independent-crossing planar (NIC-planar) if any two pairs of
crossing edges share at most one vertex. A drawing is right-angle-crossing (RAC )
if (i) it is a poly-line drawing, (ii) no more than two edges cross in the same
point, and (iii) in every crossing point the edges intersect at right angles. We
further specialize the notion of RAC drawings. A drawing is RACk if it is RAC
and k-bend; it is RACpoly if it is RAC and on a grid whose size is polynomial in
its number of vertices. Examples for IC-planar, NIC-planar, 1-planar, and RAC
drawings are given in Fig. 1. The planar, 1-planar, NIC-planar, IC-planar, and
RAC k graphs are the graphs that admit a crossing-free, 1-planar, NIC-planar,
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IC-planar, and RACk drawing, respectively. More specifically, RACpoly
k is the set

of graphs that admit a RACpoly
k drawing. A plane, 1-plane, NIC-plane, and IC-

plane graph is a graph given with a specific planar, 1-planar, NIC-planar, and IC-
planar embedding, respectively. In a 1-planar embedding the edge crossings are
known and they are stored as if they were vertices. We will denote an embedded
graph by (G, E) where G is the graph and E is the embedding of this graph. For a
point p in the plane, let x(p) and y(p) denote its x- and y-coordinate, respectively.
Given two points p and q, we denote the straight-line segment connecting them
by pq and its length, the Euclidean distance of p and q, by ‖pq‖.
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RACpoly
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Fig. 2. Relating some classes of (beyond-)planar graphs and RAC graphs. Our main
results are the containment relationships indicated by the thick blue arrows (Color
figure online).

Previous Work. In the diagram in Fig. 2, we give an overview of the relation-
ships between classes of 1-planar graphs and RACk graphs. Clearly, the planar
graphs are a subset of the IC-planar graphs, which are a subset of the NIC-
planar graphs, which are a subset of the 1-planar graphs. It is well known that
every plane graph can be drawn with straight-line edges on a grid of quadratic
size [10,19]. Every IC-planar graph admits an IC-planar RAC0 drawing but
not necessarily in polynomial area [3]. Moreover, there are graphs in RACpoly

0

that are not 1-planar [9] and, therefore, also not IC-planar. The class of RAC0

graphs is incomparable with the classes of NIC-planar graphs [1] and 1-planar
graphs [9]. Bekos et al. [2] showed that every 1-planar graph admits a 1-planar
RAC1 drawing, but their recursive drawings may need exponential area. Every
graph admits a RAC3 drawing in polynomial area, but this does not hold if a
given embedding of the graph must be preserved [7].
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Our Contributions. We contribute four new results; two main results and two
adaptations of prior results. First, we constructively show that every NIC-plane
graph admits a RAC1 drawing in quadratic area; see Sect. 2. This improves upon
a side result by Liotta and Montecchiani [16], who showed that every IC-plane
graph admits a RAC2 drawing on a grid of quadratic size. Second, we construc-
tively show that every 1-plane graph admits a RAC2 drawing in polynomial
area; see Sect. 3. Beside these two main results, we show how to preserve a given
embedding when computing RAC drawings. Precisely, we show Theorem 1 in
Appendix D.1 by adapting an algorithm of Bekos et al. [2] and we show The-
orem 2 in Appendix D.2 by adapting an algorithm of Brandenburg et al. [3].

Theorem 1. Any n-vertex 1-plane graph admits an embedding-preserving
RAC1 drawing. It can be computed in O(n) time.

Theorem 2. Any straight-line drawable n-vertex IC-plane graph admits an
embedding-preserving RAC0 drawing. It can be computed in O(n3) time.

2 NIC-Planar 1-Bend RAC Drawings in Quadratic Area

In this section we constructively show that quadratic area is sufficient for RAC1

drawings of NIC-planar graphs. We prove the following.

Theorem 3. Any n-vertex NIC-plane graph (G, E) admits a NIC-planar RAC1

drawing that respects E and lies on a grid of size O(n)×O(n). The drawing can
be computed in O(n) time.

Preprocessing. Our algorithm gets an n-vertex NIC-plane graph (G, E) as input.
We first aim to make (G, E) biconnected and planar so that we can draw it
using the algorithm by Harel and Sardas [11]. Around each crossing in E , we
insert up to four dummy edges to obtain empty kites. A kite is a K4 that is
embedded such that (i) every vertex lies on the boundary of the outer face,
and (ii) there is exactly one crossing, which does not lie on the boundary of
the outer face. A kite K as a subgraph of a graph H is said to be empty if
there is no edge of H\K that is on an inner face of K or crosses edges of K.
Inserting a dummy edge could create a pair of parallel edges. If this happens,
we subdivide the original edge participating in this pair by a dummy vertex
(see the transition from Fig. 3a – b). Note that we never create parallel dummy
edges since G is NIC-planar. After this, we remove both crossing edges from each
empty kite and obtain empty quadrangles (see Fig. 3c). We store each such empty
quadrangle in a list Q. At the end of the preprocessing, we make the resulting
plane graph biconnected via, e.g., the algorithm of Hopcroft and Tarjan [12].
Since each empty quadrangle is contained in a biconnected component, no edges
are inserted into it. Let (G′, E ′) be the resulting plane biconnected graph.

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=subsection.A.4.2
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(a) crossing as it
initially appears

vdummy

(b) empty kite and sub-
divided original edge

(c) empty quad-
rangle

(d) divided quad-
rangle

Fig. 3. Modifying the crossings and computing the BCO.

Drawing Step. Now, we draw a graph that we obtain from (G′, E ′) by first
producing a biconnected canonical ordering (BCO)1. We use the algorithm by
Harel and Sardas [11], which is a generalization of the algorithm of Chrobak
and Payne [5], which in turn is based on the shift algorithm of de Fraysseix
et al. [10]. The algorithm of Harel and Sardas consists of two phases. Given a
plane biconnected graph H, in the first phase a BCO Π of the vertices in H
is computed. In the second phase, H is drawn according to Π on a grid of size
(2|V (H)| − 4) × (|V (H)| − 2). Unlike the classical shift algorithm, the algorithm
of Harel and Sardas computes the (biconnected) canonical ordering bottom-up,
which we will exploit here. Let Πk = (v1, . . . , vk) be a partial BCO of H after
step k, and let Hk be the plane subgraph of H induced by Πk. We say that a
vertex u is covered by vk if u is on the boundary of the outer face of Hk−1, but
not on that of Hk.

We perform the following additional operations when we compute the
BCO Π̂. Whenever we reach an empty quadrangle q = (a, b, c, d) of the list Q for
the first time, i.e., when the first vertex of q—say a—is added to the BCO, we
insert an edge inside q from a to the vertex opposite a in q, that is, to c. We call
the resulting structure a divided quadrangle (see Fig. 3d). In two special cases,
we perform further modifications of the graph. They will help us to guarantee
a correct reinsertion of the crossing edges in the next step of the algorithm.
Namely, when we encounter the last vertex vlast ∈ {b, c, d} of q, we distinguish
three cases.

Case 1: vlast = c (see Fig. 4a). Here, no operations are performed.
Case 2: vlast ∈ {b, d}, and the other of {b, d} is covered by c (see Fig. 4b).

We insert a dummy vertex vshift, which we call shift vertex, into the current
BCO directly before vlast and make it adjacent to a and c. Observe that, if
vshift is the k-th vertex in Π̂, this still yields a valid BCO since vshift has two

1 BCOs are a generalization of canonical orderings that assume only biconnectivity
(instead of triconnectivity). In a BCO of a plane graph H, the subgraph Hk of H
induced by v1, . . . , vk is connected, the edge v1v2 lies on the boundary of the outer
face and all vertices in H−Hk lie within the outer face of Hk. For k > 2, the vertex vk
has one or more neighbors in Hk−1. If vk has exactly one neighbor u in Hk−1, then
it has a legal support on the outer face of Hk−1, i.e., in the circular order of adjacent
vertices around u, it follows or precedes a vertex in Hk−1.



142 S. Chaplick et al.

neighbors in Π̂k−1 and is on the outer face of the subgraph induced by Π̂k−1.
Later, we will remove vshift, but for now it forces the algorithm of Harel and
Sardas to shift a and c away from each other before vlast is added.

Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 4c).
Let {vlower} = {b, d} \ vlast. We subdivide the edge avlower via a dummy
vertex vdummy. If avlower is an original edge of the input graph, this edge
will be bent at vdummy in the final drawing. We insert vdummy into the cur-
rent BCO directly before vlower. To obtain a divided quadrangle again, we
insert the dummy edge avlower, which we will remove before we reinsert
the crossing edges. This will give us some extra space inside the triangle
(a, vdummy, vlower) for a bend point. Inserting vdummy as k-th vertex into Π̂

keeps Π̂ valid since vdummy uses the support edge incident to a that would
have been covered by vlower otherwise. Then, vlower has at least two neighbors
in Π̂k, namely a and vdummy.

We draw the resulting plane biconnected n̂-vertex graph (Ĝ, Ê) according to
its BCO Π̂ via the algorithm by Harel and Sardas and obtain a crossing-free
drawing Γ̂ . We do not modify the actual drawing phase.

a

b

c

d

(a) Case 1; vlast = c

a

b

c

d
vshift

(b) Case 2; vlast = d and b
is covered by c

a

c

d = vlast

vdummy

b =
vlower

(c) Case 3; vlast = d and b is
not covered by c

a

b

c

d

e{a,c}

e{b,d}

(d) Case 1

a

b

c

d

e{b,d}
e{a,c} pcross

(e) Case 2

a

c

vdummye{b,d} e{a,c}

Δy

Δy d

b

(f) Case 3

Fig. 4. Divided quadrangles produced in the three cases of the drawing step (a)–(c) and
the crossing edges after the reinsertion step (d)–(f) in our algorithm. For orientation,
lines with slope 1 or −1 are dashed violet. (Color figure online)

Postprocessing (Reinserting the Crossing Edges). We refine the underlying grid
of Γ̂ by a factor of 2 in both dimensions. Let q = (a, b, c, d) be a quadrangle in Q,
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where a is the first and vlast the last vertex in Π̂ among the vertices in q. From q,
we first remove the chord edge ac and obtain an empty quadrangle. Then, we
distinguish three cases for reinserting the crossing edges that we removed in the
preprocessing. These are the same cases as in the description of the modified
computation of the BCO before. In this case distinction we omit some lengthy
but straight-forward calculations; see Zink’s master’s thesis [21] for the details.

Case 1: vlast = c (see Fig. 4a).
Since c is adjacent to a, b, and d in Ĝ, it has the largest y-coordinate among
the vertices in q. Assume that y(d) is smaller or equal to y(b) since the other
case is symmetric. An example of a quadrangle in this case before and after
the reinsertion of the crossing edges is given in Fig. 4a and d, respectively. We
will have a crossing point at (x(a), y(d)). To this end, we insert the edge ac
with a bend at eac = (x(a), y(d)+1) and we insert the edge bd with a bend at
ebd = (x(a) + 1, y(d)). Clearly the crossing is at a right angle. Observe that q
is convex since c is the last drawn vertex of q and c is adjacent to b, a, and d
in this circular order in the embedding and observe that both bend points lie
inside q. Therefore, it follows that both crossing edges lie completely inside q.

Case 2: vlast ∈ {b, d}, and the other of {b, d} is covered by c (see Fig. 4b).
Assume that y(d) > y(b); the other case is symmetric. An example of a quad-
rangle in this case before and after the reinsertion of the crossing edges is
given in Fig. 4b and e, respectively. We remove vshift in addition to removing
the edge ac. We define the crossing point pcross = (xcross, ycross) as the inter-
section point of the lines with slope 1 and −1 through c and b, respectively.
The coordinates of this crossing point are xcross = (x(c)−y(c)+x(b)+y(b))/2
and ycross = (−x(c) + y(c) + x(b) + y(b))/2. Since we refined the grid
by a factor of 2 in each dimension, the above coordinates are both inte-
gers. We place the two bend points onto the same lines at the closest grid
points that are next to pcross, i.e., we draw the edge ac with a bend point
at eac = (xcross − 1, ycross − 1) and we insert the edge bd with a bend point
at ebd = (xcross − 1, ycross + 1). We do not intersect or touch the edge ad
because we shifted a far enough away from c by the extra shift due to vshift.
Moreover, the points eac and pcross on the line with slope 1 through c are
inside the empty quadrangle q since b is covered by c (then b is below the line
with slope 1 through c) and y(b) is at most equal to y(eac).

Case 3: vlast ∈ {b, d}, and neither b nor d is covered by c (see Fig. 4c).
Assume that y(d) > y(b); again, the other case is symmetric. An example of
a quadrangle in this case before and after the reinsertion of the crossing edges
is given in Figs. 4c and f, respectively. Note that the edge ab is a dummy edge,
which we inserted during the computation of Π̂, and next to this edge, there is
the path avdummyb. This path is the former edge ab. We will reinsert the edges
ac and bd such that they cross in (x(c), y(b)). We will bend the edge bd on
the line with slope 1 through c at y = y(b) because from this point we always
“see” d inside q. So, we define xbend := x(c) − Δy with Δy := y(c) − y(b).
First, we remove the dummy edge ab. Second, we insert the edge ac with a
bend point at eac = (x(c), y(b)− 1). Third, we insert the edge bd with a bend
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point at ebd = (xbend, y(b)). Note that eac might be below the straight-line
segment ab since a could have been shifted far away from c. However, eac
cannot be on or below the path avdummyb because y(vdummy) < y(eac) and
the slope of the line segment vdummyb is either greater than 1 or negative.
Therefore, the crossing edges ac and bd lie completely inside the pentagonal
face (a, vdummy, b, c, d).

Result. After we have reinserted the crossing edges into each quadrangle of Q, we
remove all dummy edges and transform the remaining dummy vertices to bend
points. The resulting drawing Γ is a RAC1 drawing that preserves the embedding
of the NIC-plane input graph (G, E). In Appendix A (p. 15), we bound the size
of the grid that our drawings need, as follows.

Lemma 4. Every vertex, bend point, and crossing point of the drawing returned
by our algorithm lies on a grid of size at most (16n − 32) × (8n − 16).

The shift algorithm of Harel and Sardas runs in linear time [11]. Also, our
additional operations can be performed in linear time [21]. This proves Theo-
rem 3. We give a full example of a NIC-plane RAC1 drawing generated by a
Java implementation of our algorithm in Figs. 9 and 10 in AppendixB.

3 1-Planar 2-Bend RAC Drawings in Polynomial Area

In this section we constructively prove the following.

Theorem 5. Any n-vertex 1-plane graph (G, E) admits a 1-planar RAC2 draw-
ing that respects E and lies on a grid of size O(n3)×O(n3). The drawing can be
computed in O(n) time.

The idea of our algorithm is to draw a slightly modified, planarized version
of the 1-plane input graph with a variant of the shift algorithm (by Harel and
Sardas [11]) and then “manually” redraw the crossing edges so that they cross at
right angles and have at most two bends each. The difficulty is to find grid points
for the bend points and the crossings so that the redrawn edges do not touch or
cross the surrounding edges drawn by the shift algorithm. To this end, we refine
our grid and place the middle part of each crossing edge onto a horizontal or
vertical grid line so that the edge crossings are at right angles.

Preprocessing. Our algorithm gets an n-vertex 1-plane graph (G, E) as input.
First, we planarize G by replacing each crossing point by a vertex (see Fig. 5a).
We will refer to them as crossing vertices. Second, we enclose each crossing
vertex by a subdivided kite, which is an empty kite where the four boundary
edges are subdivided by a vertex (see Fig. 5b). We use subdivided kites instead
of empty kites to maintain the embedding and to avoid adding parallel edges.
Third, we make the graph biconnected using, e.g., the algorithm of Hopcroft and
Tarjan [12]. Note that we do not insert edges into inner faces of subdivided kites
because all vertices and edges of a subdivided kite are in the same biconnected

https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.1
https://arxiv.org/pdf/1806.10044v4.pdf#nameddest=section.A.2
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a1

a2

a3

a4

c

(a) Planarized crossing where the crossing
point became a crossing vertex c.

a1

a2

a3

a4

c

d1
d2

d3d4

(b) Enclosing the crossing vertex c by a
subdivided kite.

Fig. 5. A crossing point is replaced by a crossing vertex c and we insert four 2-paths
of two dummy edges and a dummy vertex to induce a subdivided kite at each crossing.
The vertices d1, d2, d3, and d4 are the dummy vertices of these 2-paths.

component. After these three steps, we have a biconnected plane graph (G′, E ′).
We draw (G′, E ′) using the algorithm of Harel and Sardas [11]. This algorithm
returns a crossing-free straight-line drawing Γ ′ of (G′, E ′), whose vertices lie on
a grid of size (2n′ − 4) × (n′ − 2), where n′ is the number of vertices of G′.

Assignment of Edges to Axis-Parallel Half-Lines. For each crossing vertex c there
are four incident edges in G′. They correspond to two edges of G. Consider the
circular order around c in (G′, E ′). The first and the third edge incident to c
correspond to one edge in (G, E); symmetrically, the second and fourth incident
edge correspond to one edge. To obtain a RAC drawing from this, we redraw
each of the four edges around c. Consider an edge ac from a vertex a of the
subdivided kite to the crossing vertex c. This edge is then redrawn with a bend
point b that lies on an axis-parallel line through c. For an example how a crossing
in Γ ′ is replaced by a RAC crossing, see the transition from Fig. 8a to f. In order
to obtain a right-angle crossing, we bijectively assign the four incident edges
to the four axis-parallel half-lines originating in c. We call such a mapping an
assignment. We do not take an arbitrary assignment, but take care to avoid
extra crossings with edges that are redrawn or previously drawn. We call an
assignment A valid if there is a way to redraw each edge e with one bend so that
the bend point of e lies on the half-line A(e) and the resulting drawing is plane.

To ensure that our valid assignment can be realized on a small grid, we
introduce further criteria. We say that an edge e1 depends on another edge e2
with respect to an assignment A if e2 lies in the angular sector between e1 and
the half-line A(e1). In Fig. 6a, for example, the edge e3 depends on e4 and e2
depends on e1, but e1 and e4 do not depend on any edge. We call edges (such
as e1 and e4) that do not depend on other edges independent. We define the
dependency depth of an assignment to be the largest integer k with 0 ≤ k ≤ 3
such that there is a chain of k+1 edges e1, e2, . . . , ek+1 incident to c such that e1
depends on e2 and . . . and ek depends on ek+1, but there is no such chain of
k + 2 edges. For example, in Fig. 6a, b, and c, the assignment has a dependency
depth of 1, whereas in Fig. 6d, the assignment has a dependency depth of 0.
Showing that there is a valid assignment of dependency depth at most 1 will
imply the existence of an appropriate set of grid points for the bend points as
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formalized in Lemmas 7 and 8. In fact, as we will see in the discussion below, if we
could avoid dependencies, our drawing would fit on a grid of size O(n2)×O(n2).
Unfortunately, with our current approach this seems to be unavoidable.

We now construct an assignment that we will show in Lemma 6 to be valid
and to have dependency depth at most 1. The four cases of our assignment are
given in order of priority. Note that, in Cases 1 and 2, our assignment always
contains dependencies; see Fig. 6a and b. Note further that it is enough to specify
the assignment of one edge; the remaining assignment is determined since the
circular orders of the edges and the assigned half-lines must be the same.

ce1
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e3 e4
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h3

h4

q

(a) Case 1: q con-
tains four edges.

c
e1

e2 e3
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h4
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(b) Case 2: q con-
tains three edges.
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(c) Case 3: q con-
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Fig. 6. The four cases of our assignment procedure: (a)–(d) indicate the assignment
with orange arrows and show that the dependency depth is always at most 1, (e)–(f)
show that the assignment is valid; the radius of the light blue disk is ε.

Case 1: There is a quadrant q that contains all four incident edges; see Fig. 6a.
Take the two “inner” edges in q and assign them to the two half-lines that
bound q, while keeping the circular order.

Case 2: There is a quadrant q that contains three incident edges; see Fig. 6b.
Consider the edge outside q, say e1, and assign it to the closest half-line hi

that does not bound q.
Case 3: There is a quadrant q that contains two incident edges; see Fig. 6c.

Assign the incident edges in q to their closest half-lines.
Case 4: Each quadrant contains exactly one incident edge; see Fig. 6d.

Assign each edge to its closest half-line in counter-clockwise direction.

See also Appendix C, where we prove the following lemma on p. 16.

Lemma 6. Our assignment procedure returns a valid assignment with depen-
dency depth at most 1.
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Note that Lemma 6 already gives us a RAC2 drawing of the input graph,
but in order to get a (good) bound on the grid size of the drawing, we have to
place the bend points on a grid that is as coarse as possible, but still fine enough
to provide us with grid points where we need them: on the half-lines emanating
from the crossing vertices. This is what the remainder of this section is about.

c

a

(a) available polygon

c

a

p

q

(b) triangle for valid edge placement given points p and q

Fig. 7. Example of an available polygon in which we determine the points p and q and
with them the triangle for valid edge placement and the line segment qc.

Placement of Bend Points on the Grid. In Γ ′, we have a drawing of a subdivided
kite for every crossing in the 1-plane input graph. It is an octagon with a central
crossing vertex c of degree four in its interior. For an example, see Fig. 8a. We
will redraw the straight-line edges between c and its four adjacent vertices as
1-bend edges according to the assignment A computed in the previous step. The
segment of such a 1-bend edge ac that ends at c will lie on the axis-parallel
half-line A(ac). If we pair and concatenate the 1-bend edges that enter c from
opposite sides, we obtain two 2-bend edges and a right-angle crossing in c; see
Fig. 8f. It remains to show how the bend points for the edges are placed on the
grid. We proceed as follows.

First, we determine for each edge ac incident to a crossing vertex c the
available region into which we can redraw ac with a bend b on A(ac). The region
between ac and the half-line A(ac) inside the subdivided kite defines an available
polygon. Examples of such an available polygon are given in Figs. 7a and 8b.
Note that the available polygons might overlap (as they do once in Fig. 8b).
Observe that there is only a triangle inside each available polygon in which the
new line segment ab can be placed. Such a triangle for valid edge placement is
determined by a, c and a corner point p of the available polygon. The point p
is the corner point (excluding a and c) for which the angle between ac and
ap inside the available polygon is the smallest. These triangles for valid edge
placement are depicted in Figs. 7b and 8c. Again, they might overlap. Observe
that in such a triangle, the angle at a cannot become arbitrarily small because
every determining point lies on a grid point. Let q be the intersection point of
the line through ap and the half-line A(ac). One can see q as the projection of p
onto A(ac) seen from a. Note that we have a degenerated case if a ∈ A(ac). Then,
the available polygon has no area and equals the line segment ac. In this case let
a = p = q. Moreover, note that p can be equal to q because the intersection of
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c

a4

a3
a2

a1

(a) A subdivided kite. The
assignment of edges to half-
lines is indicated by arrows.

c

a4

a3
a2

a1

(b) Available polygons for
each pair of edge and as-
signed half-line.

c

a4

a3
a2

a1

(c) Triangles for valid edge
placement.

c

a4

a3
a2

b1

b3

b4
a1

(d) After the insertion of
the bend points of the three
independent edges.

c

a4

a3
a2

b1

b3

b4
a1

(e) Available polygon and
triangle for valid edge place-
ment for the edge a2c which
depends on a1c.

c

a4

a3
a2

b1

b2

b3

b4
a1

(f) Result after the inser-
tion of the bend point b2.

Fig. 8. Transformation from a planarized crossing to a RAC2 crossing.

A(ac) and an edge of the subdivided kite is also a corner point of the available
polygon. This is the only case where p may not be a grid point.

We will place the bend point b onto the line segment qc, but observe that
the triangles for valid edge placement of two edges e1 and e2 might overlap if e1
depends on e2 in A. To solve this, we first draw the independent edges, then
recompute the available polygons and the triangles for valid edge placement for
the other edges, and finally draw those edges. Remember that our assignment
procedure returns only assignments with dependency depth at most 1. Let Γ ′

be drawn on a grid of size ñ × ñ. We refine the grid by a factor of ñ in each
dimension. The next step in our algorithm relies on the following lemma (which
we prove in Appendix C, p. 19).

An important tool in our analysis will be the so-called Farey sequence [20]
of order ñ − 1, which is the sequence of all reduced fractions from 0 to 1 with
numerator and denominator being positive integers bounded by ñ − 1.

Lemma 7. For any independent edge ac, the interior of the line segment qc
contains at least one grid point of the refined ñ2 × ñ2 grid.

Using Lemma 7, we pick for each independent edge any grid point of qc, place
a bend point b on it, and replace the segment ac by the two segments ab and bc.
In Fig. 8c, the edges a1c, a3c, and a4c are independent, but a2c depends on a1c.
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We again refine the grid by a factor of ñ in each dimension. The grid size is
now ñ3× ñ3. For the remaining edges incident to a crossing vertex c, we compute
new available polygons and triangles for valid edge placement since we need to
take the 1-bend edges into account that were inserted in the previous step. Now
the following lemma (proved in Appendix C, p. 22) yields grid points for the
bend points of the remaining edges.

Lemma 8. After having redrawn the independent edges, the interior of the line
segment qc of each edge depending on an independent edge contains at least one
grid point of the refined ñ3 × ñ3 grid.

For each remaining edge incident to a crossing vertex c we pick any grid point
of its line segment qc and place a bend point b on it. Again, we replace ac by
the two line segments ab and bc.

Result. Finally, we remove the dummy edges and dummy vertices that bound the
subdivided kites and interpret the crossing vertices as crossing points. We return
the resulting RAC2 drawing Γ . It is drawn on a grid of size (8n′3 − 48n′2 +
96n′ −64)× (4n′3 −24n′2 +48n′ −32), where n′ is the number n of vertices of G
plus 5 times the number of crossings cr(E) in E . Note that cr(E) ≤ n − 2 for
1-plane graphs [6]. If we ignore the bend points, the drawing is on a grid of size
(2n′ − 4) × (n′ − 2), i.e., its size is quadratic. Again, the algorithm by Harel and
Sardas [11] and our modification run in linear time. Therefore, we conclude the
correctness of Theorem 5.

4 Conclusion and Open Questions

We have shown that any n-vertex NIC-plane graph admits a RACpoly
1 drawing

in O(n2) area and that any n-vertex 1-plane graph admits a RACpoly
2 drawing

in O(n6) area. We have also shown how to adjust two existing algorithms for
drawing certain 1-planar graphs such that their embedding is preserved. More
precisely, we have proved that any 1-plane graph admits a RAC1 drawing. This
answers an open question explicitly asked by the authors of the original algo-
rithm [2]. We have also proved that any straight-line drawable IC-plane graph
admits a RAC0 drawing, where the original algorithm did not necessarily pre-
serve the embedding [3]. The diagram in Fig. 2 leaves some open questions. Does
any 1-planar graph admit a RACpoly

1 drawing? Can we draw any graph in RAC0

with only right-angle crossings in polynomial area when we allow one or two
bends per edge? What is the relationship between RAC1 and RACpoly

2 ? Can we
compute RACpoly

2 drawings of 1-plane graphs in o(n6) area?
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