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Abstract The use of systematic variance and invariance has been identified as a
critical aspect for the design of mathematics lessons in many countries where
different forms of lesson study and learning study are common. However, a focus
on specific teaching strategies is less frequent in the literature. In particular, the use
of systematic variation to inform teachers’ continuous decision-making during class
is uncommon. In this chapter, we report on the use of variation theory in the Math
Minds Initiative, a project focused on improving mathematics learning at the ele-
mentary level. We describe how variation theory is embedded in a teaching approach
consisting of four components developed empirically through the longitudinal
analysis of more than 5 years of observations of mathematics lessons and students’
performance in mathematics. We also discuss the pivotal role of the particular
teaching resource used in the initiative. To illustrate, we offer an analysis of our
work with a Grade 1 lesson on understanding tens and ones and a Grade 5 lesson on
distinguishing partitive and quotitive division.

Keywords Variation pedagogy · Math Minds · Elementary · Formative assessment ·
Division · Place value

P. Preciado-Babb (*) · M. Metz · B. Davis
Werklund School of Education, University of Calgary, Calgary, AB, Canada
e-mail: apprecia@ucalgary.ca; metzm@ucalgary.ca; abdavi@ucalgary.ca

© The Author(s) 2019
R. Huang et al. (eds.), Theory and Practice of Lesson Study in Mathematics,
Advances in Mathematics Education, https://doi.org/10.1007/978-3-030-04031-4_17

343

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-04031-4_17&domain=pdf
mailto:apprecia@ucalgary.ca
mailto:metzm@ucalgary.ca
mailto:abdavi@ucalgary.ca
https://doi.org/10.1007/978-3-030-04031-4_17


344 P. Preciado-Babb et al.

1 Introduction

Systematic variation has been identified as an important element of lesson study and
learning study (e.g., Huang and Li 2017), which have become popular models for
teacher professional development around the world (Hart et al. 2011; Huang and
Shimizu 2016). Generally, lesson study involves the design of a lesson by a team of
teachers and teacher educators; the implementation of the lesson in the classroom,
observed by the team; the refinement of the lesson; a second implementation; and a
report of the results (sometimes with further iterations). Learning study is similar to
lesson study but includes testing students before and after the lesson as well as the
use of variation theory as a theoretical framework (Huang and Li 2017; Marton et al.
2004). Pang et al. (2017) explained that two complementary perspectives on “var-
iation pedagogy” (Watson 2017) have developed, first in parallel and later through
extensive interaction between researchers from each tradition: “Bianshi Jiaoxue”
was developed in China, and pedagogical approaches based on the variation theory
of learning proposed by Marton (2015) and colleagues were first developed in
Sweden. Both perspectives are prominent in the literature regarding learning study
(Huang and Li 2017; Marton and Häggström 2017; Marton et al. 2004) and have
been implemented in lesson study (cf. Bruce et al. 2016; Han et al. 2017). This
chapter addresses the model of teacher professional development developed by the
Math Minds Initiative, which includes elements of lesson study enacted in a partic-
ular way and builds on both Marton’s approach to variation and Chinese perspec-
tives on variation.

While different forms of lesson study have been implemented in Canada (Bruce
and Ladky 2011; Bruce et al. 2016; Preciado-Babb and Liljedahl 2012; Tepylo and
Moss 2011), there have been other forms of collaboration in the design of teaching
artifacts as a means of professional development. For instance, Preciado and
Liljedahl elaborated on different modes of “teachers’ collaborative design” (p. 23),
which involve elements of lesson study such as codesign, enactment of a lesson,
debriefing of results, and refinement of the lesson. Local constraints such as time-
tables and lack of supports for substitute teachers have made it difficult to implement
lesson study in Canada. In our work with the Math Minds Initiative, we also found
that having few or no participating teachers teaching the same grade level made it
very difficult for teachers to teach, redesign, and reteach a lesson during the same
year. Nonetheless, we have included key elements of lesson study in our work, as we
describe in this chapter.

A significant feature of our approach to lesson study has been the use of
systematic variation for both lesson adaptation and for directly informing in-the-
moment teaching decisions. In this chapter, we describe a lesson observation
protocol that we use as a tool for analyzing and refining lessons with teachers. It
was developed through the analysis of classroom observations and longitudinal data
on students’ performance in mathematics. Systematic variation is key to each aspect
of the protocol.
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This protocol represents a theoretical contribution that has the potential to inform
different modes of teachers’ collaborative design, including lesson and learning
study. While a focus on systematic variation has been widely reported in the
literature on learning study as critical for task design and research analysis of
mathematics lessons, we assert that such focus can also have a significant impact
on how the tasks are enacted in the classroom. Like Kullberg et al. (2014), who
reported how the same task can be enacted in different ways and offer different
possibilities to learn, we have observed (Preciado-Babb et al. 2016a) how the use of
the same lesson plans by different teachers yielded contrasting results in terms of
students’ learning (as measured by standardized tests and as observed in terms of
student engagement in lessons). In this chapter, we stress the importance of both
continuous assessment during the enactment of a lesson and teachers’ appropriate
responses to student feedback. We posit that systematic variation can inform both.
This approach emphasizes not only lesson design (which can be anticipated) but also
emergent situations that require teachers to improvise during class. The chapter
elaborates on the methodology and key findings of the Math Minds Initiative,
describes how variation has informed the development of the observation protocol,
and presents two examples of how the protocol has been used in the project.

2 The Math Minds Initiative

The Math Minds Initiative started in 2012 with the intent of improving mathematics
instruction at the elementary level through design-based research (Cobb et al. 2003)
that involved the collaboration of several organizations, including the University of
Calgary, Calgary Catholic School District, Golden Hills School Division, JUMP
Math (2018), and Suncor Energy Foundation (the latter as sponsor). In Phase
1 (2012–2017), the initiative focused on an elementary school with a highly diverse
demography and a long history of low performance in mathematics. Although the
initiative started in 2012, the project was not fully implemented until September
2013. A second elementary school was added in 2014 and a third school from
another school district in 2016. In total, the initiative has included professional
development and weekly mathematics lesson observations for 31 participant
teachers and the video recording of about 300 lessons. The study also included a
longitudinal analysis of student performance in mathematics, as measured by the
Canadian Test for Basic Skills (CTBS; Nelson 2018), and 44 teacher interviews and
228 student interviews. We are currently involved in a second phase of the project
that aims to design a model for teacher professional development that is based on the
results from the first phase.

In Phase 1 of the initiative, we observed consistent improvement in student
performance in mathematics. Scores from the mathematics component of the
CTBS (Grades 2 to 6) were collected each year. We used a linear mixed model
(LMM) to accommodate this unbalanced study design. In this way, “not all indi-
viduals need to have the same number of observations and not all individuals need to
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Table 1 LMM estimates of average t-scores for CTBS

n 2013 2014 2015 2016 2017

School 1 147 43.582 45.691 47.511 49.654 –

School 2 131 – 47.113 49.373 53.202 52.09

School 3 85 – – – 46.881 49.398

All schools 363 44.054 45.943 47.725 50.052 50.93

All estimates are significant at p < 0.001

be measured at the exact same time points” (West 2009, p. 212). CTBS scores were
converted to t-scores and normalized before conducting the analysis. Table 1 sum-
marizes the results of the longitudinal analysis per school and for the whole
intervention. The analysis showed a significant improvement in student performance
in mathematics from Year 2 to Year 5 of the project (the study was fully
implemented in its second year), with national percentile rankings rising from
27 to 55, which is equivalent to a rise in t-scores from 44.054 to 50.93 (see Table 1).

The results were not the same for all groups (Preciado-Babb et al. 2016a). By
contrasting results and observations from different classrooms, we were able to
identify teaching approaches associated with higher rates of improvement in
CTBS scores, particularly conceptual understanding, and higher levels of student
engagement in mathematical activities, as observed during classroom visits. These
teaching approaches informed the observation protocol described in this chapter.

Lesson analysis has been an essential component of our work with teachers in the
Math Minds Initiative. Because we worked with small schools, there were limited
opportunities for regular cycles of lesson study in the same year. Often, there was
only one participant teacher teaching a particular grade level. The initiative’s
approach to lesson analysis, debriefing, redesign, and re-implementation was there-
fore based mostly on modification from 1 year to the next and between closely
related lessons within and across grade levels. We also considered longitudinal
results of students’ performance to inform lesson redesign.

The interaction of teachers and researchers and the use of a shared resource
provided by JUMP Math (2018) have been pivotal to efforts to revise lessons and
compare results of different implementations. JUMP Math resources include stu-
dents’ assessment-and-practice books, teacher guides, and predesigned SMART®
Notebook slides for use with interactive whiteboards. In turn, this work informed
professional development sessions for teachers. Thus, we have been able to test not
only the improvement of lesson plans but also the teaching approaches used during
the lessons. Thus, the Math Minds approach emerged iteratively with a close focus
on individual lessons and themes that became sites of attention that encompassed
teachers from different grades, over multiple years, and over multiple research sites.
Over the course of the project, our work has grown in ways that distinguish it from
common approaches often situated as opposite in North America; it does not neatly
align with either traditional (commonly associated with direct teaching and rote
memorization) or progressive (often associated with inquiry-based learning) teach-
ing approaches (cf. Metz et al. 2016).
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It is important to stress that many classrooms in Canada have considerable
diversity regarding achievement levels in mathematics. The classrooms we observed
all had such gaps, spanning up to three grade levels. The strategies we describe were
developed to support all students in such diverse classrooms.

3 Approach to Variation

Marton’s (2015) theory is based on the conjecture that “novel meanings are acquired
through contrast and not through induction” (Marton and Häggström 2017, p. 391).
Close attention to what varies and what remains the same in the examples and tasks
that students are exposed to is essential. Contrast supports learners in discerning
critical features of the intended object of learning. The term critical discernment is
used here to indicate a critical feature that students need to discern in order to learn
something.

We emphasize that a mathematical concept involves multiple discernments
woven together into a coherent, powerful idea. There is a cumulative aspect to
these discernments: As concepts are developed, they become elements of contrast
needed for discerning new concepts. In other words, learning a concept involves
(a) becoming familiar with the discernments that comprise it and (b) appropriately
integrating those discernments with one another. For instance, when learning to
represent numbers from 9 to 20 in the decimal system, it is important for students to
integrate two critical discernments: (a) grouping by tens and (b) assigning value with
respect to place (e.g., there are one ten and three units in 13).

Teaching, thus, involves formatting a concept in a manner that supports learning,
starting with the identification of necessary discernments. Taken together, these
discernments and the relationships between them comprise the intended object of
learning (Marton 2015). We note that the manner in which discernments are woven
together must take into account the limits of learners’ abilities to hold multiple
discernments in mind. The variation theory of learning can inform a systematic
sequencing of activities and examples offered to students; such sequencing becomes
the enacted object of learning. It is important that the teacher assesses all students’
understanding every time a new discernment is presented and as students respond to
prompts intended to support their integration into broader mathematical structures;
when done well, doing so can offer insight into what Marton described as the lived
object of learning. Further, this assessment can inform how the teacher decides to
proceed with the lesson.

3.1 The Teaching Approach

The teaching approach developed in Math Minds consists of four elements enacted
recursively during class. These now form the basis of our framework for lesson



design and classroom observation. The elements are (a) raveling, (b) prompting,
(c) interpreting, and (d) deciding, which we now elaborate.
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Raveling refers to the identification of a critical discernment within a coherent
sequence of discernments. One part of raveling happens prior to teaching and
involves long-range planning on the part of teacher and resource. The teacher
and/or the resource thoroughly decompose a concept (to identify fine-grained dis-
cernments that are embedded within) and recompose that concept, drawing attention
to how discernments may be knitted back together and to how the concept fits within
a broader network of mathematical understanding; we refer to this as macro-ravel-
ing. Micro-raveling occurs at the level of an individual lesson. Ideally, students are
continuously prompted to critical discernments woven together into a meaningfully
connected big idea that stays focused on the heart of lesson. Each new idea is
anchored to previously developed ideas that have been summarized to carry forward
(e.g., a quick summary, a key word, an image); there is attention to transforming the
new into something familiar and to anticipating next steps. We see strong connec-
tions between micro-raveling and Gu, Huang, and Marton’s (Gu et al. 2004)
descriptions of conceptual and procedural variation in the Bianshi tradition.

Prompting is about engaging students in ways that (a) channel their attention to
each critical discernment, through the use effective patterns of variation to draw
attention to each discernment, and (b) require students to make those distinctions.
For instance, the teacher might offer relevant contrasts that are clearly juxtaposed,
highlighted, and appropriately sequenced followed by a task in which students are
asked to make the intended distinctions.

Interpreting involves getting a read from each learner on the sense being made of
the critical discernment. Essential to effective interpreting are student responses that
quickly and clearly inform the teacher as to whether all have made the intended
discernment or noticed the intended connection.

Deciding is the way the teacher chooses between stepping back, lingering, or
pressing on, based on learners’ demonstrated understandings. The teacher’s deci-
sions might involve clarification of prompts, modification of tasks, and/or adjust-
ment of the pace of the lesson in ways that benefit all learners. An important feature
of deciding is the way students are offered opportunities to extend significant ideas
during class.

In addition to the variation theory of learning, we have also attended to the
extensive research showing the limitations of working memory (Engle et al.
1992): Humans have limited capacity to attend simultaneously to multiple pieces
of information. Working memory has been widely studied in the context of math-
ematics learning (e.g., Berg 2008). A detailed review of the literature on this subject
is beyond the scope of the chapter; rather, we stress the relevance of considering its
limitations when designing for learning. For instance, visually juxtaposing two well-
crafted examples can support students’ discernment of key distinctions.

We note both tensions and complementarities imposed by the manner in which
human perception is drawn to difference while simultaneously having strict limits on



how much can be attended to simultaneously. Contrast requires at least two ele-
ments. We have seen many cases where attempts to reduce demands on working
memory have eliminated the very contrast needed to draw attention to a particular
discernment. We differentiate our approach to working memory from those that
focus primarily on explicit guidance: Clark et al. (2012) claimed that “Teachers are
more effective when they provide explicit guidance accompanied by practice and
feedback, not when they require students to discover many aspects of what they must
learn” (p. 6). While our approach may be seen as offering explicit guidance, such
guidance involves creating conditions for students to make critical discernments of
the targeted object of learning.
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We also contrast our teaching practices with problem-based and project-based
approaches to teaching mathematics that offer limited guidance. Lessons in these
approaches often open with a rich question that offers investigative spaces where
students collaborate to develop deep and connected understanding of big mathemat-
ical ideas. However, some students may lack both the skills to effectively structure
their own inquiries and sufficient background knowledge to attend to multiple ideas
at once, thereby overwhelming their working memories. We have found that the
teaching strategies identified in Math Minds can support students in developing the
conceptual understanding and the skills necessary to address more open explora-
tions. The focus is on supporting students to engage in activities that help them
notice and integrate critical features of the targeted learning outcomes.

Continuous assessment that informs teachers’ immediate decisions during class is
critical to the teaching approach and the observation protocol that we describe in this
chapter. This is consistent with recent work in formative assessment (Chappuis
2015; Wiliam 2011; Wiliam and Leahy 2015). Wylie and Wiliam (2007) identified
the need for hinge questions to support teachers who struggled with continuously
assessing all students during class and with providing appropriate immediate
responses. Hinge questions can be answered in less than a minute, allowing the
teacher to assess students’ understanding and make informed decisions about how
the lesson might proceed. Although there has been important work in the last decade
on the development of such questions, particularly in mathematics (Wiliam 2011;
Wiliam and Leahy 2015; Wylie andWiliam 2007), most of the advice to teachers has
been limited to re-explaining or reteaching, with little emphasis on how teaching
might be effectively modified.

Ongoing decisions about teaching that are based on continuous assessment
support both learners who struggle and those who quickly meet targeted learning
goals. Preciado-Babb et al. (2017) reported how a focus on variation has resulted in a
better way to support students in making critical discernments during class based on
“on-the-fly” teacher’s decisions. Clear juxtaposition and systematic variation can
support students in both making discernments and proceeding from a familiar
question or task to further challenges as they meet the learning goals during class.
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3.2 Teaching Resources

We have found it important to consider how responsibility for the four elements of
the Math Minds model might be effectively shared between a teacher and a teaching
resource. While a resource can identify and sequence discernments in a manner that
supports long-term coherence, a teacher can be responsible for attending to the needs
and development of particular learners as they engage with key ideas.

At Math Minds we have found that, in contrast to other commonly available
classroom resources designed to support Alberta’s Program of Studies for Mathe-
matics, JUMP Math (2018) offers a carefully measured presentation of information
and emphasizes assessment of each key idea. We hypothesize that this approach
respects limitations on students’ working memories (Engle et al. 1992) and makes
key ideas explicit. However, we have found that modifications to the JUMP Math
materials based on systematic variation have often resulted in more effective ways of
drawing students’ attention to critical features or connecting key mathematical ideas
(Metz et al. 2017).

The JUMP Math (2018) resource is consistent with the idea of constantly
assessing students and responding accordingly during class. The teacher guides
suggest “stepping back” to a place where students can reengage in the lesson
when they have trouble in class (Mighton et al. 2010a). The guides also recommend
offering bonus questions that challenge students who move quickly through
assigned tasks. We have observed that both suggestions are often difficult for
teachers (Preciado-Babb et al. 2016b): Step back to where? How should they create
effective bonus questions? We have found that systematic variation can support both
“stepping back” and “bonusing.” Effective adaptations, however, often have more to
do with effective variation than with smaller steps or bigger numbers. While the
JUMP Math resource has carefully identified critical discernments to be noticed by
learners and has sequenced topics coherently, we have observed that adapting the
resource using more clearly structured variation (Marton 2015; Pang et al. 2016;
Watson 2017) and remaining mindful of broader learning targets can provide better
opportunities for students’ learning. Doing so has opened pathways that both
supported the weakest students and challenged even the most capable students
(Metz et al. 2017; Preciado-Babb et al. 2017).

4 Examples from the Classroom

We offer two examples to show how the four elements of teaching described here
have been used for both lesson analysis and redesign. The first example also shows
the elements of lesson study enacted in the initiative in which lessons have been
analyzed, redesigned, and implemented in subsequent years; excerpts from one
classroom are included to show instances of interpreting and deciding. The second
example illustrates how a focus on raveling and prompting was used to analyze a



lesson plan and support teacher professional learning; we also include suggestions
for further adaptations to the lesson.
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4.1 Example 1: Representing Numbers Up to 20

Early in the Math Minds Initiative, we observed a Grade 1 lesson in which the
teacher made numerous attempts to support students in representing numbers to
20 using base ten blocks. In addition to providing several opportunities for each
child to respond to questions, the teacher paid regular attention to one student, Heidi,
who struggled far more than her classmates. The teacher’s careful use of assessment,
persistence in seeking an effective response, and effective adaptation of the given
variation allowed everyone to reach understanding by the end of the lesson. The
episode also included examples of extensions for students who met the expected
outcomes during class. Insights gleaned during this lesson informed other lessons as
well as new implementations in subsequent years of the project.

Representing numbers in the decimal system requires understanding and com-
bining (raveling) the notions of (a) grouping by powers of ten and (b) identifying the
value associated with the position of each digit in a numeral. Base ten blocks are
commonly used for representing numbers and were used to help prompt students’
attention to these critical discernments.

4.1.1 Analysis of the Lesson

The teacher started the lesson with a series of questions and took answers either in
chorus or from individual students. Some students gave wrong answers. In particu-
lar, there seemed to be confusion about the number of ten-blocks and one- blocks
used to represent a particular number. The instructional sequence involved using
blocks to represent 11, 12, 13, 14, 15, and 18; students were asked to identify the
number of ten-blocks and one-blocks and then write the number. Note that in this
sequence, the number of units varied, while the number of tens remained constant
(always 1 ten).

After offering the first item in the sequence, the teacher checked on each student
individually. She then offered explanations for 10, 11, 12, and 13. At this point, she
asked the class to represent 14 and checked each student’s response. Heidi was
struggling, so the teacher gave her 4 one-blocks and 1 ten-block. Then she requested
the attention of all students and provided an explanation on the board. The teacher
then asked students to show blocks for 18. She walked through the class checking on
every student, offering assistance and posing further challenges as needed (19, 17).
These actions illustrate the deciding step in the observation protocol. The actions
gave her some time to work individually with some students. Only two or three
students, including Heidi, still had trouble representing the numbers.
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Fig. 1 Student’s task from Assessment and Practice book. (Image based on Mighton et al. 2009a,
p. 48)

The class moved to the next part of the lesson, in which the students worked in
their Assessment and Practice books (see Fig. 1). The teacher introduced this work
by using a document camera to show the example solved in the students’ book for
the case of 18. She then asked individual students to solve the rest of the exercises in
front of the class.

When the teacher asked how many ten-blocks were in 15, some students
answered in chorus: “10.” The teacher then explained that there was only 1 ten-
block. She gave every student 1 ten-block, asking “How many tens blocks did I give
you?” until every student answered “one.”

Subsequent questions required students to identify tens and ones without the
support of colored 20 charts: They were now required to place blocks on a given
20 charts to represent the given number and then complete a sentence similar to those
in Fig. 1. For instance, the first task was:

14 is ___ tens block and ___ ones blocks.
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One student showed the answer on the board, and the teacher re-explained the use
of one-blocks and ten-blocks. Subsequent tasks in the practice book asked students
to consider 19, 11, 13, 12, and 20. Note that so far, all but one of the examples
focused on a single ten paired with varying numbers of units. The exception comes at
the very end, where it is unlikely to serve as a useful contrast.

As students worked individually, the teacher walked through the class checking
on each of them. At least three students, including Heidi, still had trouble differen-
tiating the ten-block from the one-block. At this point, the teacher started giving
these students more ten-blocks. She started with Heidi, showing 3 ten-blocks and
counting, “One, two three.” For the first time, the pattern of variation now included a
contrast in the number of ten-blocks.

The teacher went to another student, who had apparently written a 5 in the space
for ten-blocks; she indicated that in the case of 15, there were not 5 ten- blocks, but
only 1 ten-block. This student seemed to understand and corrected his work.

Another student had written 15 in the space for ten-blocks. The teacher showed
her 15 ten-blocks while saying “Here are 15 ten-blocks” and asking “How many
ten-blocks are there [in the given example]?” The teacher gave 1 ten-block to the
student, asking: “Howmany blocks did I give you?” The following dialogue ensued:

Student: One.
[Teacher gave another]
Teacher: Now how many blocks?
Student: Two.
[Teacher took away one block]
Teacher: OK? How many ten-blocks did I give you right now?
Student: One
Teacher: Then write one.

The class finished, and the teacher asked Heidi to stay; she spent 4 min working with
her. The teacher held up 10 ten-blocks.

Teacher: This is 10 ten-blocks.
[Teacher gave the blocks to Heidi to hold in her hand]
Teacher: See ten blocks?

Heidi started giving the blocks back, one by one to the teacher. The teacher counted,
while the student gave the blocks back.

Teacher: One, two, three tens. Can you show me 5 ten-blocks?
Heidi: One, two, three, four, five [moving the tens-blocks one by one]
Teacher: So that’s 5 tens blocks. Now show me 1 ten-block. Just one.
[Heidi moved one block.]
Teacher: Now, how many ten-blocks do you have here?
Heidi: One.
Teacher: So, write the number one. How many one-blocks? How many ones?

In this episode, we stress that the teacher led group discussions in which one
student or students in chorus responded to her questions, instead of using an all-student
response system. Nonetheless, it was clear to her that there was confusion about the
distinction between 1 ten-block and 10 one-blocks. The teacher prompted attention to
this difference several times during the lesson, which included giving 1 ten-block to



each student and asking, “Howmany blocks did I give you?” Still, some students were
confused. By the end of the lesson, the teacher started to vary the number of ten-blocks
in the examples and questions posed to students. This was more effective for the
students who were still confused.
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4.1.2 Adaptations to Other Lessons

We discussed this issue with other teachers in the project, suggesting to vary the tens
digit to draw attention to the meaning of the tens place in similar lessons: They did so
in different ways. One teacher prompted attention to the meaning of the tens digit by
including numbers beyond 19. She simply kept a handful of ten-blocks at her side as
she worked with her students. When the predicted difficulty with 1 ten-block-
vs. 10 one-blocks came up, she was prepared with several ten-blocks to show the
difference.

Another adaptation based on this suggestion included an explicit prompt to
numbers with and without ten-blocks. The teacher started the lesson by offering a
series of slides in which students were supposed to identify the number of dots,
preferably by counting on from a full ten frame (Fig. 2).

Many students struggled to identify the number of dots in the slides. After a few
more tries, the teacher recognized that continuing with the planned lesson was
unlikely to be productive. She decided to switch to a task in which students had to
identify a number based on the number of dots she held up. She presented a yellow
card with ten dots and a blue card with anywhere from zero to nine dots (see Fig. 3).

For each question (prompt), she held up a blue card with or without the yellow
ten-card, and the students’ job was to name the number. Note that although multiple
tens were not involved, as in the previous case, the presence of the zero-or-one-ten
option helped to draw students’ attention to role of the ten’s digit. The students
quickly became adept at recognizing the numbers she held up.

In another case, a second-grade lesson that already included variation in the
number of tens was adapted to more clearly highlight this variation. Initially, the
four examples shown on the left in Fig. 4 were presented separately. By clearly
juxtaposing them (as on the right), students found it easier to attend to key contrasts
in 28 as (a) 28 ones, (b) 1 ten and 18 ones, and (c) 2 tens and 8 ones (something many
struggled with during their first attempt with this lesson).

These adaptations resulted from the teacher’s awareness that students were
struggling. She requested a meeting with a lead teacher and a researcher after class

Fig. 2 Modification of the JUMP Math slides to juxtapose examples. (Mighton et al. 2009a)
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Fig. 3 Slide showing
variations in the use of ten or
no ten for representing
numbers

Fig. 4 On the left, original sequence of slides shown to students; on the right, modified version
with a single slide. (Mighton et al. 2010a, p. B-58)

to adapt the lesson, with the intent to reteach it the following day. It was then that
they decided to juxtapose the first three images and the T-Table on a single slide.
Further, students were to identify what was the same and different in the three
representations of 28. Following this, students were asked to identify possible
numbers of tens and ones in other numbers, supported by an erasable hundred
chart taped to a whiteboard (see Fig. 5); the use of the hundred chart was also an
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Fig. 5 Individual
whiteboard and hundred
chart used to represent
numbers

adaptation from the original lesson, during which students used base ten blocks that
they found hard to keep track of. Here, the teacher indicated that a ten-block must be
shown by a continuous line through an entire row, while a one-block must be shown
with a slash mark through a single number, thus further highlighting the contrast
between a ten-block and a one-block. The total numbers of each were recorded in a
T-Table positioned directly beside the hundred chart on the whiteboard. Students
experienced greater success with this approach.

The decision to use the whiteboards and the hundred charts also facilitated the
process of interpreting students’ understanding: It allowed the teacher to quickly
check individual understanding of all students during this part class.

Note that in contrast to previous lessons where the number being represented
varied, here, the number remained the same but was represented by varying numbers
of ten and one-blocks. Including the T-Table on the same slide allowed further
contrast in terms of representation before moving to other numbers (as in the fourth
slide on the left in Fig. 4).

4.2 Example 2: Partitive vs. Quotitive Division

The following example focuses on the distinction between partitive and quotitive
division. Learners’ and teachers’ difficulties distinguishing partitive and quotitive
division have been widely reported in the literature. These include limitations in
correctly solving word problems related to division (e.g., Fischbein et al. 1985;
Graeber et al. 1989; Tirosh 2000). The JUMP Math resource (Mighton et al. 2010b)
includes a Grade 5 lesson, “TwoWays of Sharing” (p. 81) intended to draw attention
to manners of grouping that are consistent with partitive and quotitive division. This
lesson precedes other lessons on knowing whether to multiply or divide in particular
contexts and understanding the long division algorithm. In Math Minds, we have
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Original Contrast
(Mighton et al. 2009b, p. 80)

Modified Contrast

Tory has 18 cookies. There are two
ways she can share or divide her
cookies equally:

1) She can decide how many sets (or
groups) of cookies she wants to make:
Tory wants to make 3 sets of cookies.
She draws 3 circles.
She then puts one cookie at a time in-
to the circles until has placed 18 cook-
ies.

2) She can decide how many cookies
she wants to put in each set:
Tory wants to put 6 cookies in each
set. She counts out 6 cookies.
She counts out sets of 6 cookies until
she has placed 18 cookies in sets.

Tory has 18 cookies. There are two
ways she can share or divide her
cookies equally:

1) She can decide how many sets (or
groups) of cookies she wants to make:
Tory wants to make 3 sets of cookies.
She draws 3 circles.
She then puts one cookie at a time in-
to the circles until has placed 18 cook-
ies.
We can describe her action as 18 di-
vided into 3 sets, or 18 ÷ 3.

2) She can decide how many cookies
she wants to put in each set:
Tory wants to put 3 cookies in each
set. She counts out 3 cookies.
She counts out sets of 3 cookies until
she has placed 18 cookies
We can describe her action as 18 di-
vided into sets of 3, or 18 ÷ 3.

Fig. 6 Two tasks intended to prompt attention to the difference between partitive and quotitive
division

observed that neither students nor teachers who engaged with this lesson made the
desired distinction in subsequent lessons. For instance, teachers made no reference to
the two types of sharing (division) and explained the division algorithm in terms of
quotitive language (e.g., “how many times does 3 goes into . . .”) even though the
resource refers explicitly to images of partitive division (e.g., splitting 600 blocks
into 3 equal groups). We decided to make this lesson the focus of a group discussion
with participant teachers, including one who was teaching Grade 5 at that time.

During the session with teachers, we analyzed ways to support learners’ under-
standing of the difference between the two types of division. Then, we asked
teachers to compare the tasks in Fig. 6 and to discuss which version would better
draw attention to the difference between partitive and quotitive division. The first
task is included JUMP Math (Mighton et al. 2009b) for the selected lesson; the
second was a modification of this task.
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Note that in the original (Fig. 6, left) version of the task, the circle/dot diagrams
both show 3 sets of 6 cookies, with no reference to division notation; had this been
included, one would have had a divisor of 6 and the other a divisor of 3. Here, the
actions performed in forming the groups (based on what information is given in the
problem) change, while the resulting groups are identical. In the modified version
(Fig. 6, right), the circle/dot diagrams correspond to two different actions, both of
which can be represented by 18 � 3; in one case, the resulting diagram shows 3 sets
of 6 cookies; the other shows 6 sets of 3 cookies. In this case, the only thing that
varies is the type of division. This distinction prompted several “a-ha’s” among the
teachers; it was here that the point of the partitive/quotitive distinction became more
clearly apparent to them. After this discussion, we proceeded to analyze the rest of
the lesson plan.

4.2.1 Analysis of the Original Lesson Plan: Two Ways of Sharing

The “Two Ways of Sharing” lesson offered in JUMP opens with a number of
contrasts. The first is between two situations in which 12 learners are “numbered
off” to form 2 teams:

(a) 1, 1, 2, 1, 1, 3, 1, 1, 4, 1, 1, 1
(b) 1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4

Here, what varies is whether or not the groups are equal; the point of emphasis is
equal-sized groups. Following a’s uneven distribution, students are invited to make
the teams fair by reassigning numbers to some students.

Next, students are offered containers labeled 1, 2, 3, and 4 and invited to
distribute 12 blocks into the 4 containers. Compared with the previous task, this
offers a variation in the manner of representing the 12 students being divided.

Then, the resource invites learners to consider sharing 12 cookies among 4 people.
This offers a contrast in context; there are still 12 objects being split into 4 groups,
but the particular objects change. Suggested questions in the teacher’s guide draw
attention to the number of containers and counters needed and to what these
represent (cookies and people). Learners are then invited to consider circles for
containers and dots for cookies, and the teacher models placing 1 cookie in the first
circle, then 1 in the second, etc. until the 12 cookies have been distributed. Here, we
see another contrast between this example and the previous one: representation with
containers and counters vs. representation with circles and dots. Students have an
opportunity to practice this by dividing 12 students into 4 cars. Again, the total
remains constant, as does the number of groups into which the total must be divided;
the only thing that changes is the context.

Note that so far, the variations in the lesson have drawn attention to the need for
equal-sized groups, to how objects and groups might be represented (by people
standing together, by counters in containers, or by dots in circles), and to the idea that
even if contexts change, the numbers remain constant (though this is not explicitly
mentioned).
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Following this, a set of practice examples varies the number of cookies and
people (12 cookies with 3 people, 15 cookies with 5 people, 10 cookies with
2 people), each of which produces a different number in each group.

At this point, it is important to note that, based on our previous observations to the
enactment of this lesson, all of the examples used so far could easily be visualized by
most students as four groups of three; they did not need to divide (or partition their
counters) to find the answer. Students responded to questions of this nature with
reference to a multiplication sentence; for example, when asked how they knew there
were 3 students on a team, students responded: “Because 4 3 12.”

The resource then announces, to the teacher, a shift in intention: “So far, ques-
tions have told students how many piles (or sets) to make. Now questions will tell
students how many to put in each pile (or in each set) and they will need to determine
the number of sets” (Mighton et al. 2010b, p. 82). However, there is no suggestion
that the teacher should flag this shift for students, nor are there direct contrasts
between the quotitive contexts that follow and the partitive ones with which they
have already worked.

The first question students are invited to consider in this portion of the lesson is a
person with 30 apples who wants to give five apples to each friend. Returning to
counters and containers, the teacher is supposed to ask students what the containers
and counters represent and to ask students if they know how many containers are
needed and if they know how many counters should go in each container. If students
can remember back to their earlier work with containers, this offers a potential
contrast between known and unknown number of containers, but this contrast is
not highlighted, and the two are not directly juxtaposed. Nonetheless, this is first
time that partitive vs. quotitive grouping has been opened as a dimension of
variation.

As the lesson continues, the direct contrast between partitive and quotitive fades
from view: Examples that contrast different quotitive contexts become the focus of
the lesson. The next contrast involves modeling the apple problem a second time,
this time with circles and dots (another contrast in representation with no contrast
regarding what is known/unknown). Once the 30 apples have been drawn in groups
of five, students are asked to consider 30 apples in groups of three; this might draw
attention to the fact that when you use smaller groups you get more groups. Practice
examples then invite students to divide varying numbers of dots into sets of known
size: 9, 6, and 12 dots into sets of 3; 6 and 12 dots into sets of 2; 15 dots into sets of 5;
12 dots into sets of 4; and 16 dots into sets of 2. Further practice involves varying
numbers of apples being placed into boxes of varying sizes (10 apples, 2 per box;
12 apples, 3 per box; 18 apples, 6 per box). Finally, practice shifts to situations in
which students are required to highlight “important information,” which includes
total and group size and to find the number in each group. In each of these cases, set
sizes and totals vary, but the manner of grouping does not.

At this point, the distinction between the two “methods of sharing” is made
explicit to students, and they are invited to make this distinction.
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a) 15 children with 5 in each canoe,
b) 15 children with 5 canoes, and
c) a girl with 40 stickers who gives 8 stickers to each of her friends.

Fig. 7 Slide 19 in the “Two Ways of Sharing” lesson

a) There are 24 strings on 4 guitars.
b) There are 3 hands on each clock. There are 15 hands altogether.
c) There are 18 holes in 6 sheets of paper.
d) There are 15 rings on 5 binders.
e) 15 people sit on 5 couches.

Fig. 8 Slide 21 in “Two Ways of Sharing” lesson

g) There are 15 people. 5 people fit on each couch.
h) There are 4 cans of tennis balls. There are 3 tennis balls in each can.
i) There are 20 chairs in 4 rows.
j) There are 3 rows of chairs. There are 9 chairs altogether

Fig. 9 Slide 22 in the “Two Ways of Sharing” lesson

Sometimes a problem provides the number of sets, and sometimes it provides the number of
objects in each set. Have your students tell you if they are provided with the number of sets
or the number of objects in each set for the following problems (Mighton et al. 2010a, b,
p. 83).

The situations offered include a slide showing three cases simultaneously (see
Fig. 7). The only thing that changes between the two canoe cases is how the 15 is
divided into 5: Is it divided into 5 groups or groups of 5? This is the first time that
students are invited to make this distinction. Note, however, that students are not
asked to represent either situation with a division sentence. We also observe that the
third example on the slide could in fact distract from the clear contrast in the first
two, as it might seem to suggest three independent examples.

In the slides that follow, various contextual situations are offered that require
students to identify (a) what is being shared, (b) how many sets, and (c) how many
are in each set (using a question mark to denote the unknown element). The
distinction, then, is phrased in terms of what is known vs. what is not known.
These distinctions must be discerned against a background of changing context,
numbers, and manner of grouping. Nevertheless, none of these examples are
presented as pairs in which only the manner of grouping changes (as in the canoe
example). Here, total objects, number of sets, and number in each set all change from
example to example, with a couple of exceptions. There is only one pair that forms a
clear partitive/quotitive contrast (clear in that only the manner of grouping changes),
but it is split between two slides, as shown in Figs. 8 and 9. Note the contrast
between Slide 21 (e) and Slide 22 (g).
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a) Kathy has 30 stickers. She put
6 stickers in each box.

30 stickers ? 6

b) 24 children are in 6 vans. 24 children 6 ?

c) Andy has 14 apples. He gives
them to 7 friends.

d) Manju has 24 comic books.
She puts 3 in each bin.

e) 35 children sit at 7 tables.

f) 24 people are in 2 boats.

g) 12 books are shared among 4
children.

h) 10 flowers are shared in 2
rows.

i) 8 hamsters are in 4 cages.

What has been shared
or divided into sets?

How many
sets?

How many in
each set?

Fig. 10 Task of the “Two Ways of Sharing” lesson corresponding to Assessment and Practice
student book. (Mighton et al. 2009a, b, p. 81)

We also observed that the distinction between known and unknown can be
difficult to discern when the numbers are such that both are immediately obvious
due to students’ knowledge of basic multiplication facts; in other words, if both are
easily known, the known/unknown distinction becomes hazy, and this is critical to
distinguishing partitive and quotitive division.

The practice examples in the Assessment and Practice book (Mighton et al.
2009b) follow a pattern similar to the lesson; there is a set of practice involving
partitive contexts followed by a set of practice involving quotitive contexts. Finally,
there is a chart describing numerous groupings in which students are to identify total,
number of sets (if possible), and number in each set (if possible); the distinction
between known and unknown is key (see Fig. 10). The first two cases are solved for
students as examples. Notice that among the nine statements that students are
offered, only two are quotitive: (a) and (d).

In summary, we have highlighted three features that may prevent students from
noticing key critical features of the partitive and quotitive division. First, there were
few opportunities to contrast the two ways of sharing in which only the meaning of
sharing was changed (e.g., the canoe situation in Fig. 7). Second, these two ways of
sharing were not connected explicitly to division. This connection is not explicit in
subsequent lessons, either. Finally, the reference to known and unknown may be
ambiguous for students who know multiplication facts. For instance, if a student



knows the multiplication fact 30¼ 5� 6 and connects it with 30� 6, then the result
of the division, 5, is known by the student.
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4.2.2 Adaptations and Suggestions for Implementation

We considered that the contrast between quotitive and partitive division should be
made more explicit in the lesson. For a revised version of the lesson, we encouraged
the teacher to juxtapose partitive and quotitive examples from the beginning of the
lesson. We also emphasized the importance of prompting students’ attention to what
changes and what stays the same from example to example. For instance, the teacher
lesson used a modified version of Slide 19 (Fig. 7) with only the first two examples.
In a further implementation of this part of the lesson, we observed that all students
were able to discern the difference between the two types of division when the
modified slide was used.

A relevant discernment for this lesson is the distinction between number of sets
and number of objects in each set. This is an example of raveling, as a critical
discernment was identified and connected to other discernments in the lesson. The
chart in the Assessment and Practice book (Fig. 10) was modified to include
(a) direct contrasts between partitive and quotitive contexts (in which only the

Fig. 11 Modified chart
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Fig. 12 Examples of two different ways of division corresponding to the same image

manner of grouping changed), (b) space to sketch the groupings, and (c) space for a
division sentence (see Fig. 11). This adaptation may also be considered part of the
raveling approach to teaching, as key discernments are both separated and
connected. The adapted chart includes an explicit reference to division, which
supports connections to future lessons (macro-raveling). The chart is also an exam-
ple of prompting, as the examples are presented in contrasting pairs that support
students distinguishing between the two types of division.

We also suggest to further emphasize the significance of known quantity/
unknown quantities: Is there a known number of sets or a known number in each
set? Although the unknown factor is flagged with a question mark, we observed in
the classroom that the relation between the position of the question mark and the type
of division remained a point of confusion for some students. Nonetheless, most
students successfully identified the known and unknown elements and found an
appropriate solution, and several invented their own pairs of examples as a bonus
(an example of deciding that supported advanced students).

Finally, students who complete the modified chart might be offered images
showing numbers split into sets and asked to identify the mathematical expressions
that indicate partitive and quotitive groupings (Fig. 12). This would allow a broader
contrast involving the same groupings with different number sentences.

5 Conclusion

The four teaching strategies outlined in this chapter – raveling, prompting,
interpreting, and deciding – are informed by Marton’s (2015) variation theory of
learning. While raveling refers to the identification of critical discernments, and their



connections to other mathematical ideas and concepts, prompting refers to the
sequence of examples and tasks offered during class that require students to make
distinctions relating to each critical discernment. Earlier, we noted that the selection
of what should vary and what should remain invariant is not obvious; consistent with
Marton, we have observed that varying the critical feature often works better to
prompt learners’ attention. While raveling and prompting can be supported by
teaching resources such as textbooks, lesson plans, and teaching guides, teachers
must be aware of the need for potential modifications, which may include clearer
patterns of variation and more direct juxtaposition of tasks and examples that
contrast key features of the intended object of learning.
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The role of the teacher is more significant in interpreting students’ understanding
during class, as well as in deciding how to proceed. Systematic variation can inform
the questions or tasks posed to students as assessment, as well as teachers’ decisions
regarding how best to support students who are struggling or those who require
additional challenges to extend their learning.

Although the Math Minds Initiative has involved only selected aspects of lesson
study, the focus on variation theory makes it relevant for the literature on lesson
study and learning study. In particular, we suggest paying attention not only to
lesson plans but also to the decision-making process during lesson implementation.
Systematic variation can inform teachers’ decisions that can immediately address the
needs of all students in class rather than waiting for another iteration of the lesson to
be developed (though this is also important). On another level of iteration, the four
elements of the Math Minds protocol are also impacting the redesign of the JUMP
Math (2018) materials, as suggestions for adapting lessons are informing future
editions of the teaching materials.

The approach to teaching described here has been developed from empirical
evidence in the Math Minds Initiative. In Phase 2 of the project, we continue to
refine lessons plans and to more clearly articulate the four strategies presented in this
paper so as to better support teachers in understanding and enacting them in class.
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