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Abstract. We show that PRAMs can be obliviously simulated with
perfect security, incurring only O(logN log logN) blowup in parallel run-
time, O(log3 N) blowup in total work, and O(1) blowup in space rela-
tive to the original PRAM. Our results advance the theoretical under-
standing of Oblivious (Parallel) RAM in several respects. First, prior to
our work, no perfectly secure Oblivious Parallel RAM (OPRAM) con-
struction was known; and we are the first in this respect. Second, even
for the sequential special case of our algorithm (i.e., perfectly secure
ORAM), we not only achieve logarithmic improvement in terms of space
consumption relative to the state-of-the-art, but also significantly sim-
plify perfectly secure ORAM constructions. Third, our perfectly secure
OPRAM scheme matches the parallel runtime of earlier statistically
secure schemes with negligible failure probability. Since we remove the
dependence (in performance) on the security parameter, our perfectly
secure OPRAM scheme in fact asymptotically outperforms known sta-
tistically secure ones if (sub-)exponentially small failure probability is
desired. Our techniques for achieving small parallel runtime are novel
and we employ special expander graphs to derandomize earlier statisti-
cally secure OPRAM techniques—this is the first time such techniques
are used in the constructions of ORAMs/OPRAMs.

1 Introduction

Oblivious RAM (ORAM), originally proposed in the ground-breaking work by
Goldreich and Ostrovsky [21,22], is an algorithmic technique that transforms
any RAM program to a secure version, such that an adversary learns noth-
ing about the secret inputs from observing the program’s access patterns to
memory. The parallel extension of ORAM was first phrased by Boyle, Chung,
and Pass [6]. Similar to ORAM, an Oblivious Parallel RAM (OPRAM) com-
piler transforms a Parallel RAM (PRAM) program into a secure form such that
the resulting PRAM’s access patterns leak no information about secret inputs.

An online full version of our paper [9] is available at https://eprint.iacr.org/2018/364.

c© International Association for Cryptologic Research 2018
A. Beimel and S. Dziembowski (Eds.): TCC 2018, LNCS 11240, pp. 636–668, 2018.
https://doi.org/10.1007/978-3-030-03810-6_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-03810-6_23&domain=pdf
https://eprint.iacr.org/2018/364
https://doi.org/10.1007/978-3-030-03810-6_23


Perfectly Secure Oblivious Parallel RAM 637

ORAMs and OPRAMs have been recognized as powerful building blocks in both
theoretical applications such as multi-party computation [5,25,29], as well as in
practical applications such as cloud outsourcing [14,37,40], and secure processor
design [17,18,28,30,31,35].

Henceforth in this paper, we consider ORAMs to be a special case of
OPRAMs, i.e., when both the original PRAM and the OPRAM have only one
CPU. To characterize an OPRAM scheme’s overhead, we will use the standard
terminology total work blowup to mean the multiplicative increase in total com-
putation comparing the OPRAM and the original PRAM; and we use the term
depth blowup to mean the multiplicative increase in parallel runtime comparing
the OPRAM and the original PRAM—assuming that the OPRAM may employ
more CPUs than the original PRAM to help parallelize its computation [7]. Note
that for the case of sequential ORAMs, total work blowup is equivalent to the
standard notion of simulation overhead [21,22], i.e., the multiplicative increase
in runtime comparing the ORAM and the original RAM. Finally, we use the
term space blowup to mean the multiplicative blowup in space when comparing
the OPRAM (or ORAM) and that of the original PRAM (or RAM).

The original ORAM schemes, proposed by Goldreich and Ostrovsky [21,
22], achieved poly-logarithmic overheads but required the usage of pseudo-
random functions (PRFs); thus they defend only against computationally
bounded adversaries. Various subsequent works [2,10,12,13,36,38,39], starting
from Ajtai [2] and Damg̊ard et al. [13] investigated information-theoretically
secure ORAM/OPRAM schemes, i.e., schemes that do not rely on computa-
tional assumptions and defend against even unbounded adversaries. As ear-
lier works point out [2,13], the existence of efficient ORAM schemes with-
out computational assumptions is not only theoretically intriguing, but also
has various applications in cryptography. For example, information-theoretically
secure ORAM schemes can be applied to the construction of efficient RAM-
model, information-theoretically secure multi-party computation (MPC) pro-
tocols [4]. Among known information-theoretically secure ORAM/OPRAM
schemes [2,6,10–13,36,38,39], almost all of them achieve only statistical secu-
rity [2,6,10–12,36,38,39], i.e., there is still some non-zero failure probability—
either correctness or security failure—but the failure probability can be made
negligibly small in N where N is the RAM/PRAM’s memory size. Damg̊ard
et al. [13] came up with the first perfectly secure ORAM construction—they
achieve zero failure probability against computationally unbounded adversaries.
Although recent works have constructed statistically secure OPRAMs [6,10,11],
there is no known (non-trivial) perfectly secure OPRAM scheme to date.

Motivation for Perfect Security. Perfectly secure ORAMs/OPRAMs are theo-
retically intriguing for various reasons:
1. First, to achieve 2−κ failure probability (either in security or in correct-

ness), the best known statistically secure OPRAM scheme [7,10] incurs a
O(κ log N) total work blowup and O(log κ log N) depth blowup where N is
the PRAM’s memory size. Although for negligibly small in N failure prob-
ability the blowups are only poly-logarithmic in N , they can be as large as
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N c for some constant c < 1 if one desires (sub-)exponentially small failure
probability in N .

2. Second, perfectly secure ORAM schemes have been used as a building block
in recent results on oblivious algorithms [3,36] and searchable encryption
schemes [15]. Typically these algorithmic constructions rely on divide-and-
conquer to break down a problem into smaller sizes and then apply ORAM
to a small instance—since the instance size N is small (e.g., logarithmic in
the security parameter), negligible in N failure probability is not sufficient
and thus these works demand perfectly secure ORAMs/OPRAMs and existing
statistically secure schemes result in asymptotically poorer performance.

3. Third, understanding the boundary of perfect and statistical security has
been an important theoretical question in cryptography. For example, a long-
standing open problem in cryptography is to separate the classes of languages
that admit perfect ZK and statistical ZK proofs. For ORAMs/OPRAMs too,
it remains open whether there are any separations between statistical and
perfect security (and we believe that this is an exciting future direction).
Perfect security is also useful in other contexts such as multi-party computa-
tion (MPC). For example, Ishai et al. [26] and Genkin et al. [19] show that
perfectly secure MPC is required to achieve their respective goals match-
ing the “circuit complexity” of the underlying application. Perfectly secure
ORAMs/OPRAMs can enable perfectly secure RAM-model MPC, and thus
we believe that they can be an important building block in other areas of
theoretical cryptography.

1.1 Our Results and Contributions

In this paper, we prove the following result which significantly advances our
theoretical understanding of perfectly secure ORAMs and OPRAMs in multiple
respects. We present the informal theorem statement below and then discuss its
theoretical significance.

Theorem 1 (Informal statement of main theorem). Any PRAM that con-
sumes N memory blocks each of which is at least log N -bits long1 can be sim-
ulated by a perfectly oblivious PRAM, incurring O(log3 N) total work blowup,
O(log N log log N) depth blowup, and O(1) space blowup.

The above theorem improves the theoretical state of the art on perfectly
secure ORAMs/OPRAMs in multiple dimensions:

1. First, our work gives rise to the first perfectly secure (non-trivial) OPRAM
construction. No such construction was known before and it is not clear how
to directly parallelize the perfectly secure ORAM scheme by Damg̊ard et
al. [13].

2. Second, even for the sequential special case, we improve Damg̊ard et al. [13]
asymptotically by reducing a log N factor in the ORAM’s space consumption.

1 All existing ORAM and OPRAM works [21–23,27,36] make this assumption.
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3. Third, our perfectly secure OPRAM’s parallel runtime matches the best
known statistically secure construction [7,10] for negligibly small in N failure
probabilities;

4. Finally, when (sub-)exponentially small (in N) failure probabilities are
required, our perfectly secure OPRAM scheme asymptotically outperforms all
known statistically secure constructions both in terms of total work blowup
and depth blowup. For example, suppose that we require 2−κ failure probabil-
ity and N = poly(κ)—then all known statistically secure OPRAM construc-
tions [6,10,11] would incur at least N c total work blowup and Ω(log2 N)
depth blowup and thus our new perfectly secure OPRAM construction is
asymptotically better for this scenario.

Theorem 1 applies to general block sizes. We additionally show that for suf-
ficiently large block sizes, there exists a perfectly secure OPRAM construction
with O(log2 N) total work blowup and O(log m+log log N) depth blowup where
m denotes the number of CPUs of the original PRAM. Finally, we point out that
this work focuses mostly on the theoretical understanding of perfect security in
ORAMs/OPRAMs, and we leave it as a future research direction to investigate
their practical performance (see also Sect. 6).

Technical Highlights. Our most novel and non-trivial technical contribution is
the use of expander graphs techniques, allowing our OPRAM to achieve as small
as O(log N log log N) depth blowup. To the best of our knowledge, this is the
first time such techniques have been used in the construction of ORAM/OPRAM
schemes. Besides this novel technique, our scheme requires carefully weaving
together many algorithmic tricks that have been used in earlier works [7,10,21,22].

1.2 Related Work

Oblivious RAM (ORAM) was first proposed in a ground-breaking work by
Goldreich and Ostrovsky [21,22]. Goldreich and Ostrovsky first showed a com-
putationally secure ORAM scheme with poly-logarithmic simulation overhead.
Therefore, one interesting question is whether ORAMs can be constructed with-
out relying on computational assumptions. Ajtai [2] answered this question and
showed that statistically secure ORAMs with poly-logarithmic simulation over-
head exist. Although Ajtai removed computational assumptions from ORAMs,
his construction has a (negligibly small) statistical failure probability, i.e., with
some negligibly small probability, the ORAM construction can leak information.
Subsequently, Shi et al. [36] proposed the tree-based paradigm for construct-
ing statistically secure ORAMs. Tree-based constructions were later improved
further in several works [10,12,20,38,39], and this line of works improve the prac-
tical performance of ORAM by several orders of magnitude in comparison with
earlier constructions. It was also later understood that the tree-based paradigm
can be used to construct computationally secure ORAMs saving yet another
log log factor in cost in comparison with statistical security [10,16].
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Perfect security requires that the (oblivious) program’s memory access pat-
terns be identically distributed regardless of the inputs to the program; and thus
with probability 1, no information can be leaked about the secret inputs to
the program. Perfectly secure ORAM was first studied by Damg̊ard et al. [13].
Their construction achieves O(log3 N) simulation overhead and O(log N) space
blowup relative to the original RAM program. Their construction is a Las Vegas
algorithm and there is a negligibly small failure probability that the algorithm
exceeds the stated runtime. Raskin et al. [34] and Demertzis et al. [15] achieve
a worst-case bandwidth of O(

√
N log N

log log N ) and O(N1/3), respectively. As men-
tioned, even for the sequential case, our paper asymptotically improves Damg̊ard
et al.’s result [13] by avoiding the O(log N) blowup in space; and moreover, our
ORAM construction is conceptually simpler than that of Damg̊ard et al.’s.

Oblivious Parallel ORAM (OPRAM) was first proposed in an elegant work
by Boyle et al. [6], and subsequently improved in several followup works [7,8,
10,11,32]. All known results on OPRAM focus on the statistically secure or the
computationally secure setting. To the best of our knowledge, until this paper,
we know of no efficient OPRAM scheme that is perfectly secure. Chen et al. [11]
introduced a generic method to transform any ORAM into an OPRAM at the
cost of a log N blowup. Their techniques achieve statistical security since security
(or correctness) is only guaranteed with high probability (specifically, when some
queue does not become overloaded in their scheme).

Defining a good performance metric for OPRAMs turned out to be more
interesting and non-trivial than for ORAMs. Boyle et al. [6] were the first to
define a notion of simulation overhead for OPRAM: if an OPRAM’s simulation
overhead is X, it means that if the original PRAM consumes m CPUs and com-
pletes in parallel runtime T , then the oblivious counterpart must complete within
X · T time also consuming m CPUs. The recent work of Chan et al. [7] observes
that if the OPRAM could consume more CPUs than the original PRAM, then
the oblivious simulation can benefit from the additional parallelism and be addi-
tionally sped up by asymptotic factors. Under the assumption that the OPRAM
can consume more CPUs than the original PRAM, Chan et al. [7,10] show
that statistically secure OPRAM schemes can be constructed with O(log2 N)
blowup in total work and only ˜O(log N) blowup in depth (where depth char-
acterizes the parallel runtime of a program assuming ample number of CPUs).
Our paper is the first to construct an OPRAM scheme with perfect security, and
our OPRAM’s depth matches existing schemes with statistical security assum-
ing negligible in N security failure; however, if (sub-)exponentially small failure
probability is required, our new OPRAM scheme can asymptotically outperform
all known statistically secure OPRAMs!

2 Technical Roadmap

In this section, we present an informal roadmap of our technical approach to aid
understanding.
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2.1 Simplified Perfectly Secure ORAM with Asymptotically
Smaller Space

First, we propose a perfectly secure ORAM scheme that is conceptually simpler
than that of Damg̊ard et al. [13] and gains a logarithmic factor in space. Our
construction is inspired by the hierarchical ORAM paradigm originally proposed
by Goldreich and Ostrovsky [21,22]. However, most existing hierarchical ORAMs
achieve only computational security since they rely on a pseudorandom function
(PRF) for looking up hash tables in the hierarchical data structure. Thus our
focus is to get rid of this PRF and achieve perfect security.

Background: Hierarchical ORAM. The recent work by Chan et al. [8] gave a clean
and modular exposition of the hierarchical paradigm. A hierarchical ORAM con-
sists of O(log N) levels that are geometrically increasing in size. Specifically, level
i is capable of storing 2i memory blocks. One could think of this hierarchical data
structure as a hierarchy of stashes where smaller levels act as stashes for larger
levels. In existing schemes with computational security, each level is an oblivious
hash-table [8]. To access a block at logical address addr, the CPU sequentially
looks up every level of the hierarchy (from small to large) for the logical address
addr. The physical location of a logical address addr within the oblivious hash-
table is determined using a PRF whose secret key is known only to the CPU but
not to the adversary. Once the block has already been found in some level, for
all subsequent levels the CPU would just look for a dummy element, denoted by
⊥. When a requested block has been found, it is marked as deleted in the corre-
sponding level where it is found. Every 2i memory requests, we perform a rebuild
operation and merge all levels smaller than i (including the block just fetched
and possibly updated if this is a write request) into level i—at this moment, the
oblivious hash-table in level i is rebuilt, where every block’s location in the hash
table is determined using a PRF.

As Chan et al. [8] point out, the hierarchical ORAM paradigm effectively
reduces the problem of constructing ORAM to constructing an oblivious hash-
table supporting two operations: (1) rebuild takes in a set of blocks each tagged
with its logical address, and constructs a hash-table data structure that facili-
tates lookups later; and (2) lookup takes a request that is either a logical address
addr or dummy (denoted ⊥), and returns the corresponding block requested.
Obliviousness (defined w.r.t. the joint access patterns of the rebuild and lookup
phases) is guaranteed as long as during the life-time of the oblivious hash-table,
the sequence of lookup requests never ask for the same real element twice—and
this invariant is guaranteed by the specific way the hierarchical ORAM frame-
work uses the oblivious hash-table as a building block (more specifically, the fact
that once a block is found, it is moved to a smaller level and a dummy block is
requested from all subsequent levels).

Removing the PRF. As mentioned, an oblivious hash-table relies on a PRF
to determine each block’s location within a hash-table instance; and both the
rebuilding phase and the lookup phase use the same PRF for placing and fetching
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blocks respectively. Since we wish to achieve perfect security, we would like to
remove the PRF. One simple idea is to randomly permute all blocks within
a level— this way, each lookup of a real block would visit a random location
and we could hope to retain security as long as every real block is requested at
most once for every level (in between rebuilds)2. Using techniques from earlier
works [7,10], it is possible to obliviously perform such a random permutation
without disclosing the permutation; however, difficulty arises when one wishes
to perform a look up—if blocks are randomly permuted within a level during
rebuild, lookup must know where each block resides to proceed successfully. Thus
if the CPU could hold a position map for free to remember where each block is
in the hierarchical data structure, the problem would have been resolved: during
every lookup, the CPU could first look up the physical location of the logical
address requested, and then proceed accordingly.

Actually storing such a position map, however, would consume too much
CPU space. To avoid storing this position map, we are inspired by the recur-
sion technique that is commonly adopted by tree-based ORAM schemes [36]—
however, as we point out soon, making the recursion idea work for the hierarchi-
cal ORAM paradigm is more sophisticated. The high-level idea is to recursively
store the position map in a smaller ORAM rather than storing it on the CPU
side; we could then recurse and store the position map of the position map in
an even smaller ORAM, and so on—until the ORAM’s size becomes O(1) at
which point we would have the CPU store the entire ORAM. Henceforth, we use
the notation ORAMD to denote the ORAM that stores the actual data blocks
where D = O(log N); and we use ORAMd to denote the ORAM at depth d of
this recursion where d ∈ [0..D − 1]. Thus, the larger d is, the larger the ORAM.

Although this recursion idea was very simple in the tree-based paradigm, it
is not immediately clear how to make the same recursion idea work in the hier-
archical ORAM paradigm. One trickiness arises since in a hierarchical ORAM,
every 2i requests, the ORAM would reshuffle and merge all levels smaller than
i into level i — this is called a rebuild of level i. When a level-i rebuild hap-
pens, the position labels in the position-map ORAM must be updated as well
to reflect the blocks’ new locations. In a similar fashion, the position labels in
all of ORAM0,ORAM1, . . . ,ORAMD−1 must be updated. We make the following
crucial observation that will enable a coordinated rebuild technique which we will
shortly explain:

(Invariant necessary for coordinated rebuild:) If a data block resides at level
i of ORAMD, then its position labels in all recursion depths must reside in level
i or smaller3.

This invariant enables a coordinated rebuild technique: when the data ORAM
(i.e., ORAMD) merges all levels smaller than i into level i, all smaller recursion
depths would do the same (unless the recursion depth is too small and does

2 As we point out later, randomly permuting real blocks is in fact not sufficient; we
also need to allow dummy lookups by introducing an oblivious dummy linked list.

3 A similar observation was adopted by Goodrich et al. [24] in their statistically secure
ORAM construction.



Perfectly Secure Oblivious Parallel RAM 643

not have level i, in which case the entire ORAM would be rebuilt). During this
coordinated rebuild, ORAMD would first perform its rebuild, and propagate the
position labels of all blocks involved in the rebuild to recursion depth D − 1;
then ORAMD−1 would perform its rebuild based on the position labels learned
from ORAMD, and propagate the new position labels involved to recursion depth
D − 2, and so on. As we shall discuss in the technical sections, rebuilding a level
(in any recursion depth) can be accomplished through the help of O(1) oblivious
sorts and an oblivious random permutation.

Handling Dummy Blocks with Oblivious Linked Lists. The above idea almost
works, but not quite so. There is an additional technical subtlety regarding how
to handle and use dummy blocks. Recall that during a memory access, if a block
requested actually resides in a hierarchical level, we would read the memory
location that contains the block (and this memory location could be retrieved
through a special recursive position map technique). If a block does not reside
in a level (or has been found in a smaller level), we still need to read a dummy
location within the level to hide the fact that the block does not reside within
the current level.

Recall that the i-th level must support up to 2i lookups before the level is
rebuilt. Thus, one idea is to introduce 2i dummy blocks, and obliviously and
randomly permute all blocks, real and dummy alike, during the rebuild. All
dummy blocks may be indexed by a dummy counter, and every time one needs
to look up a dummy block in a level, we will visit a new dummy block. In this
way, we can retain obliviousness by making sure that every real block and every
dummy block is visited at most once before the level is rebuilt again.

To make this idea fully work, there must be a mechanism for finding out
where the next dummy block is every time a dummy lookup must be performed.
One näıve idea would be to use the same recursion technique to store position
maps for dummy blocks too—however, since each memory request might involve
reading O(log N) dummy blocks, one per level, doing so would incur extra blowup
in runtime and space. Instead, we use an oblivious dummy linked list to resolve
this problem—this oblivious dummy linked list is inspired by technical ideas
in the Damg̊ard et al. construction [13]. In essence, each dummy block stores
the pointer to the next dummy block, and the head pointer of the linked list
is stored at a designated memory location and updated upon each read of the
linked list. In the subsequent technical sections, we will describe how to rely
on oblivious sorting to rebuild such an oblivious dummy linked list to support
dummy lookups.

Putting It Altogether. Putting all the above ideas together, the formal presenta-
tion of our perfectly secure ORAM scheme adopts a modular approach4. First,
we define and construct an abstraction called an “oblivious one-time memory”.
An oblivious one-time memory allows one to obliviously create a data structure

4 In fact, later in our paper, we omit the sequential version and directly present the
parallel version of all algorithms.
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given a list of input blocks. Once created, one can look up real or dummy blocks
in the data structure, and to look up a real block one must provide a correct posi-
tion label indicating where the block resides (imagine for now that the position
label comes from an “oracle” but in the full ORAM scheme the position label
comes from the recursion). An oblivious one-time memory retains obliviousness
as long as every real block is looked up at most once and moreover, dummy
blocks are looked up at most n times where n is a predetermined parameter
(that the scheme is parametrized with).

Once we have this “oblivious one-time memory” abstraction, we show how to
use it to construct an intermediate abstraction referred to as a “position-based
ORAM”. A position-based ORAM contains a hierarchy of oblivious one-time
memory instances, of geometrically growing sizes. A position-based ORAM is
almost a fully functional ORAM except that we assume that upon every memory
request, an “oracle” will somehow provide a correct position label indicating
where the requested block resides in the hierarchy.

Finally, we go from such a “position-based ORAM” to a fully functional
ORAM using the special recursive position-map technique as explained. At this
point, we have constructed a perfectly secure ORAM scheme with O(log3 N)
simulation overhead. Specifically, one log N factor arises from the log N depths
of recursion, the remaining log2 N factor arises from the cost of the ORAM at
each recursion depth. Intuitively, our perfectly secure ORAM is a logarithmic
factor more expensive than existing computationally-secure counterparts in the
hierarchical framework [8,23,27] since the computationally-secure schemes [8,
23,27] avoid the recursion by adopting a PRF to compute the pseudorandom
position labels of blocks.

2.2 Making Our ORAM Scheme Parallel

Our next goal is to make our ORAM scheme parallel. Instead of compiling a
sequential RAM program to a sequential ORAM, we are now interested in com-
piling a PRAM program to an OPRAM. In this section, we describe an informal
roadmap of our technical approach to parallelism. However, due to lack of space,
we defer the details to the full version of our paper [9].

When the OPRAM Consumes the Same Number of CPUs as the
PRAM. Suppose that the original program is a PRAM that completes in T
parallel steps consuming m CPUs. We now would like to parallelize our earlier
ORAM scheme and construct an OPRAM that completes in T · O(log3 N) par-
allel steps consuming also exactly m CPUs. To accomplish this, first, we need
to parallelize within each position-based ORAM so m CPUs can perform work
concurrently. This is not too difficult to accomplish given the simplicity of our
position-based ORAM construction. Next, when m CPUs have all fetched posi-
tion labels at one recursion depth, they need to pass these position labels to the
CPUs at the next depth. The main technique needed here is oblivious routing:
when the m CPUs at recursion depth d have fetched the position labels for the



Perfectly Secure Oblivious Parallel RAM 645

next recursion depth, the m CPUs at depth d must now obliviously route the
position labels to the correct fetch CPU at the next recursion depth. As shown in
earlier works [6,7,10], such oblivious routing can be accomplished with m CPUs
in O(log m) parallel steps.

We stress that the simplicity of our sequential ORAM construction makes it
easy to parallelize — in comparison, we are not aware how to parallelize Damg̊ard
et al. [13]’s construction5.

When the OPRAM May Consume Unbounded Number Of CPUs. The
more interesting question is the following: if the OPRAM is allowed to consume
more CPUs than the original PRAM, can we further reduce its parallel runtime?
If so, it intuitively means that the overheads arising due to obliviousness are
parallelizable in nature. This model was first considered by Chan et al. [7] and can
be considered as a generalization of the case when the OPRAM must consume
the same number of CPUs as the original PRAM.

So far, in our OPRAM scheme, although within each recursion depth, up to
m requests can be served concurrently, the operations over all O(log N) recursion
depths must be performed sequentially. There are two reasons that necessitate
this sequentiality:

1. Fetch phase: first, to fetch from recursion depth d, one must wait for the
appropriate position labels to be fetched from recursion depth d − 1 and
routed to recursion depth d;

2. Maintain phase: recall that coordinated rebuilding (see Sect. 2.1) is performed
across all recursion depths in the reverse direction: recursion depth d must
rebuild first and then propagate the new positions labels back to recursion
depth d − 1 before d − 1 can rebuild (recall that recursion depth d − 1 must
store the position labels for blocks in depth d).

Note that for the fetch phase, oblivious routing between any two adjacent
recursion depths would consume O(log m) depth; for the maintain phase, rebuild-
ing a hierarchical level can consume up to O(log N) depth (due to oblivious sort-
ing of up to O(N) blocks). Thus, the current OPRAM algorithm incurs a depth
blowup of O(log2 N) for moderate sizes of m, e.g., when log m = Θ(log N). Our
next goal is to reduce the depth blowup to ˜O(log N), and this turns out to be
highly non-trivial.

Reducing the Depth of the Fetch Phase with Expander Graphs. Using the recur-
sion technique, it seems inherent that one must fetch from smaller recursion
5 In Damg̊ard et al. [13], the shuffle phase incurs an O(log3 N) depth which is the

same as the overhead for accessing a block. Specifically, a logN factor arises due
to oblivious sorting, a logN factor due to the existence of hierarchies, and another
logN factor due to the extra logN dummies stored for every real element. Though an
offline/online technique like ours may be conceivable for their scheme, the existence
of the extra logN dummies makes it inherently hard to improve the depth by another
logN factor.
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depths before embarking on larger ones. To reduce the depth of the fetch phase,
we ask whether the depth incurred by oblivious routing in between adjacent
recursion depths can be reduced. In the statistically and computationally secure
settings, the recent work by Chan, Chung, and Shi have tried to tackle a similar
problem for tree-based OPRAMs [7]. Their idea is to construct an offline/online
routing algorithm. Although the offline phase incurs O(log N) depth per recur-
sion depth, the offline work of all recursion depths can be performed concur-
rently rather than sequentially. On the other hand, the online phase of their
routing algorithm must be performed sequentially among the recursion depths,
but happily the online routing phase incurs only O(1) depth per recursion depth.
Unfortunately, the offline/online routing algorithm of Chan et al. [7] is a ran-
domized algorithm that leverages some form of statistical “load balancing”, and
such load balancing can fail with negligibly small probability—this makes their
algorithm unsuitable for the perfect security setting.

We propose a novel offline/online routing algorithm that achieves perfect
security using special expander graphs—our techniques can be viewed as a
method for derandomizing a new variant of the offline/online routing techniques
described by Chan et al. [7]. Like Chan et al. [7], our offline/online routing algo-
rithm achieves O(log N) depth for each recursion depth in the offline stage but
the work in all recursion depths can be performed in parallel in the offline stage.
By contrast, the online phase must traverse the recursion depths sequentially,
but the online stage of routing can be accomplished in O(1) depth per recur-
sion depth. To achieve this, we rely on a core building block called a “loose
compactor”. Leveraging special expander graphs, we show how to build a loose
compactor with small online depth—since this part of our techniques are novel,
we present a more expanded overview in Sect. 2.3 while deferring a detailed,
formal description to the full version [9].

Reducing the Depth of the Maintain Phase. We also must reduce the depth of
the maintain phase. Although a näıve implementation of coordinated rebuild is to
do it sequentially from recursion depth D down to recursion depth 0, we devise
a method for performing the coordinated rebuild in parallel among all recursion
depths. Recall that in the näıve solution, recursion depth d − 1 must wait for
recursion depth d to relocate its blocks and be informed of the new position
labels chosen before it starts reshuffling.

In our new algorithm, we introduce the notion of a rehearsal step called
“mock shuffle” which determines the new positions of each of the blocks. Note
that during this step, the newly chosen block contents (position labels) at the
recursion depths are not available. Now, instead of sequentially performing the
shuffle, in a mock shuffle, every recursion depth performs eager reshuffling with-
out having updated the block’s contents (recall that each block in recursion
depth d is supposed to store position labels for the next recusion depth d + 1).
After this mock shuffle, all blocks’ new positions are determined though their
contents are not known. Each mock reshuffle incurs O(log N) depth, but they
are independent and can be performed in parallel. At this moment, recursion
depth d informs the newly chosen position labels to recursion depth d − 1—now
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recursion depth d − 1 relies on oblivious routing to deliver each block’s contents
to the block. Note that recursion depth d − 1 has already chosen each block’s
position at this point and thus in this content update step, each block’s con-
tents will be routed to the corresponding block and all blocks will maintain their
chosen positions.

Using this idea, although each recursion depth incurs O(log N) depth for
the maintain phase, all recursion depths can now perform the maintain-phase
operations in parallel.

Additional Techniques. Besides the above, additional tricks are needed to achieve
˜O(log N) depth. For example, within each recursion depth, all the hierarchical
levels must be read in parallel during the fetch phase rather than sequentially
like in existing hierarchical ORAMs [21,22], and the result of these fetches can be
aggregated using an oblivious select operation incurring O(log log N) depth. It
is possible for us to read all the hierarchical levels in parallel since each recursion
depth must have received the position labels of all real blocks requested before
its fetch phase starts—and thus we know for each requested block which level
to look for a real element and which level to visit dummies. We defer additional
algorithmic details to the full version [9].

2.3 Offline/Online Routing with Special Expander Graphs

Informal Problem Statement. Without going into excessive details, consider the
following abstract problem: imagine that m CPUs at a parent depth have fetched
m real or dummy blocks, and each real block contains two position labels for the
next depth—thus in total up to 2m position labels have been fetched. Meanwhile,
m CPUs at the next depth are waiting to receive m position labels before they
can start their fetch. Our task is to obliviously route the (up to) 2m position
labels at the parent depth to the m CPUs at the child depth. Using oblivious
routing directly would incur Ω(log m) depth and thus is too expensive.

A Blueprint: Using an Offline/Online Algorithm. As mentioned earlier, our high-
level idea is to leverage an offline-online paradigm such that the online phase,
which must be performed sequentially for all recursion depths, should have small
parallel runtime for each recursion depth.

Here is another idea: suppose that we are somehow able to compress the 2m
position labels down to m, removing the ones that are not needed by the next
recursion depth—this is in fact non-trivial but for now, suppose that somehow
it can be accomplished.

Our plan is then the following: in the offline phase, we obliviously and ran-
domly permute the m position labels to be routed (without leaking the permu-
tation), and we obliviously compute the routing permutation π preserving the
following invariant: the CPU at position π(i) (in the child depth) is waiting for
the i-th position label in the permuted array. In other words, the i-th position
label wants to be routed to the CPU in position π(i); and in the offline phase,
we want to route down this π.
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If we can accomplish all of the above, then in the online phase we simply
apply the routing permutation that has been recorded and it takes a single
parallel step to complete the routing. Moreover, for the offline phase, as long
as we can perform the operations in parallel across all recursion depths, we are
allowed to incur log m depth.

Informally, obliviousness holds because of the following: recall that the m
labels to be routed have been obliviously and randomly permuted. Now, although
the routing permutation π is revealed in the online phase, the revealed permu-
tation is uniform at random to an observer.

Technical Challenges: Compaction (and More). The above blueprint seems
promising, but there are multiple technical challenges. One critical ingredient
that is missing is how to perform compaction from 2m elements down to m,
removing the labels not needed by the next recursion depth—in fact, even if we
can solve this compaction problem, additional challenges remain in putting these
techniques together. However, for the time being, let us focus on the compaction
problem alone. The most näıve method is again to leverage oblivious sorting
but unfortunately that takes Ω(log m) depth and thus is too expensive for our
purpose.

Pippenger’s Factory-Facility Problem. Our approach is inspired by the
techniques described by Pippenger in constructing a self-routing super-
concentrator [33]. Pippenger’s elegant construction can be used to solve a
“factory-facility” problem described as follows. Suppose that 2m factories and
m facilities form a special bipartite expander graph: each factory is connected
to d facilities and each facility is connected to 2d factories, where d is a con-
stant. Among the factories, m/64 of them are productive and actually end up
manufacturing products. Each productive factory produces d/2 products; these
products must be routed to a facility to be stored, and each facility has a storage
capacity of d/2. Now, the question is: given the set of productive factories (and
assuming that the bipartite graph is known), can we find a satisfying assignment
for routing products to facilities, such that (1) every edge in the bipartite graph
routes carries at most one unit of flow; (2) all products manufactured are routed;
and (3) no facility exceeds its storage capacity.

In his ingenious work [33], Pippenger described a distributed protocol for find-
ing such an assignment: imagine that the factories and facilities are Interactive
Turing Machines. Now the factories and facilities exchange messages over edges
in the bipartite graph. Pippenger’s protocol completes after O(log m) rounds of
interaction and a total of O(m) number of messages. Pippenger proved that as
long as the underlying bipartite graph satisfies certain expansion properties, his
protocol is guaranteed to find a satisfying assignment.

Using Pippenger’s Protocol for Oblivious Loose Compaction. Now we can reduce
the problem of (loose) compaction to Pippenger’s factory-facility problem. Imag-
ine that there are twice as many factories as there are facilities. Another way
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to think of the factory-facility problem is the following: imagine that the fac-
tories initially store real elements (i.e., the manufactured products) as well as
dummies, and in total 2m · (d/2) amount of storage is consumed since each fac-
tory can produce at most d/2 products. We ensure that only m/64 factories are
productive by appropriately adding a constant factor of dummy elements (i.e.,
dummy factories and facilities). Now, when routed to the facilities, the storage
amount is compressed down by a factor of 2 since each facility can store up to
d/2 products and the number of facilities is half that of factories. Further, for
any satisfying assignment, we guarantee that no real element is lost during the
routing, and that is why the compaction algorithm satisfies correctness. Note
that such compaction is loose, i.e., we do not completely remove dummies dur-
ing compaction although we do cut down total storage by a half while preserving
all real elements. In our OPRAM algorithm, it turns out that such loose com-
paction is sufficient, since CPUs who have received dummy position labels can
always perform dummy fetch operations.

Pippenger’s protocol can be easily simulated on a PRAM incurring O(m)
total work and O(log m) parallel runtime—however, a straightforward PRAM
simulation of their protocol is not oblivious. In particular, the communication
patterns between the factories and facilities (which translate to memory access
patterns when simulated on a PRAM) leak information about which factories
are productive. Thus it remains for us to show how to obliviously simulate his
protocol on a PRAM. We show that this can be done incurring O(m log m) total
work and O(log m) parallel runtime—note that the extra log m overhead arises
from the obliviousness requirement.

Finally, we apply the loose compaction algorithm in an offline/online fash-
ion too. In the offline phase, we execute Pippenger’s protocol obliviously on a
PRAM to compute the satisfying assignment—the offline phase can be paral-
lelized over all recursion depths, thus incurring O(log m) parallel runtime overall.
In the online phase, we carry out the satisfying assignment that has already been
recorded in the offline phase to perform the actual routing of the fetched position
labels, and this can be accomplished in O(1) online parallel runtime.

3 Definitions

3.1 Parallel Random-Access Machines

We review the concepts of a parallel random-access machine (PRAM) and an
oblivious parallel random-access machine (OPRAM). Some of the definitions in
this section are borrowed verbatim from Boyle et al. [6] or Chan and Shi [10].

Although we give definitions only for the parallel case, we point out that
this is without loss of generality, since a sequential RAM can be thought of as a
special case PRAM with one CPU.

Parallel Random-Access Machine (PRAM). A parallel random-access machine
consists of a set of CPUs and a shared memory denoted by mem indexed by the
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address space {0, 1, . . . , N − 1}, where N is a power of 2. In this paper, we refer
to each memory word also as a block, which is at least Ω(log N) bits long.

In a PRAM, each step of the execution can employ multiple CPUs, and
henceforth we use mt to denote the number of CPUs involved in executing the
t-th step for t ∈ N. In each step, each CPU executes a next instruction circuit
denoted Π, updates its CPU state; and further, CPUs interact with memory
through request instructions I(t) := (I(t)i : i ∈ [mt]). Specifically, at time step t,
CPU i’s instruction is of the form I

(t)
i := (read, addr), or I

(t)
i := (write, addr, data)

where the operation is performed on the memory block with address addr and
the block content data.

If I
(t)
i = (read, addr) then the CPU i should receive the contents of mem[addr]

at the beginning of time step t. Else if I
(t)
i = (write, addr, data), CPU i should

still receive the contents of mem[addr] at the beginning of time step t; further,
at the end of step t, the contents of mem[addr] should be updated to data.

Write Conflict Resolution. By definition, multiple read operations can be exe-
cuted concurrently with other operations even if they visit the same address.
However, if multiple concurrent write operations visit the same address, a con-
flict resolution rule will be necessary for our PRAM to be well-defined. In this
paper, we assume the following:

– The original PRAM supports concurrent reads and concurrent writes
(CRCW) with an arbitrary, parametrizable rule for write conflict resolution.

– Our compiled, oblivious PRAM (defined below) is a “concurrent read, exclu-
sive write” PRAM (CREW). In other words, our OPRAM algorithm must
ensure that there are no concurrent writes at any time.

CPU-to-CPU Communication. In the remainder of the paper, we sometimes
describe our algorithms using CPU-to-CPU communication. For our OPRAM
algorithm to be oblivious, the inter-CPU communication pattern must be obliv-
ious too. We stress that such inter-CPU communication can be emulated using
shared memory reads and writes. Therefore, when we express our performance
metrics, we assume that all inter-CPU communication is implemented with
shared memory reads and writes. In this sense, our performance metrics already
account for any inter-CPU communication, and there is no need to have separate
metrics that characterize inter-CPU communication. In contrast, some earlier
works [11] adopt separate metrics for inter-CPU communication.

Additional Assumptions and Notations. Henceforth, we assume that each CPU
can only store O(1) memory blocks. Further, we assume for simplicity that the
runtime T of the PRAM is fixed a priori and publicly known. Therefore, we can
consider a PRAM to be parametrized by the following tuple

PRAM := (Π,N, T,m1,m2, . . . , mT ),

where Π denotes the next instruction circuit, N denotes the total memory size
(in terms of number of blocks), T denotes the PRAM’s total runtime, and mt

denotes the number of CPUs in the t-th step for t ∈ [T ].
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Finally, in this paper, we consider PRAMs that are stateful and can evaluate
a sequence of inputs, carrying state in between. Without loss of generality, we
assume each input can be stored in a single memory block.

3.2 Oblivious Parallel Random-Access Machines

An OPRAM is a (randomized) PRAM with certain security properties, i.e., its
access patterns leak no information about the inputs to the PRAM.

Randomized PRAM. A randomized PRAM is a PRAM where the CPUs are
allowed to generate private random numbers. For simplicity, we assume that a
randomized PRAM has a priori known, deterministic runtime, and that the CPU
activation pattern in each time step is also fixed a priori and publicly known.

Memory Access Patterns. Given a PRAM program denoted PRAM and a
sequence inp of inputs, we define the notation Addresses[PRAM](inp) as follows:

– Let T be the total number of parallel steps that PRAM takes to evaluate
inputs inp.

– Let At := (addrt1, addrt2, . . . , addrtmt
) be the list of addresses such that the ith

CPU accesses memory address addrti in time step t.
– We define Addresses[PRAM](inp) to be the random object [At]t∈[T ].

Oblivious PRAM (OPRAM). We say that a PRAM is perfectly oblivious, iff
for any two input sequences inp0 and inp1 of equal length, it holds that the
following distributions are identically distributed (where ≡ denotes identically
distributed):

Addresses[PRAM](inp0) ≡ Addresses[PRAM](inp1)

We remark that for statistical and computational security, some earlier works [8,
10] presented an adaptive, composable security notion. The perfectly oblivious
counterpart of their adaptive, composable notion is equivalent to our notion
defined above. In particular, our notion implies security against an adaptive
adversary who might choose the input sequence inp adaptively over time after
having observed partial access patterns of PRAM.

We say that OPRAM is a perfectly oblivious simulation of PRAM iff OPRAM
is perfectly oblivious, and moreover OPRAM(inp) is identically distributed as
PRAM(inp) for any input inp. In the remainder of the paper, we always assume
that the original PRAM has a fixed number of CPUs (denoted m) in all steps
of execution. For the compiled OPRAM, we consider two models (1) when the
OPRAM always consumes exactly m CPUs in every step (i.e., the same number
of CPUs as the original PRAM); and (2) when the OPRAM can consume an
unbounded number of CPUs in every step; in this case, the actual number of
CPUs consumed in each step may vary. We leave it as an open problem how to
obliviously simulate a PRAM with a varying number of CPUs (without näıvely
padding the number of CPUs to the maximum which can incur large overhead).
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Oblivious Simulation Metrics. We adopt the following metrics to characterize
the overhead of (parallel) oblivious simulation of a PRAM. In the following,
when we say that an OPRAM scheme consumes T parallel steps (or W total
work), we mean that the OPRAM scheme consumes T parallel steps (or W total
work) except with negligible in N probability. In other words, the definition of
our metrics allows the OPRAM to sometimes, but with negligibly small (in N)
probability, exceed the desired runtime or total work bound; however, note that
the security or correctness failure probability must be 06.

– Simulation overhead (when the OPRAM consumes the same number of
CPUs as the PRAM). If a PRAM that consumes m CPUs and completes
in T parallel steps can be obliviously simulated by an OPRAM that com-
pletes in γ ·T steps also with m CPUs (i.e., the same number of CPUs as the
original PRAM), then we say that the simulation overhead is γ. Note that this
means that every PRAM step is simulated by on average γ OPRAM steps.

– Total work blowup (when the OPRAM may consume unbounded number of
CPUs). A PRAM’s total work is the number of steps necessary to simulate
the PRAM under a single CPU, and is equal to the sum

∑

t∈[T ] mt. If a PRAM
of total work W can be obliviously simulated by an OPRAM of total work
γ · W we say that the total work blowup of the oblivious simulation is γ.

– Depth blowup (when the OPRAM may consume unbounded number of
CPUs). A PRAM’s depth is defined to be its parallel runtime when there
are an unbounded number of CPUs. If a PRAM of depth D can be obliviously
simulated by an OPRAM of depth γ · D we say that the depth blowup of the
oblivious simulation is γ.

Note that the simulation overhead is a good standalone metric if we assume
that the OPRAM must consume the same number of CPUs as the PRAM. If
the OPRAM is allowed to consume more CPUs than the PRAM, we typically
use the metrics total work blowup and depth blowup in conjunction with each
other: total work blowup alone does not characterize how much the OPRAM
preserves parallelism; and depth blowup alone does not capture the extent to
which the OPRAM preserves total work.

Finally, the following simple fact is useful for understanding the complexity
of (oblivious) parallel algorithms.

Fact 2. Let C > 1. If an (oblivious) parallel algorithm can complete in T steps
consuming m CPUs, then it can complete in CT steps consuming �m

C � CPUs.

3.3 Building Blocks

In our constructions, we use several useful building blocks such as oblivious
routing, oblivious select, oblivious random permutation, etc. Due to lack of space,
we describe these building blocks in detail in the full version of the paper [9].
6 Similarly, the perfectly secure ORAM by Damg̊ard et al. [13] also allowed a negligible

small probability for the algorithm to exceed the desired complexity bound but the
security or correctness failure probability must be 0.
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4 Parallel One-Time Oblivious Memory

We define and construct an abstract datatype to process non-recurrent memory
lookup requests. Although the abstraction is similar to the oblivious hashing
scheme in Chan et al. [8], our one-time memory scheme needs to be perfectly
secure and does not use a hashing scheme. Furthermore, we assume that every
real lookup request is tagged with a correct position label that indicates where the
requested block is—in this section, we simply assume that the correct position
labels are simply provided during lookup; but later in our full OPRAM scheme,
we will use a recursive ORAM/OPRAM technique reminiscent of those used in
binary-tree-based ORAM/OPRAM schemes [10,12,36,38,39] such that we can
obtain the position label of a block first before fetching the block.

4.1 Definition: One-Time Oblivious Memory

Intuition. We describe the intuition using the sequential special case but our
formal presentation later will directly describe the parallel version. An oblivious
one-time memory supports three operations: (1) Build, (2) Lookup, and (3) Getall.
Build is called once upfront to create the data structure: it takes in a set of real
blocks (each tagged with its logical address) and creates a data structure that
facilitates lookup. After this data structure is created, a sequence of lookup
operations can be performed: each lookup can request a real block identified by
its logical address or a dummy block denoted ⊥ — if the requested block is a real
block, we assume that the correct position label is supplied to indicate where
in the data structure the requested block is. Finally, when the data structure
is no longer needed, one may call a Getall operation to obtain a list of blocks
(tagged with their logical addresses) that have not been looked up yet—in our
OPRAM scheme later, this is the set of blocks that need to be preserved during
rebuilding.

We require that our oblivious one-time memory data structure retain oblivi-
ousness as long as (1) the sequence of real blocks looked up all exist in the data
structure (i.e., it appeared as part of the input to Build), and moreover, each
logical address is looked up at most once; and (2) at most ñ number of dummy
lookups may be made where ñ is a predetermined parameter (that the scheme
is parametrized with).

Formal Definition. Our formal presentation will directly describe the parallel
case. In the parallel version, lookup requests come in batches of size m > 1.

A (parallel) one-time memory scheme denoted OTM[n,m,t] is parametrized by
three parameters: n denotes the upper bound on the number of real elements;
m is the batch size for lookups; t is the upper bound on the number of batch
lookups supported. We use three parameters because we use different versions of
OTM. For the basic version in Sect. 5, we have t = n

m number of batch lookups,
whereas for the low-depth version, the number of batch lookups is larger (which
means that some of the lookup addresses must be dummy).
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The (parallel) one-time memory scheme OTM[n,m,t] is comprised of the fol-
lowing possibly randomized, stateful algorithms to be executed on a Concurrent-
Read, Exclusive-Write PRAM — note that since the algorithms are stateful,
every invocation will update an implicit data structure in memory. Henceforth we
use the terminology key and value in the formal description but in our OPRAM
scheme later, a real key will be a logical memory address and its value is the
block’s content.

– U ← Build({(ki, vi) : i ∈ [n]}): given a set of n key-value pairs (ki, vi), where
each pair is either real or of the form (⊥,⊥), the Build algorithm creates an
implicit data structure to facilitate subsequent lookup requests, and moreover
outputs a list U of exactly n key-position pairs where each pair is of the form
(k, pos). Further, every real key input to Build will appear exactly once in the
list U ; and the list U is padded with ⊥ to a length n. Note that U does not
include the values vi’s. Later in our scheme, this key-position list U will be
propagated back to the parent recursion depth during a coordinated rebuild7.

– (vi : i ∈ [m]) ← Lookup({(ki, posi) : i ∈ [m]}): there are m concurrent Lookup
operations in a single batch, where we allow each key ki requested to be either
real or ⊥. Moreover, in each batch, at most n/t of the keys are real.

– R ← Getall: the Getall algorithm returns an array R of length n where each
entry is either ⊥ or real and of the form (k, v). The array R should contain
all real entries that have been inserted during Build but have not been looked
up yet, padded with ⊥ to a length of n.

Valid Request Sequence. Our oblivious one-time memory ensures obliviousness
only if lookups are non-recurrent (i.e., never look for the same real key twice);
and moreover the number of lookups requests must be upper bounded by a
predetermined parameter. More formally, a sequence of operations is valid, iff
the following holds:

– The sequence begins with a single call to Build upfront; followed by a sequence
of at most t batch Lookup calls, each of which supplies a batch of m keys and
the corresponding position labels; and finally the sequence ends with a single
call to Getall.

– The Build call is supplied with an input array S := {(ki, vi)}i∈[n], such that
any two real entries in S must have distinct keys.

– For every Lookup({(ki, posi) : i ∈ [m]}) query in the sequence, if each ki is
a real key, then ki must be contained in S that was input to Build earlier.
In other words, Lookup requests are not supposed to ask for real keys that
do not exist in the data structure8; moreover, each (ki, posi) pair supplied to

7 Note that we do not explicitly denote the implicit data structure in the output
of Build, since the implicit data structure is needed only internally by the current
oblivious one-time memory instance. In comparison, U is explicitly output since U
will later on be (externally) needed by the parent recursion depth in our OPRAM
construction.

8 We emphasize this is a major difference between this one-time memory scheme and
the oblivious hashing abstraction of Chan et al. [8]; Chan et al.’s abstraction [8]
allows lookup queries to ask for keys that do not exist in the data structure.
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Lookup must exist in the U array returned by the earlier invocation of Build,
i.e., posi must be a correct position label for ki; and

– Finally, in all Lookup requests in the sequence, no two keys requested (either
in the same or different batches) are the same.

Correctness. Correctness requires that

1. for any valid request sequence, with probability 1, for every Lookup({(ki,
posi) : i ∈ [m]}) request, the i-th answer returned must be ⊥ if ki = ⊥; else if
ki 	= ⊥, Lookup must return the correct value vi associated with ki that was
input to the earlier invocation of Build.

2. for any valid request sequence, with probability 1, Getall must return an array
R containing every (k, v) pair that was supplied to Build but has not been
looked up; moreover the remaining entries in R must all be ⊥.

Perfect Obliviousness. We say that two valid request sequences are length-
equivalent, if the input sets to Build have equal size, and the number of Lookup
requests (where each request asks for a batch of m keys) in the two sequences
are equal.

We say that a (parallel) one-time memory scheme is perfectly oblivious, iff
for any two length-equivalent request sequences that are valid, the distribution
of access patterns resulting from the algorithms are identically distributed.

4.2 Construction

Intuition. We first explain the intuition for the sequential case, i.e., m = 1.
The intuition is simply to permute all elements received as input during Build.
However, since subsequent lookup requests may be dummy (also denoted ⊥),
we also need to pad the array with sufficiently many dummies to support these
lookup requests. The important invariant is that each real element as well as
each dummy will be accessed at most once during lookup requests. For reals, this
is guaranteed since the definition of a valid request sequence requires that each
real key be requested no more than once, and that each real key requested must
exist in the data structure. For dummies, every time a ⊥-request is received, we
always look for an unvisited dummy. To implement this idea, one tricky detail is
that unlike real lookup requests, dummy requests do not carry the position label
of the next dummy to be read—thus our data structure itself must maintain an
oblivious linked list of dummies such that we can easily find out where the next
dummy is. Since all real and dummies are randomly permuted during Build, and
due to the aforementioned invariant, every lookup visits a completely random
location of the data structure thus maintaining perfect obliviousness.

It is not too difficult to make the above algorithm parallel (i.e., for the case
m > 1). To achieve this, one necessary modification is that instead of maintaining
a single dummy linked list, we now must maintain m dummy linked lists. These
m dummy linked lists are created during Build and consumed during Lookup.
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Detailed Construction. At the end of Build, our algorithm creates an in-
memory data structure consisting of the following:

1. An array A of length n + ñ, where ñ := tm denotes the number of dummies
and n denotes the number of real elements. Each entry of the array A (real
or dummy alike) has four fields (key, val, next, pos) where

– key is a key that is either real or dummy; and val is a value that is either
real or dummy.

– the field next ∈ [0..n+ ñ) matters only for dummy entries, and at the end
of the Build algorithm, the next field stores the position of the next entry
in the dummy linked list (recall that all dummy entries form m linked
lists); and

– the field pos ∈ [0..n+ ñ) denotes where in the array an entry finally wants
to be—at the end of the Build algorithm it must be that A[i].pos = i. How-
ever, during the algorithm, entries of A will be permuted transiently; but
as soon as each element i has decided where it wants to be (i.e., A[i].pos),
it will always carry its desired position around during the remainder of
the algorithm.

2. An array that stores the head pointers of all m dummy linked lists. Specif-
ically, we denote the m head pointers as {dposi : i ∈ [m]} where each
dposi ∈ [0..n + ñ) is the head pointer of one dummy linked list.

These in-memory data structures, including A and the dummy pointers will
then be updated during Lookup.
Build. Our oblivious Build({(ki, vi)}i∈[n]) algorithm proceeds as follows.

1. Initialize. Construct an array A of length n+ ñ whose entries are of the form
described above. Specifically, the keys and values for the first n entries of A
are copied from the input. Recall that the input may contain dummies too,
and we use ⊥ to denote a dummy key from the input.
The last ñ entries of A contain special dummy keys that are numbered. Specif-
ically, for each i ∈ [1..ñ], we denote An[i] := A[n−1+ i], and the entry stored
at An[i] has key ⊥i and value ⊥.

2. Every element decides at random its desired final position. Specifically, per-
form a perfectly oblivious random permutation on the entries of A—this
random permutation decides where each element finally wants to be.
Now, for each i ∈ [0..n+ñ), let A[i].pos := i. At this moment, A[i].pos denotes
where the element A[i] finally wants to be. Henceforth in the algorithm, the
entries of A will be moved around but each element always carries around its
desired final position.

3. Construct the key-position map U . Perform oblivious sorting on A using the
field key. We assume that real keys have the highest priority followed by
⊥ < ⊥1 < · · · < ⊥ñ (where smaller keys come earlier).
At this moment, we can construct the key-position map U from the first n
entries of A—recall that each entry of U is of the form (k, pos).

4. Construct m dummy linked lists. Observe that the last ñ entries of A contain
special dummy keys, on which we perform the following to build m disjoint
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singly-linked lists (each of which has length t). For each i ∈ [1..ñ], if i mod t 	=
0 we update the entry An[i].next := An[i + 1].pos, i.e., each dummy entry
(except the last entry of each linked list) records its next pointer.
We next record the positions of the heads of the m lists. For each i ∈ [m], we
set dposi := An[t(i − 1)].pos.

5. Move entries to their desired positions. Perform an oblivious sort on A, using
the fourth field pos. (This restores the ordering according to the previous
random permutation.)

At this moment, the data structure (A, {dposi : i ∈ [m]}) is stored in memory.
The key-position map U is explicitly output and later in our OPRAM scheme
it will be passed to the parent recursion depth during coordinated rebuild.

Fact 3. Consuming O(ñ + n) CPUs and setting (ñ + n)2 ≤ λ ≤ 2ñ+n, the
Build algorithm completes in O(log(ñ+n)) parallel steps, except with probability
negligible in λ.

Lookup. We implement a batch of m concurrent lookup operations
{Lookup({(ki, posi) : i ∈ [m]}) as follows. For each i ∈ [m], we perform the
following in parallel.

1. Decide position to fetch from. If ki 	= ⊥ is real, set pos := posi, i.e., we want to
use the position label supplied from the input. Else if ki = ⊥, set pos := dposi,
i.e., the position to fetch from is the next dummy in the i-th dummy linked
lists. (To ensure obliviousness, the algorithm can always pretend to execute
both branches of the if-statement.)
At this moment, pos is the position to fetch from (for the i-th request out of
m concurrent requests).

2. Read and remove. Read the value from A[pos] and mark A[pos] := ⊥.
3. Update dummy head pointer if necessary. If pos = dposi, update the dummy

head pointer dposi := next. (To ensure obliviousness, the algorithm can pre-
tend to modify dposi in any case.)

4. Return. Return the value read in the above Step 4.2.

The following fact is straightforward from the description of the algorithm.

Fact 4. The Lookup algorithm completes in O(1) parallel steps with O(m)
CPUs.

Getall. Getall is implemented by the following simple procedure: obliviously sort
A by the key such that all real entries are packed in front. Return the first n
entries of the resulting array (and removing the metadata entries next and pos).

Fact 5. The Getall algorithm completes in log(ñ + n) parallel steps consuming
O(ñ + n) CPUs.

Lemma 1. (Perfect obliviousness of the one-time memory scheme).
The above (parallel) one-time memory scheme satisfies perfect obliviousness.
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Due to lack of space, we defer the proof to the full version of the paper [9].
Summarizing the above, we conclude with the following theorem.

Theorem 6 (One-time oblivious memory). Let λ ∈ N be a parameter
related to the probability that the algorithm’s runtime exceeds a desired bound.
Assume that each memory block can store at least log n+log λ bits. There exists
a perfectly oblivious one-time scheme such that Build takes O(log n) parallel steps
(except with negligible in λ probability) consuming n CPUs, Lookup for a batch
of m requests takes O(1) parallel steps consuming m CPUs, and Getall takes
O(log n) parallel steps consuming n CPUs.

5 Basic OPRAM with O(log3 N) Simulation Overhead

Recall that N denotes the number of logical memory blocks consumed by the
original PRAM, and each memory block can store at least Ω(log N) bits. In this
section, we describe an OPRAM construction such that each batch of m memory
requests takes O(log3 N) parallel steps to satisfy with m CPUs. In the full version
of our paper [9], we will describe how to further parallelize the OPRAM when
the OPRAM can consume more CPUs than the original PRAM.

Roadmap. We briefly explain the technical roadmap of this section:

– In Sect. 5.1, we will first describe a position-based OPRAM that supports
two operations: Lookup and Shuffle. A position-based OPRAM is an almost
fully functional OPRAM scheme except that every real lookup request must
supply a correct position label. In our OPRAM construction, these position
labels will have been fetched from small recursion depths and therefore will
be ready when looking up the position-based OPRAM.
Our position-based OPRAM relies on the hierarcial structure proposed by
Goldreich and Ostrovsky [21,22], as well as techniques by Chan et al. [8] that
showed how to parallelize such a hierarchical framework.

– In Sect. 5.2, we explain how to leverage “coordinated rebuild” and recursion
techniques to build a recursive OPRAM scheme that composes logarithmi-
cally many instances of our position-based OPRAM, of geometrically decreas-
ing sizes.

5.1 Position-Based OPRAM

Our basic OPRAM scheme (Sect. 5.2) will consist of logarithmically many
position-based OPRAMs of geometrically increasing sizes, henceforth denoted
OPRAM0, OPRAM1, OPRAM2, . . ., OPRAMD where D := log2 N − log2 m.
Specifically, OPRAMd stores Θ(2d · m) blocks where d ∈ {0, 1, . . . ,D}. The last
one OPRAMD stores the actual data blocks whereas every other OPRAMd where
d < D recursively stores the position labels for the next depth d + 1.
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Data Structure. As we shall see, the case OPRAM0 is trivial and is treated
specially at the end of this section (Sect. 5.1). Below we focus on describing
OPRAMd for some 1 ≤ d ≤ D = log N − log m. For d 	= 0, each OPRAMd

consists of d + 1 levels geometrically growing in size, where each level is a one-
time oblivious memory scheme as defined and described in Sect. 4. We specify
this data structure more formally below.

Hierarchical Levels. The position-based OPRAMd consists of d + 1 levels hence-
forth denoted as (OTMj : j = 0, . . . , d) where level j is a one-time oblivious
memory scheme,

OTMj := OTM[2j ·m,m,2j ]

with at most n = 2j · m real blocks and m concurrent lookups in each batch
(which can all be real). This means that for every OPRAMd, the smallest level is
capable of storing up to m real blocks. Every subsequent level can store twice as
many real blocks as the previous level. For the largest OPRAMD, its largest level
is capable of storing N real blocks given that D = log N − log m—this means
that the total space consumed is O(N).

Every level j is marked as either empty (when the corresponding OTMj has
not been rebuilt) or full (when OTMj is ready and in operation). Initially, all
levels are marked as empty, i.e., the OPRAM initially is empty.

Position Label. Henceforth we assume that a position label of a block specifies
(1) which level the block resides in; and (2) the position within the level the
block resides at.

Additional Assumption. We assume that each block is of the form (logical
address, payload), i.e., each block carries its own logical address.

Operations. Each position-based OPRAM supports two operations, Lookup
and Shuffle. For every OPRAMd consisting of d+1 levels, we rely on the following
algorithms for Lookup and Shuffle.

Lookup. Every batch lookup operation, denoted Lookup({(addri, posi) : i ∈ [m]})
receives as input the logical addresses of m blocks as well as a correct position
label for each requested block. To complete the batch lookup request, we perform
the following.

1. For each level j = 0, . . . , d in parallel, perform the following:
– For each i ∈ [m] in parallel, first check the supplied position label posi to

see if the requested block resides in the current level j: if so, let addr′i :=
addri and let pos′

i := posi (and specifically the part of the position label
denoting the offset within level j); else, set addr′i := ⊥ and pos′

i := ⊥ to
indicate that this should be a dummy request.

– (vij : i ∈ [m]) ← OTMj .Lookup({addr′i, pos′
i : i ∈ [m]}).
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2. At this point, each of the m CPUs has d answers from the d levels respectively,
and only one of them is the valid answer. Now each of the m CPUs chooses
the correct answer as follows.
For each i ∈ [m] in parallel: set vali to be the only non-dummy element
in (vij : j = 0, . . . , d), if it exists; otherwise set vali := ⊥. This step can
be accomplished using an oblivious select operation in log d parallel steps
consuming d CPUs.

3. Return (vali : i ∈ [m]).

We remark that in Goldreich and Ostrovsky’s original hierarchical
ORAM [21,22], the hierarchical levels must be visited sequentially—for oblivi-
ousness, if the block is found in some smaller level, all subsequent levels must
perform a dummy lookup. Here we can visit all levels in parallel since the position
label already tells us which level it is in. Now the following fact is straightforward:

Fact 7. For OPRAMd, Lookup consumes O(log d) parallel steps consuming m ·d
CPUs where m is the batch size.

Shuffle. Similar to earlier hierarchical ORAMs [21,22] and OPRAMs [8], a shuf-
fle operation merges consecutively full levels into the next empty level (or the
largest level). However, in our Shuffle abstraction, there is an input U that con-
tains some logical addresses together with new values to be updated. Moreover,
the shuffle operation is associated with an update function that determines how
the new values in U should be incorporated into the OTM during the rebuild.

In our full OPRAM scheme later, the update array U will be passed from
the immediate next depth OPRAMd+1, and contains the new position labels that
OPRAMd+1 has chosen for recently accessed logical addresses. These position
labels must then be recorded by OPRAMd appropriately.

More formally, each position-based OPRAMd supports a shuffle operation,
denoted Shuffle(U, 	; update), where the parameters are explained as follows:

1. An update array U in which each (non-dummy) entry contains a logical
address that needs to be updated, and a new value for this block. (Strictly
speaking, we allow a block to be partially updated.)
We will define additional constraints on U subsequently.

2. The level 	 to be rebuilt during this shuffle.
3. An update function that specifies how the information in U is used to compute

the new value of a block in the OTM.
The reason we make this rule explicit in the notation is that a block whose
address that appears in U may only be partially modified; hence, we later
need to specify this update function carefully. However, to avoid cumbersome
notation, we may omit the parameter update, and just write Shuffle(U, 	),
when the context is clear.

For each OPRAMd, when Shuffle(U, 	; update) is called, it must be guaranteed
that 	 ≤ d; and moreover, either level 	 must either be empty or 	 = d (i.e., this
is the largest level in OPRAMd). Moreover, there is an extra OTM′

0; jumping
ahead, we shall see that OTM′

0 contains the blocks that are freshly fetched.
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The Shuffle algorithm then combines levels 0, 1, . . . , 	 (of OPRAMd), together
with the extra OTM′

0, into level 	, updating some blocks’ contents as instructed
by the update array U and the update function update. At the end of the shuffle
operation, all levels 0, 1, . . . , 	 − 1 are now marked as empty and level 	 is now
marked as full.

We now explain the assumptions we make on the update array U and how
we want the update procedure to happen:

– We require that each logical address appears at most once in U .
– Let A be all logical addresses remaining in levels 0 to 	 in OPRAMd: it must

hold that the set of logical addresses in U is a subset of those in A. In other
words, a subset of the logical addresses in A will be updated before rebuilding
level 	.

– If some logical address addr exists only in A but not in U , after rebuilding
level 	, the block’s value from the current OPRAMd should be preserved.
If some logical address addr exists in both A and in U , we use the update
function to modify its value: update takes a pair of blocks (addr, data) and
(addr, data′) with the same address but possibly different contents (the first
of which coming from the current OPRAMd and the second coming from U),
and computes the new block content data∗ appropriately.
We remark that the new value data∗ might depend on both data and data′.
Later, we will describe how the update rule is implemented.

Upon receiving Shuffle(U, 	; update), proceed with the following steps:

1. Let A := ∪�
i=0OTMi.Getall∪OTM′

0.Getall, where the operator ∪ denotes con-
catenation. Moreover, for an entry in A that comes from OTMi, then it also
carries a label i.
At this moment, the old OTM0, . . . ,OTM� instances may be destroyed.

2. We obliviously sort A ∪ U in increasing order of logical addresses, and more-
over, placing all dummy entries at the end. If two blocks have the same logical
address, place the entry coming from A in front of the one coming from U .
At this moment, in one linear scan, we can operate on every adjacent pair
of entries using the aforementioned update operation, such that if they share
the same logical address, the first entry is preserved and updated to a new
value, and the second entry is set to dummy.
We now obliviously sort the resulting array moving all dummies to the end.
We truncate the resulting array preserving only the first 2� · m elements and
let A′ denote the outcome (note that only dummies and no real blocks will
truncated in the above step).

3. Next, we call U ′ ← Build(A′) that builds a new OTM′ and U ′ contains the
positions of blocks in OTM′.

4. OTM′ is now the new level 	 and henceforth it will be denoted OTM�. Mark
level 	 as full and levels 0, 1, . . . , 	−1 as empty. Finally, output U ′ (in our full
OPRAM construction, U ′ will be passed to the immediately smaller position-
based OPRAM as the update array for performing its shuffle).
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If we realize the oblivious sort with the AKS network [1] that sorts n items
in O(log n) parallel steps consuming n CPUs, we easily obtain the following
fact—note that there is a negligible in N probability that the algorithm runs
longer than the stated asymptotic time due to the oblivious random permutation
building block.

Fact 8. Suppose that the update function can be evaluated by a single CPU in
O(1) steps. For OPRAMd, let 	 ≤ d, then except with negligible in N probability,
Shuffle(U, 	) takes O(log(m · 2�)) parallel steps consuming m · 2� CPUs.

Observe that in the above fact, the randomness comes from the oblivious
random permutation subroutine used in building the one-time oblivious memory
data structure.

Trivial Case: OPRAM0. In this case, OPRAM0 simply stores its entries in an array
A[0..m) of size m and we assume that the entries are indexed by a (log2 m)-bit
string. Moreover, each address is also a (log2 m)-bit string, whose block is stored
at the corresponding entry in A.

– Lookup. Upon receiving a batch of m depth-m truncated addresses where all
the real addresses are distinct, use oblivious routing to route A[0..m) to the
requested addresses. This can be accomplished in O(m log m) total work and
O(log m) depth. Note that OPRAM0’s lookup does not receive any position
labels.

– Shuffle. Since there is only one array A (at level 0), Shuffle(U, 0) can be
implemented by oblivious sorting.

5.2 OPRAM Scheme from Position-Based OPRAM

Recursive OPRAMs. The OPRAM scheme consists of D + 1 position-based
OPRAMs henceforth denoted as OPRAM0,OPRAM1,OPRAM2, . . . ,OPRAMD.
OPRAMD stores the actual data blocks, whereas every other OPRAMd where
d 	= D recursively stores the position labels for the next data structure
OPRAMd+1. Our construction is in essence recursive although in presentation we
shall spell out the recursion for clarity. Henceforth we often say that OPRAMd

is at recursion depth d or simply depth d.
Although we are inspired by the recursion technique for tree-based

ORAMs [36], using this recursion technique in the context of hierarchical
ORAMs/OPRAMs raises new challenges. In particular, we cannot use the recur-
sion in a blackbox fashion like in tree-based constructions since all of our
(position-based, hierarchical) OPRAMs must reshuffle in sync with each other
in a non-blackbox fashion as will become clear later.

Format of Depth-d Block and Address. Suppose that a block’s logical address is
a log2 N -bit string denoted addr〈D〉 := addr[1..(log2 N)] (expressed in binary for-
mat), where addr[1] is the most significant bit. In general, at depth d, an address
addr〈d〉 is the length-(log2 m + d) prefix of the full address addr〈D〉. Henceforth,
we refer to addr〈d〉 as a depth-d address (or the depth-d truncation of addr).
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When we look up a data block, we would look up the full address addr〈D〉 in
recursion depth D; we look up addr〈D−1〉 at depth D − 1, addr〈D−2〉 at depth
D −2, and so on. Finally at depth 0, the log2 m-bit address uniquely determines
one of the m blocks stored at OPRAM0. Since each batch consists of m concurrent
lookups, one of them will be responsible for this block in OPRAM0.

A block with the address addr〈d〉 in OPRAMd stores the position labels for two
blocks in OPRAMd+1, at addresses addr〈d〉||0 and addr〈d〉||1 respectively. Hence-
forth, we say that the two addresses addr〈d〉||0 and addr〈d〉||1 are siblings to each
other; addr〈d〉||0 is called the left sibling and addr〈d〉||1 is called the right sibling.
We say that addr〈d〉||0 is the left child of addr〈d〉 and addr〈d〉||1 is the right child
of addr〈d〉.

Operations. Each batch contains m requests denoted as ((opi, addri, datai) :
i ∈ [m]), where for opi = read, there is no datai. We perform the following steps.

1. Conflict resolution. For every depth d ∈ {0, 1, . . . ,D} in parallel, perform
oblivious conflict resolution on the depth-d truncation of all m addresses
requested.
For d = D, we suppress duplicate addresses. If multiple requests collide on
addresses, we would prefer a write request over a read request (since write
requests also fetch the old memory value back before overwriting it with a new
value). In the case of concurrent write operations to the same address, we use
the properties of the underlying PRAM to determine which write operation
prevails.
For 0 ≤ d < D, after conflict resolution, the m requests for OPRAMd become

((addr
〈d〉
i , flagsi) : i ∈ [m]),

where each non-dummy depth-d truncated address addr
〈d〉
i is distinct and

has a two-bit flagsi that indicates whether each of two addresses (addr
〈d〉
i ||0)

and (addr
〈d〉
i ||1) is requested in OPRAMd+1. As noted by earlier works on

OPRAM [6,10,11], conflict resolution can be completed through O(1) num-
ber of oblivious sorting operations. We thus defer the details of the conflict
resolution procedure to the full version of the paper [9].

2. Fetch. For d = 0 to D sequentially, perform the following:
– For each i ∈ [m] in parallel: let addr

〈d〉
i be the depth-d truncation of

addr
〈D〉
i .

– Call OPRAMd.Lookup to look up the depth-d addresses addr
〈d〉
i for all i ∈

[m]; observe that position labels for the lookups of non-dummy addresses
will be available from the lookup of the previous OPRAMd−1 for d ≥ 1,
which is described in the next step. Recall that for OPRAM0, no position
labels are needed.

– If d < D, each lookup from a non-dummy (addr
〈d〉
i , flagsi) will return two

positions for the addresses addr
〈d〉
i ||0 and addr

〈d〉
i ||1 in OPRAMd+1. The
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two bits in flagsi will determine whether each of these two position labels
are needed in the lookup of OPRAMd+1.
We can imagine that there are m CPUs at recursion depth d + 1 waiting
for the position labels corresponding to {addr

〈d+1〉
i : i ∈ [m]}. Now, using

oblivious routing, the position labels can be delivered to the CPUs at
recursion depth d + 1.

– If d = D, the outcome of Lookup will contain the data blocks fetched.
Recall that conflict resolution was used to suppress duplicate addresses.
Hence, oblivious routing can be used to deliver each data block to the
corresponding CPUs that request it.

– In any case, the freshly fetched blocks are updated if needed in the case
of d = D, and are placed in OTM′

0 in each OPRAMd.
3. Maintain. We first consider depth D. Set depth-D’s update array U 〈D〉 := ∅.

Suppose that 	〈D〉 is the smallest empty level in OPRAMD.
We have the invariant that for all 0 ≤ d < D, if 	〈D〉 < d, then 	〈D〉 is also
the smallest empty level in OPRAMd.
For d := D downto 0, do the following:

– If d < 	〈D〉, set 	 := d; otherwise, set 	 := 	〈D〉.
– Call U ← OPRAMd.Shuffle(U 〈d〉, 	; update) where update is the following

natural function: recall that in U 〈d〉 and OPRAMd−1, each depth-(d − 1)
logical address stores the position labels for both children addresses. For
each of the child addresses, if U 〈d〉 contains a new position label, choose
the new one; otherwise, choose the old label previously in OPRAMd−1.

– If d ≥ 1, we need to send the updated positions involved in U to depth
d − 1.
We use the Convert subroutine to convert U into an update array for
depth-(d − 1) addresses, where each entry may pack the position labels
for up to two sibling depth-d addresses. Convert can be realized with O(1)
oblivious sorting operations and we defer its detailed presentation to the
full version of our paper [9].
Now, set U 〈d−1〉 ← Convert(U, d), which will be used in the next iteration
for recursion depth d − 1 to perform its shuffle.

With the above basic OPRAM construction, we can achieve the following
theorem whose proof is deferred to the full version of the paper [9].

Theorem 9. The above construction is a perfectly secure OPRAM scheme sat-
isfying the following performance overhead:

– When consuming the same number of CPUs as the original PRAM, the
scheme incurs O(log3 N) simulation overhead;

– When the OPRAM is allowed to consume an unbounded number of CPUs, the
scheme incurs O(log3 N) total work blowup and O((log m + log log N) log N)
depth blowup.

In either case, the space blowup is O(1).
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Proof. We defer the obliviousness proof and performance analysis to the full
version of the paper [9].

Note that at this moment, even for the sequential special case, we already
achieve asymptotic savings over Damg̊ard et al. [13] in terms of space consump-
tion. Furthermore, Damg̊ard et al. [13]’s construction is sequential in nature and
does not immediately give rise to an OPRAM scheme.

6 Conclusion and Future Work

In this paper, we constructed a perfectly secure OPRAM scheme with O(log3 N)
total work blowup, O(log N log log N) depth blowup, and O(1) space blowup. To
the best of our knowledge our scheme is the first perfectly secure (non-trivial)
OPRAM scheme, and even for the sequential special case we asymptotically
improve the space overhead relative to Damg̊ard et al. [13]. Prior to our work,
the only known perfectly secure ORAM scheme is that by Damg̊ard et al. [13],
where they achieve O(log3 N) simulation overhead and O(log N) space blowup.
No (non-trivial) OPRAM scheme was known prior to our work, and in particular
the scheme by Damg̊ard et al. [13] does not appear amenable to parallelization.
Finally, in comparison with known statistically secure OPRAMs [10,39], our
work removes the dependence (in performance) on the security parameter; thus
we in fact asymptotically outperform known statistically secure ORAMs [39] and
OPRAMs [10] when (sub-)exponentially small failure probabilities are required.

Exciting questions remain open for future research:

– Are there any separations between the performance of perfectly secure and
statistically secure ORAMs/OPRAMs?

– Can we construct perfectly secure ORAMs/OPRAMs whose total work
blowup matches the best known statistically secure ORAMs/OPRAMs
assuming negligible security failures?

– Can we construct perfectly secure ORAM/OPRAM schemes whose concrete
performance lends to deployment in real-world systems?
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