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Abstract. Most secure computation protocols can be effortlessly
adapted to offload a significant fraction of their computationally and
cryptographically expensive components to an offline phase so that the
parties can run a fast online phase and perform their intended compu-
tation securely. During this offline phase, parties generate private shares
of a sample generated from a particular joint distribution, referred to as
the correlation. These shares, however, are susceptible to leakage attacks
by adversarial parties, which can compromise the security of the secure
computation protocol. The objective, therefore, is to preserve the secu-
rity of the honest party despite the leakage performed by the adversary
on her share.

Prior solutions, starting with n-bit leaky shares, either used 4 mes-
sages or enabled the secure computation of only sub-linear size circuits.
Our work presents the first 2-message secure computation protocol for
2-party functionalities that have Θ(n) circuit-size despite Θ(n)-bits of
leakage, a qualitatively optimal result. We compose a suitable 2-message
secure computation protocol in parallel with our new 2-message correla-
tion extractor. Correlation extractors, introduced by Ishai, Kushilevitz,
Ostrovsky, and Sahai (FOCS–2009) as a natural generalization of pri-
vacy amplification and randomness extraction, recover “fresh” correla-
tions from the leaky ones, which are subsequently used by other crypto-
graphic protocols. We construct the first 2-message correlation extractor
that produces Θ(n)-bit fresh correlations even after Θ(n)-bit leakage.

Our principal technical contribution, which is of potential indepen-
dent interest, is the construction of a family of multiplication-friendly
linear secret sharing schemes that is simultaneously a family of small-bias
distributions. We construct this family by randomly “twisting then per-
muting” appropriate Algebraic Geometry codes over constant-size fields.
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1 Introduction

Secure multi-party computation (MPC) allows mutually distrusting parties to
compute securely over their private data. Secure computation of most function-
alities requires expensive public-key primitives such as oblivious transfer, even
in the semi-honest setting.1 We can effortlessly adjust most of these existing
secure computation protocols so that they offload a significant fraction of their
complex operations to an offline preprocessing phase. Subsequently, during an
online phase, parties can implement extremely fast secure computation proto-
cols. In fact, several specialized protocols optimize MPC for this online-offline
paradigm [4,6,7,15,18,28,29,31,37].

For instance, in the two-party setting, we envision this offline phase as a
secure implementation of a trusted dealer who generates private albeit corre-
lated shares (rA, rB) for Alice and Bob, respectively, sampled from an appro-
priate joint distribution (RA, RB), referred to as a correlation. This versatile
framework allows the implementation of this trusted dealer using computational
hardness assumptions, secure hardware, trusted hardware, or physical processes.
Furthermore, this offline phase is independent of the final functionality to be
computed, as well as the parties’ private inputs.

A particularly useful correlation is the random oblivious transfer correlation,
represented by ROT. One sample of this correlation generates three random bits
x0, x1, b and provides private shares rA = (x0, x1) to Alice, and rB = (b, xb) to
Bob. Note that Alice does not know the choice bit b, and Bob does not know
the other bit x1−b. Let F be the class of functionalities that admit 2-message
secure computation protocols in the ROT-hybrid [10,26]. Note that F includes
the powerful class of functions that have a decomposable randomized encoding
[3,5,25]. Alice and Bob can compute the required ROTs in the offline phase.
Then, they can compute any functionality from this class using 2-messages, a
protocol exhibiting optimal message complexity2 and (essentially) optimal effi-
ciency in the usage of cryptographic resources.

However, the private share of the honest party is susceptible to leakage
attacks by an adversary, both during the generation of the shares and the dura-
tion of storing the shares. We emphasize that the leakage need not necessarily
reveal individual bits of the honest party’s share. The leakage can be on the
entire share and encode crucial global information that can potentially jeop-
ardize the security of the secure computation protocol. This concern naturally
leads to the following fundamental question.

“Can we preserve the security and efficiency of the secure computation during
the online phase despite the adversarial leakage on the honest party’s shares?”

Using the class F of functionalities (defined above) as a yardstick, let us
determine the primary hurdle towards a positive resolution of this question. In
1 A semi-honest adversary follows the prescribed protocol but is curious to find addi-

tional information.
2 Message complexity refers to the number of messages exchanged between Alice and

Bob.
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the sequel, Fm/2 ⊂ F is the set of all two-party functionalities that have a 2-
message protocol in ROTm/2-hybrid, i.e., parties start with m/2 independent
samples3 from the ROT correlation. In the leaky correlation setting where an
adversary has already leaked global information from the private share of the
honest party, our objective is to design an (asymptotically) optimal secure com-
putation protocol for the functionalities in Fm/2. That is, starting with leaky
correlations (of size n), we want to compute any F ∈ Fm/2 such that m = Θ(n)
via a 2-message protocol despite t = Θ(n) bits of leakage. We note that this
task is equivalent to the task of constructing a secure computation protocol for
the particular functionality ROTm/2 that also belongs to Fm/2. This observa-
tion follows from the parallel composition of the secure protocol implementing
the functionality ROTm/2 from leaky correlations with the 2-message protocol
for F in the ROTm/2-hybrid. To summarize, our overall objective of designing
optimal secure computation protocols from leaky ROT correlations reduces to
the following equivalent goal.

“Construct a 2-message protocol to compute ROTm/2 securely, where
m=Θ(n), from the leaky ROTn/2 correlation in spite of t = Θ(n) bits of

leakage.”

Note that in the ROTn/2-hybrid, both parties have private share of size n bits.
The above problem is identical to correlation extractors introduced in the seminal
work of Ishai, Kushilevitz, Ostrovsky, and Sahai [26].
Correlation Extractors. Ishai et al. [26] introduced the notion of correlation
extractors as an interactive protocol that takes a leaky correlation as input and
outputs a new correlation that is secure. Prior correlation extractors either used
four messages [26] or had a sub-linear production [9,22], i.e., m = o(n). We
construct the first 2-message correlation extractor that has a linear production
and leakage resilience, that is, m = Θ(n) and t = Θ(n). Note that even compu-
tationally secure protocols can use the output of the correlation extractor in the
online phase. Section 1.1 formally defines correlation extractors, and we present
our main contributions in Sect. 1.2.

1.1 Correlation Extractors and Security Model

We consider the standard model of Ishai et al. [26], which is also used by the
subsequent works, for 2-party semi-honest secure computation in the preprocess-
ing model. In the preprocessing step, a trusted dealer draws a sample of shares
(rA, rB) from the joint distribution of correlated private randomness (RA, RB).
The dealer provides the secret share rA to Alice and rB to Bob. Moreover, the
adversarial party can perform an arbitrary t-bits of leakage on the secret share
of the honest party at the end of the preprocessing step. We represent this leaky
correlation hybrid4 as (RA, RB)[t].
3 Each sample of ROT gives two bits to each party; (x0, x1) to the first party and

(b, xb) to the second party. Therefore each party receives m-bit shares.
4 That is, the functionality samples secret shares (rA, rB) according to the correlation

(RA, RB). The adversarial party sends a t-bit leakage function L to the functionality
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Definition 1 (Correlation Extractor). Let (RA, RB) be a correlated private
randomness such that the secret share of each party is n-bits. An (n,m, t, ε)-
correlation extractor for (RA, RB) is a two-party interactive protocol in the
(RA, RB)[t]-hybrid that securely implements the ROTm/2 functionality against
information-theoretic semi-honest adversaries with ε simulation error.

Note that the size of the secret shares output by the correlation extractor is
m-bits. We emphasize that no leakage occurs during the correlation extractor
execution. The t-bit leakage cumulatively accounts for all the leakage before the
beginning of the online phase. We note that, throughout this work, we shall
always normalize the total length of the input shares of each party to n-bits.

1.2 Our Contribution

Recall that Fm/2 ⊂ F is the set of all two-party functionalities that have a
2-message protocol in the ROTm/2-hybrid. We prove the following results.

Theorem 1 (Asymptotically Optimal Secure Computation from
Leaky Correlations). There exists a correlation (RA, RB) that produces n-bit
secret shares such that for all F ∈ Fm/2 there exists a 2-message secure com-
putation protocol for F in the leaky (RA, RB)[t]-hybrid, where m = Θ(n) and
t = Θ(n), with exponentially low simulation error.

The crucial ingredient of Theorem 1 is our new 2-message (n,m, t, ε)-correlation
extractor for ROTn/2. We compose the 2-message secure computation protocol
for functionalities in Fm/2 in the ROTm/2-hybrid with our correlation extractor.
Our work presents the first 2-message correlation extractor that has a linear pro-
duction and a linear leakage resilience (along with exponentially low insecurity).

Theorem 2 (Asymptotically Optimal Correlation Extractor for ROT).
There exists a 2-message (n,m, t, ε)-correlation extractor for ROTn/2 such that

m = Θ(n), t = Θ(n), and ε = exp(−Θ(n)).

The technical heart of the correlation extractor of Theorem 2 is another cor-
relation extractor (see Theorem 3) for a generalization of the ROT correlation.
For any finite field F, the random oblivious linear-function evaluation correlation
over F [36,42], represented by ROLE

(
F
)
, samples random a, b, x ∈ F and defines

rA = (a, b) and rB = (x, z), where z = ax + b. Note that, for F = GF [2], we
have (x0 + x1)b + x0 = xb; therefore, the ROLE

(
GF [2]

)
correlation is identical

to the ROT correlation. One share of the ROLE
(
F
)

correlation has secret share

size 2 lg |F|. In particular, the correlation ROLE
(
F
)n/2 lg|F| provides each party

with n/2 lg |F| independent samples from the ROLE(F) correlation and the secret
share size of each party is n-bits for suitable constant sized field F.

and receives the leakage L(rA, rB) from the functionality. The functionality sends
rA to Alice and rB to Bob. Note that the adversary does not need to know its secret
share to construct the leakage function because the leakage function gets the secret
shares of both parties as input.
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Theorem 3 (Asymptotically Optimal Correlation Extractor for
ROLE(F)). There exists a 2-message (n,m, t, ε)-correlation extractor for
ROLE

(
F
)n/2 lg|F| such that m = Θ(n), t = Θ(n), and ε = exp(−Θ(n)).

In Fig. 4, we present our correlation extractor that outputs fresh samples from
the same ROLE

(
F
)

correlation. Finally, our construction obtains multiple ROT

samples from each output ROLE
(
F
)

sample using the OT embedding technique
of [9]. Figure 1 positions our contribution vis-à-vis the previous state-of-the-art.
In particular, Fig. 1 highlights the fact that our result simultaneously achieves
the best qualitative parameters. Our results are also quantitatively better than
the previous works and we discuss the concrete performance numbers we obtain
for Theorem 3 and Theorem 2 below. For more detailed numerical comparison
with prior works [9,22,26], refer to Sect. 5.

Fig. 1. A qualitative summary of our correlation extractor constructions and a com-
parison to prior relevant works. Here K is a finite field and F is a finite field of constant
size. The IP

(
K

s
)

is a correlation that samples random rA = (u1, . . . , us) ∈ K
s and

rB = (v1, . . . , vs) ∈ K
s such that u1v1 +· · · + usvs = 0. All correlations are normalized

so that each party gets an n-bit secret share. The parameter g is the gap to maximal
leakage resilience such that. g > 0.

Performance of Correlation Extractors for ROLE
(
F
)

(Theorem 3). Our
correlation extractor for ROLE

(
F
)

relies on the existence of suitable Algebraic
Geometry (AG) codes5 over finite field F, such that |F| is an even power of a
prime and |F| � 49. We shall use F that is a finite field with characteristic 2.

As the size of the field F increases, the “quality” of the Algebraic Geometry
codes get better. However, the efficiency of the BMN OT embedding protocol
[9] used to obtain the output ROT in our construction decreases with increas-
ing |F|. For example, with F = GF

[
214

]
we achieve the highest production rate

m/n = 16.32% if the fractional leakage rate is t/n = 1%. For leakage rate
t/n = 10%, we achieve production rate m/n = 10%. Figure 7 (Sect. 5) and Fig. 9
(Sect. 6) summarize these tradeoffs for various choices of the finite field F.

5 Once the parameters of the AG code are fixed, it is a one-time cost to construct its
generator matrix.
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Performance of Correlation Extractors for ROT (Theorem 2). We know
extremely efficient algorithms that use multiplications over GF [2] to emulate
multiplications over any GF [2s] [12,14]. For example, we can use 15 multipli-
cations over GF [2] to emulate one multiplication over GF

[
26

]
. Therefore, we

can use 15 samples of ROLE
(
GF [2]

)
to perform one ROLE

(
GF

[
26

])
with per-

fect semi-honest security. Note that, by applying this protocol, the share sizes
reduce by a factor of 6/15. In general, using this technique, we can convert
the leaky ROLE

(
GF [2]

)
(equivalently, ROT) correlation, into a leaky ROLE

(
F
)

correlation, where F is a finite field of characteristic 2, by incurring a slight mul-
tiplicative loss in the share size. Now, we can apply the correlation extractor for
ROLE

(
F
)

discussed above. By optimizing the choice of the field F (in our case
F = GF

[
210

]
), we can construct a 2-message correlation extractor for ROT with

fractional leakage rate t/n = 1% and achieve production rate of m/n = 4.20%
(see Fig. 8, Sect. 5). This is several orders of magnitude better than the produc-
tion and resilience of the IKOS correlation extractor and uses less number of
messages.6

High Leakage Resilience Setting. Ishai et al. [27] showed that t < n/4 is
necessary to extract even one new sample of ROT from the leaky ROLE

(
F
)n/2 lg F

correlation. Our construction, when instantiated with a suitably large constant-
size field F, demonstrates that if t � (1/4 − g)n then we can extract Θ(n) new
samples of the ROT correlation. The prior construction of [22] only achieves a
sub-linear production by using sub-sampling techniques.

Theorem 4 (Near Optimal Resilience with Linear Production). For
every g ∈ (0, 1/4], there exists a finite field F with characteristic 2 and a
2-message (n,m, t, ε)-correlation extractor for (RA, RB) = ROLE

(
F
)n/2 lg |F|,

where t = (1/4 − g)n, m = Θ(n), and ε = exp(−Θ(n)).

The production m = Θ(n) depends on the constant g, the gap to optimal frac-
tional resilience. We prove Theorem 4 in the full version of our work [8]. Section 5
shows that we can achieve linear production even for t = 0.22n bits of leakage
using F = GF

[
210

]
.

Correlation Extractors for Arbitrary Correlations. Similar to the con-
struction of IKOS, we can also construct a correlation extractor from any cor-
relation and output samples of any correlation; albeit it is not round optimal
anymore. However, our construction achieves overall better production and leak-
age resilience than IKOS because our correlation extractor for ROT has higher
production and resilience. Figure 2 outlines a comparison of these two correlation
extractor construction for the general case.

6 Even optimistic estimates of the parameters m/n and t/n for the IKOS construction
are in the order of 10−6.
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Fig. 2. General correlation extractors that extract arbitrary correlations from arbi-
trary correlations. Above is the expanded IKOS [26] correlation extractor and below
is ours. Our main contribution is shown in highlighted part. For brevity, it is implicit
that there are multiple samples of the correlations. The ROLE correlations are over
suitable constant size fields. The superscript “(t]” represents that the correlation is
secure against adversarial leakage of only one a priori fixed party.

1.3 Other Prior Relevant Works

Figure 1 already provides the summary of the current state-of-the-art in cor-
relation extractors. In this section, we summarize works related to combiners:
extractors where the adversary is restricted to leaking individual bits of the hon-
est party’s secret share. The study of OT combiners was initiated by Harnik et al.
[24]. Since then, there has been work on several variants and extensions of OT
combiners [23,28,33,34,39]. Recently, Ishai et al. [27] constructed OT combiners
with nearly optimal leakage resilience. Among these works, the most relevant to
our paper are the ones by Meier, Przydatek, and Wullschleger [34] and Przy-
datek, and Wullschleger [39]. They use Reed-Solomon codes to construct two-
message error-tolerant7 combiners that produce fresh ROLEs over large fields8

from ROLEs over the same field. Using multiplication friendly secret sharing
schemes based on Algebraic Geometry Codes introduced by Chen and Cramer
[13], a similar construction works with ROLEs over fields with appropriate con-
stant size. We emphasize that this construction is insecure if an adversary can
perform even 1-bit global leakage on the whole secret of the other party. In our
construction, we crucially rely on a family of linear codes instead of a particular
choice of the linear code to circumvent this bottleneck. Section 1.4 provides the
principal technical ideas underlying our correlation extractor construction.

In the malicious setting, the feasibility result on malicious-secure combiners
for ROT is reported in [28]. Recently, Cascudo et al. construct a malicious-secure
combiner with high resilience, but m = 1 [11]. The case of malicious-secure
correlation extractors remains entirely unexplored.

7 A sample (rA, rB) is an erroneous sample if it is not in the support of the distribution
(RA, RB), i.e., it is an incorrect sample. An error-tolerant combiner is a combiner
that is secure even if a few of the input samples are erroneous.

8 The size of the fields increases with n, the size of the secret shares produced by the
preprocessing step.



Secure Computation Using Leaky Correlations 43

1.4 Technical Overview

At the heart of our correlation extractor constructions is a 2-message
ROLE(F)-to-ROLE(F) extractor, where we start with leaky (RA, RB)[t] =
(
ROLE

(
F
)n/2 lg|F|)[t]

and produce fresh secure sample of ROLE
(
F
)m/2 lg|F|. The

field F is a constant-size field with characteristic 2, say F = GF
[
26

]
, and each

party gets n-bit shares. Below, we discuss some of the technical ideas underlying
this construction.

This correlation extractor relies on the existence of a family of linear codes
over F with suitable properties that we define below. For this discussion, let us
assume that s ∈ N is the block-length of the codes. Let J be an index set, and we
denote the family of linear codes with block-length s as follows: C = {Cj : j ∈ J }.
This family of code C needs to have the following properties.

1. Multiplication Friendly Good Codes. Each code Cj ⊆ F
s in the family C

is a good code, i.e., its rate and distance is Θ(s). Further, the Schur-product9

of the codes, i.e., Cj ∗ Cj , is a linear code with distance Θ(s). Such codes
can be used to perform the multiplication of two secrets by multiplying their
respective secret shares in secure computation protocols, hence the name.

2. Small Bias Family. Intuitively, a small bias family defines a pseudorandom
distribution for linear tests. Let S = (S1, . . . , Ss) ∈ F

s and its corresponding
linear test be defined as LS(x1, . . . , xs) := S1x1+· · ·+Ssxs. Consider the dis-
tribution D of LS(c) for a random j ∈ J and a randomly sampled codeword
c ∈ Cj . If C is a family of ρ-biased distributions, then the distribution D has
statistical distance at most ρ from the output of LS(u) for random element
u ∈ F

s. For brevity, we say that the family C “ρ-fools the linear test LS .” The
concept of small bias distributions was introduced in [1,35] and has found
diverse applications, for example, [2,17,20,35].
An interesting property of any linear code C ⊆ F

s is the following. A random
codeword c ∈ C can 0-fool every linear test LS such that S is not a codeword
in the dual of C. However, if S is a codeword in the dual of the code C, then
the linear test LS is clearly not fooled.
So, a randomly chosen codeword from one fixed linear code cannot fool all
linear tests. However, when we consider an appropriate family of linear codes,
then a randomly chosen codeword from a randomly chosen code in this family
can fool every linear test.

We construct such a family of codes over small finite fields F that can be
of potential independent interest. Our starting point is an explicit Algebraic
Geometry code C ⊆ F

s that is multiplication friendly [19,21]. Given one such
code C, we randomly “twist then permute” the code to define the family C. We
emphasize that the production of our correlation extractor relies on the bias

9 Consider a linear code C ⊆ F
s. Let c = (c1, . . . , cs) and c′ = (c′

1, . . . , c
′
s) be two

codewords in the code C. We define c∗c′ = (c1c
′
1, . . . , csc

′
s) ∈ F

s. The Schur-product
C ∗ C is defined to be the linear span of all c ∗ c′ such that c, c′ ∈ C.
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being small. So, it is crucial to construct a family with extremely small bias.
Next, we describe our “twist then permute” operation.

Twist then Permute.10 Suppose C ⊆ F
s is a linear code. Pick any λ =

(λ1, . . . , λs) ∈ (F∗)s, i.e., for all i ∈ [s], λi �= 0. A λ-twist of the code C is defined
as the following linear code

Cλ := {(λ1c1, . . . , λscs) : (c1, . . . , cs) ∈ C} .

Let π : {1, . . . , s} → {1, . . . , s} be a permutation. The π-permutation of the
λ-twist of C is defined as the following linear code

Cπ,λ := {(
λπ(1)cπ(1), . . . , λπ(s)cπ(s)

)
: (c1, . . . , cs) ∈ C}.

Define J as the set of all (π, λ) such that λ ∈ (F∗)s and π is a permutation of
the set {1, . . . , s}. Note that if C is multiplication friendly good code, then the
code Cπ,λ continues to be multiplication friendly good code. A key observation
towards demonstrating that C is a family of small bias distributions is that the
following two distributions are identical (see Claim 2).

1. Fix S ∈ F
s. The output distribution of the linear test LS on a random

codeword c ∈ Cj , for a random index j ∈ J .
2. Let T ∈ F

s be a random element of the same weight11 as S. The output
distribution of the linear test LT on a random codeword c ∈ C.

Based on this observation, we can calculate the bias of the family of our codes.
Note that there are a total of ( s

w )(q − 1)w elements in F
s that have weight w.

Let Aw denote the number of codewords in the dual of C that have weight w.
Our family of codes C fools the linear test LS with ρ = Aw · ( s

w )−1(q − 1)−w,
where w is the weight of S ∈ F

s.
We obtain precise asymptotic bounds on the weight enumerator Aw of the

dual of the code C to estimate the bias ρ, for w ∈ {0, 1, . . . , s}. This precise
bound translates into higher production m, higher resilience t, and exponentially
low simulation error ε of our correlation extractor. We remark that for our
construction if C has a small dual-distance, then the bias cannot be small.

Remark. The performance of the code C supersedes the elementary Gilbert-
Varshamov bound. These Algebraic Geometry codes are one of the few codes
in mathematics and computer science where explicit constructions have signif-
icantly better quality than elementary randomized constructions. So, elemen-
tary randomization techniques are unlikely to produce any (qualitatively) better

10 In the literature there are multiple definitions for the equivalence of two linear codes.
In particular, one such notion (cf., [38]), states that two codes are equivalent to each
other if one can be twisted-and-permuted into the other code. For clarity, we have
chosen to explicitly define the “twist then permute” operation.

11 The weight of S ∈ F
s is defined as the number of non-zero elements in S.
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parameters for this approach, given that the estimations of the weight enumera-
tor in this work are asymptotically optimal. Therefore, finding better randomized
techniques to construct the family of multiplication friendly good codes that is
also a family of small-bias distributions is the research direction that has the
potential to reduce the bias. This reduction in the bias can further improve the
production and leakage resilience of our correlation extractors.

2 Preliminaries

We denote random variables by capital letters, for example X, and the values
taken by small letters, for example X = x. For a positive integer n, we write [n]
and [−n] to denote the sets {1, . . . , n} and {−n, . . . ,−1}, respectively. Let Sn

be the set of all permutations π : [n] → [n]. We consider the field F = GF [q],
where q = pa, for a positive integer a and prime p. For any c = (c1, . . . , cη) ∈ F

η,
define the function wt(c) as the cardinality of the set {i : ci �= 0}. For any
two x, y ∈ F

η, we let x ∗ y represent the point-wise product of x and y. That
is, x ∗ y = (x1y1, x2y2, . . . , xηyη) ∈ F

η. For a set Y , UY denotes the uniform
distribution over the set Y , and y

$←Y denotes sampling y according to UY . For
any vector x ∈ F

η and a permutation π ∈ Sη, we define π(x) := (xπ(1), . . . , xπ(η)).

2.1 Correlation Extractors

We denote the functionality of 2-choose-1 bit Oblivious Transfer as OT and
Oblivious Linear-function Evaluation over a field F as OLE(F). Also, we denote
the Random Oblivious Transfer Correlation as ROT and Random Oblivious
Linear-function Evaluation Correlation over the field F as ROLE(F). When
F = GF [2], we denote ROLE

(
F
)

by ROLE.
Let η be such that 2η lg |F| = n. In this work, we consider the setting when

Alice and Bob start with η samples of the ROLE(F) correlation and the adversary
performs t-bits of leakage. We give a secure protocol for extracting multiple
secure OTs in this hybrid. Below we define such an correlation extractor formally
using initial ROLE(F) correlations.

Leakage Model. We define our leakage model for ROLE(F) correlations as follows:

1. η-ROLE correlation generation phase. Alice gets rA = {(ai, bi)}i∈[η] ∈
F
2η and Bob gets rB = {(xi, zi)}i∈[η] ∈ F

2η such that for all i ∈ [η], ai, bi, xi

is uniformly random and zi = aixi + bi. Note that the size of secret share of
each party is n bits.

2. Corruption and leakage phase. A semi-honest adversary corrupts either
the sender and sends a leakage function L : Fη → {0, 1}t and gets back L(x[η]).
Or, it corrupts the receiver and sends a leakage function L : Fη → {0, 1}t and
gets back L(a[η]). Note that w.l.o.g. any leakage on the sender (resp., receiver)
can be seen as a leakage on a[η] (resp., x[η]). We again emphasize that this
leakage need not be on individual bits of the shares, but on the entire share,
and thus can encode crucial global information.
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We denote by (RA, RB) the above correlated randomness and by (RA, RB)[t]

its t-leaky version. Recall the definition for (n,m, t, ε)-correlation extractor (see
Definition 1, Sect. 1.1). Below, we give the correctness and security requirements.

The correctness condition says that the receiver’s output is correct in all m/2
instances of ROT. The privacy requirement says the following: Let (s

(i)

0 , s
(i)

1 ) and
(c

(i)
, z

(i)
) be the output shares of Alice and Bob, respectively, in the ith ROT

instance. Then a corrupt sender (resp., receiver) cannot distinguish between
{c

(i)}i∈[m/2] (resp.,
{

s
(i)

1−c
(i)

}

i∈[m/2]
) and r

$← {0, 1}m/2 with advantage more

than ε. The leakage rate is defined as t/n and the production rate is defined as
m/n.

2.2 Fourier Analysis over Fields

We give some basic Fourier definitions and properties over finite fields, following
the conventions of [40]. To begin discussion of Fourier analysis, let η be any
positive integer and let F be any finite field. We define the inner product of two
complex-valued functions.

Definition 2 (Inner Product). Let f, g : Fη → C. We define the inner prod-
uct of f and g as

〈f, g〉 := E

x
$←Fη

[
f(x) · g(x)

]
=

1
|F|η

∑

x∈Fη

f(x) · g(x),

where g(x) is the complex conjugate of g(x).

Next, we define general character functions for both F and F
η.

Definition 3 (General Character Functions). Let ψ : F → C
∗ be a group

homomorphism from the additive group F to the multiplicative group C
∗. Then

we say that ψ is a character function of F.
Let χ : Fη × F

η → C
∗ be a bilinear, non-degenerate, and symmetric map

defined as χ(x, y) = ψ(x · y) = ψ(
∑

i xiyi). Then, for any S ∈ F
η, the function

χ(S, ·) := χS(·) is a character function of Fη.

Given χ, we have the Fourier Transformation.

Definition 4 (Fourier Transformation). For any S ∈ F
η, let f : Fη →

C and χS be a character function. We define the map f̂ : F
η → C as

f̂(S) := 〈f, χS〉. We say that f̂(S) is a Fourier Coefficient of f at S and the
linear map f �→ f̂ is the Fourier Transformation of f .

Note that this transformation is an invertible linear map. The Fourier inver-
sion formula is given by the following lemma.

Lemma 1 (Fourier Inversion). For any function f : Fη → C, we can write
f(x) =

∑
S∈Fη f̂(S)χS(x).
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2.3 Distributions and Min-Entropy

For a probability distribution X over a sample space U , entropy of x ∈ X
is defined as HX(x) = − lg Pr[X = x]. The min-entropy of X, represented
by H∞(X), is defined to be minx∈Supp(X) HX(x). The binary entropy function,
denoted by h2(x) = −x lg x − (1 − x) lg(1 − x) for every x ∈ (0, 1).

Given a joint distribution (X,Y ) over sample space U × V , the marginal
distribution Y is a distribution over sample space V such that, for any y ∈ V , the
probability assigned to y is

∑
x∈U Pr[X = x, Y = y]. The conditional distribution

(X|y) represents the distribution over sample space U such that the probability
of x ∈ U is Pr[X = x|Y = y]. The average min-entropy [16], represented by
H̃∞(X|Y ), is defined to be − lgEy∼Y [2−H∞(X|y)].

Imported Lemma 1 ([16]). If H∞(X) ≥ k and L is an arbitrary 
-bit leakage
on X, then H̃∞(X|L) � k − 
.

Lemma 2 (Fourier Coefficients of a Min-Entropy Distribution). Let
X : Fη → R be a min-entropy source such that H∞(X) � k. Then

∑
S |X̂(S)|2 �

|F|−η · 2−k.

2.4 Family of Small-Bias Distributions

Definition 5 (Bias of a Distribution). Let X be a distribution over Fη. Then
the bias of X with respect to S ∈ F

η is defined as BiasS(X) := |F|η · |X̂(S)|.
Dodis and Smith [17] defined small-bias distribution families for distributions

over {0, 1}η. We generalize it naturally for distributions over F
η.

Definition 6 (Small-bias distribution family). A family of distributions
F = {F1, F2, · · · , Fk} over sample space F

η is called a ρ2-biased family if for
every non-zero vector S ∈ F

η following holds:

E

i
$←[k]

BiasS(Fi)2 � ρ2.

Following extraction lemma was proven in previous works over {0, 1}η.

Imported Lemma 2 ([2,17,20,35]). Let F = {F1, . . . , Fμ} be ρ2-biased family
of distributions over the sample space {0, 1}η. Let (M,L) be a joint distribution
such that the marginal distribution M is over {0, 1}η and H̃∞(M |L) ≥ m. Then,
the following holds: Let J be a uniform distribution over [μ]. Then,

SD
(
(FJ ⊕ M,L, J),

(
U{0,1}η , L, J

)) ≤ ρ

2

(
2η

2m

)1/2

.

A natural generalization of above lemma for distributions over F
η gives the

following.
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Theorem 5 (Min-entropy extraction via masking with small-bias dis-
tributions). Let F = {F1, . . . , Fμ} be a ρ2-biased family of distributions over
the sample space F

η for field F of size q. Let (M,L) be a joint distribution such
that the marginal distribution M is over F

η and H̃∞(M |L) � m. Then, the
following holds: Let J be a uniform distribution over [μ]. Then,

SD ((FJ ⊕ M,L, J), (UFη , L, J)) � ρ

2

( |F|η
2m

)1/2

.

We provide the proof of this result in the full version of our work [8].

2.5 Distribution over Linear Codes

Let C = [η, κ, d, d⊥, d(2)]F be a linear code over F with generator matrix G ∈
F

κ×η. We also use C to denote the uniform distribution over codewords generated
by G. For any π ∈ Sη, define Gπ = π(G) as the generator matrix obtained by
permuting the columns of G under π.

The dual code of C, represented by C⊥, is the set of all codewords that
are orthogonal to every codeword in C. That is, for any c⊥ ∈ C⊥, it holds that
〈c, c⊥〉 = 0 for all c ∈ C. Let H ∈ F

(η−κ)×η be a generator matrix of C⊥. The
distance of C⊥ is d⊥.

The Schur product code of C, represented by C(2), is the span of all
codewords obtained as a Schur product of codewords in C. That is, C(2) =
C ∗C := 〈c ∗ c′ : c, c′ ∈ C〉 ⊆ F

η, where c∗c′ denotes the coordinate-wise product
of c and c′. The distance of C(2) is d(2).

3 Family of Small-Bias Distributions with Erasure
Recovery

In this section, we give our construction of the family of small-bias distributions
{Cj}j∈J such that each Cj is a linear code and Cj ∗Cj supports erasure recovery.
Recall that Cj ∗Cj is the linear span of all c∗c′ such that c, c′ ∈ Cj . We formally
define the requirements for our family of distributions in Property 1.

Property 1. A family of linear code distributions C = {Cj : j ∈ J } over F
η∗

satisfy this property with parameters δ and γ if the following conditions
hold.

1. 2−δ-bias family of distributions. For any 0η∗ �= S ∈ F
η∗

,
E [BiasS(Cj)2] � 2−δ, where the expectation is taken over j

$← J .
2. γ-erasure recovery in Schur Product. For all j ∈ J , the Schur prod-

uct code of Cj , that is Cj ∗ Cj = C
(2)
j , supports the erasure recovery of

the first γ coordinates. Moreover, the first γ coordinates of Cj and C
(2)
j

are linearly independent of each other.
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3.1 Our Construction

Figure 3 presents our construction of a family of linear codes which satisfies
Property 1 and Theorem 6 gives the parameters for our construction.

Fig. 3. Our construction of a family of small bias linear code distributions.

At a high level, the linear code C is a suitable algebraic geometric code over
constant size field F of block length η∗ = γ+η. The parameters of the code C are
chosen such that C is a 2−δ-biased family of distributions under our “twist-then-
permute” operation, and C ∗ C supports erasure recovery of any γ coordinates.
The precise calculation of the parameters of the code C can be found in the full
version of our work [8]. Our family of linear codes satisfies the following theorem.

Theorem 6. The family of linear code distributions {Cπ,λ : π ∈ Sη∗ , λ ∈
(F∗)η∗} over F

η∗
given in Fig. 3 satisfies Property 1 for any γ < d(2), where

d(2) is the distance of the Schur product code of C, and δ = [d⊥ + η∗/(√q−1)− 1] ·
[lg(q − 1) − h2(1/(q+1))] − (η∗

/(√q−1)) lg q, where h2 denotes the binary entropy
function.
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Proof. We first prove erasure recovery followed by the small-bias property.

γ-erasure Recovery in Schur Product code. First we note that permuting or re-
ordering the columns of a generator matrix does not change its distance, distance
of the Schur product, or its capability of erasure recovery (as long as we know
the mapping of new columns vis-à-vis old columns). Let Iγ = {i1, . . . , iγ} be the
indices of the erased coordinates of codeword in C

(2)
π,λ. Hence to show erasure

recovery of the coordinates Iγ of a codeword of C
(2)
π,λ, it suffices to show erasure

recovery of the γ erased coordinates Jγ = {j1, . . . , jγ} of a codeword of C
(2)
λ ,

where Cλ is the uniform codespace generated by Gλ, and π(jk) = ik, ∀k ∈ [γ].
Note that since γ < d(2), the code C(2) supports erasure recovery of any γ

coordinates. Thus it suffices to show that this implies that C
(2)
λ also supports the

erasure recovery of any γ coordinates. Note that since λ ∈ (F∗)η∗
, multiplication

of the columns of G according to λ does not change its distance or distance of
the Schur product. Then we do the following to perform erasure recovery of
γ coordinates in C

(2)
λ . Let c(2) ∈ C

(2)
λ be a codeword with erased coordinates

Jγ = {j1, . . . , jγ}, and let Jη = {j′
1, . . . , j

′
η} be the coordinates of c(2) that have

not been erased. For every j ∈ Jη, compute cj = (λ-1
j )2c(2)j . Then the vector

(cj)j∈Jη
is a codeword of C(2) with coordinates ci erased for i ∈ Jγ . Since C(2)

has γ erasure recovery, we can recover the ci for i ∈ Jγ . Once recovered, for
every i ∈ Jγ , compute c

(2)
i = λ2

i ci. This produces the γ erased coordinates of
c(2) in C

(2)
λ . Finally, one can map the c

(2)
i for i ∈ Jγ to the coordinates Iγ using

π, recovering the erasures in C
(2)
π,λ.

2−δ-bias Family of Distributions. Let C,Cλ, Cπ,λ be the uniform distribution
over the linear codes generated by G,Gλ, Gπ,λ, respectively. Recall that d⊥ is
the dual distance for C. Note that Cλ, Cπ,λ have dual-distance d⊥ as well. Let
η∗ = η + γ. Since BiasS(Cπ,λ) = |F|η∗ |Ĉπ,λ(S)| for every S ∈ F

η∗
, it suffices to

show that

E
π,λ

[
Ĉπ,λ(S)2

]
� 1

|F|2η∗ · 2δ
.

To begin, first recall the definition of Cπ,λ:

Cπ,λ := {π(λ1c1, . . . , λη∗cη∗) | (c1, . . . , cη∗) ∈ C}.

Next, given any S ∈ F
η∗

, define S(S) := {π(λ1S1, . . . , λη∗Sη∗) ∈ F
η∗ | ∀π ∈

Sη∗ ∧ λ ∈ (F∗)η∗}. Note that S(S) is equivalently characterized as

S(S) = {T = (T1, . . . , Tη∗) ∈ F
η∗ | wt(T ) = wt(S)}.
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It is easy to see that |S(S)| =
(

η∗

w0

)
(q − 1)η∗−w0 , where w0 = η∗ −wt(S); i.e., w0

is the number of zeros in S. We prove the following claim.

Claim 1. For any S ∈ F
η∗
, we have Ĉπ,λ(S) = Ĉ(π-1(S) ∗ λ).

Proof. Notice that by definition for any x ∈ Cπ,λ, we have Cπ,λ(x) = C(c) since
x = π(λ1c1, . . . , λη∗cη∗) for c ∈ C. This is equivalently stated as Cπ,λ(π(c∗λ)) =
C(c). For x = π(λ1y1, . . . , λη∗yη∗) ∈ F

η∗
and any S ∈ F

η∗
, we have

S · x =
η∗
∑

i=1

Sixi =
η∗
∑

i=1

Si(λπ(i)yπ(i)) =
η∗
∑

i=1

(Sπ-1(i))λiyi = (π-1(S) ∗ λ) · y.

where S ·x is the vector dot product. By definition of χS(x), this implies χS(x) =
χy(π-1(S) ∗ λ). Using these two facts and working directly from the definition of
Fourier Transform, we have

Ĉπ,λ(S) =
1

|F|η∗

∑

x∈Fη∗
Cπ,λ(x)χS(x)

=
1

|F|η∗

∑

c∈Fη∗
Cπ,λ(π(λ1c1, . . . , λη∗cη∗))χS(π(λ1c1, . . . , λη∗cη∗))

=
1

|F|η∗

∑

c∈Fη∗
C(c)χc(π-1(S) ∗ λ) = Ĉ(π-1(S) ∗ λ).

This proves Claim 1. ��
It is easy to see that wt(π-1(S) ∗ λ) = wt(S), so (π-1(S) ∗ λ) = T ∈ S(S). From
this fact and Claim 1, we prove the following claim.

Claim 2. For any S ∈ F
n, E

π,λ

[
Ĉπ,λ(S)2

]
= E

T
$←S(S)

[
Ĉ(T )2

]
.

Proof. Suppose we have codeword x ∈ Cπ,λ such that π(λ1c1, . . . , λ
∗
ηc∗

η) = x,
for some codeword c ∈ C. Let {i1, . . . , iw0} be the set of indices of 0 in c;
that is, cj = 0 for all j ∈ {i1, . . . , iw0}. Then for any permutation π, the set
{π(i0), . . . , π(iw0)} is the set of zero indices in x. Note also that for any index
j �∈ {π(i0), . . . , π(iw0)}, we have xj �= 0. If this was not the case, then we have
xj = cπ-1(j)λπ-1(j) = 0. Since j �∈ {π(i0), . . . , π(iw0)}, this implies π-1(j) �∈
{i0, . . . , iw0}, which further implies that cπ-1(j) �= 0. This is a contradiction since
λ ∈ (F∗)η∗

. Thus any permutation π must map the zeros of S to the zeros of c,
and there are w0!(η∗ − w0)! such permutations. Notice now that for any ck = 0,
λk can take any value in F

∗, so we have (q − 1)w0 such choices. Furthermore, if
ck �= 0 and λkck = xπ-1(k) �= 0, then there is exactly one value λk ∈ F

∗ which
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satisfies this equation. Putting it all together, we have

E
π,λ

[
Ĉπ,λ(S)2

]
=

1
η∗!(q − 1)η∗

∑

π,λ

Ĉπ,λ(S)2 =
1

η∗!(q − 1)η∗

∑

π,λ

Ĉ
(
π-1(S) ∗ λ

)2

=
(w0!(η∗ − w0)!(q − 1)w0)

η∗!(q − 1)η∗

∑

T∈S(S)

Ĉ(T )2

=
w0!(η∗ − w0)!

η∗!(q − 1)η∗−w0

∑

T∈S(S)

Ĉ(T )2

=
((

η∗

w0

)
(q − 1)η∗−w0

)-1 ∑

T∈S(S)

Ĉ(T )2 = E

T
$←S(S)

[
Ĉ(T )2

]
.

where the first line of equality follows from Claim 1. This proves Claim 2. ��
With Claim 2, we now are interested in finding δ such that for 0η∗ �= S ∈ F

η∗

E

T
$←S(S)

[
Ĉ(T )2

]
≤ 1

|F|2η∗2δ
.

We note that since C is a linear code, C has non-zero Fourier coefficients only
at codewords in C⊥.

Claim 3. For all S ∈ F
η∗
, Ĉ(S) =

⎧
⎨

⎩

1
|F|η∗ S ∈ C⊥

0 otherwise.

Let Aw = |C⊥∩S(S)|, where w = η∗−w0 = wt(S). Intuitively, Aw is the number
of codewords in C⊥ with weight w. Then from Claim 3, we have

E

T
$←S(S)

[
Ĉ(T )2

]
=

|C⊥ ∩ S(S)|
|F|2η∗(

η∗
η∗−wt(S)

)
(q − 1)wt(S)

=
Aw

|F|2η∗(
η∗
w

)
(q − 1)w

Now, our goal is to upper bound Aw. Towards this goal, the weight enumerator
for the code C⊥ is defined as the following polynomial:

WC⊥(x) =
∑

c∈C⊥
xη∗−wt(c).

This polynomial can equivalently be written in the following manner:

WC⊥(x) =
∑

w∈{0,...,η∗}
Awxη∗−w.

Define a = η∗ − d⊥.

Imported Theorem 1 (Exercise 1.1.15 from [41]). We have the relation

WC⊥(x) = xη∗
+

a∑

i=0

Bi(x − 1)i,where
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Bi =
η∗−i∑

j=η∗−a

(
η∗−j

i

)
Aj ≥ 0 Ai =

a∑

j=η∗−i

(−1)η∗+i+j
(

j
η∗−i

)
Bj .

For weight w ∈ {
d⊥, . . . , η∗}, we use the following expression to estimate Aw.

Aw =
(

η∗−w
η∗−w

)
Bη∗−w −

(
η∗−w+1

η∗−w

)
Bη∗−w+1 +· · · ±

(
η∗−d⊥

η∗−w

)
Bη∗−d⊥

Since we are interested in the asymptotic behavior (and not the exact value)
of Aw, we note that lg Aw ∼ lg Γ (w), where

Γ (w) = max
{(

η∗−w
η∗−w

)
Bη∗−w,

(
η∗−w+1

η∗−w

)
Bη∗−w+1, . . . ,

(
η∗−d⊥

η∗−w

)
Bη∗−d⊥

}
.

Thus, it suffices to compute Γ (w) for every w, and then the bias. We present this
precise asymptotic calculation in the full version of our work [8]. This calculation
yields

δ =
(

d⊥ +
η∗

√
q − 1

− 1
) (

lg(q − 1) − h2

(
1

q + 1

))
− η∗

√
q − 1

lg q,

which completes the proof. ��

4 Construction of Correlation Extractor

Our main sub-protocol for Theorem 3 takes ROLE(F) as the initial correlation
and produces secure ROLE(F). Towards this, we define a ROLE(F)-to-ROLE(F)
extractor formally below.

Definition 7 ((η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor). Let (RA, RB) =
(ROLE(F))η be correlated randomness. An (η, γ, t, ε)-ROLE(F)-to-ROLE(F)
extractor is a two-party interactive protocol in the (RA, RB)[t]-hybrid that
securely implements the (ROLE(F))γ functionality against information-theoretic
semi-honest adversaries with ε simulation error.

Let (ui, vi) ∈ F
2 and (ri, zi) ∈ F

2 be the shares of Alice and Bob, respec-
tively, in the ith output ROLE instance. The correctness condition says that the
receiver’s output is correct in all γ instances of ROLE, i.e., zi = uiri + vi for
all i ∈ [γ]. The privacy requirement says the following: A corrupt sender (resp.,
receiver) cannot distinguish between {ri}i∈[γ] (resp., {ui}i∈[γ]) and UFγ with
advantage more than ε.

In Sect. 4.1, we give our construction for Theorem 3. Later, in Sect. 4.3, we
build on this to give our construction for Theorem 2.
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4.1 Protocol for ROLE(F) correlation extractor

As already mentioned in Sect. 1.4, to prove Theorem 3, our main building block
will be (η, γ, t, ε)-ROLE(F)-to-ROLE(F) extractor (see Definition 7). That is, the
parties start with η samples of the ROLE(F) correlation such that size of each
party’s share is n = 2η log |F| bits. The adversarial party gets t bits of leakage.
The protocol produces (ROLE(F))γ with simulation error ε. We give the formal
description of the protocol, inspired by the Massey secret sharing scheme [32], in
Fig. 4. Note that our protocol is round-optimal and uses a family of distributions
C = {Cj}j∈J that satisfies Property 1 with parameters δ and γ.

Fig. 4. ROLE(F)-to-ROLE(F) extractor protocol.

Next, we use the ROT embedding technique from [9] to embed σ ROTs in
each fresh ROLE(F) obtained from above protocol. For example, we can embed
two ROTs into one ROLE(GF

[
26

]
). Using this we get production m = 2σγ, i.e.,

we get m/2 = σγ secure ROTs. We note that the protocol from [9] is round-
optimal, achieves perfect security and composes in parallel with our protocol in
Fig. 4. Hence, we maintain round-optimality (see Sect. 4.2).

Correctness of Fig. 4. The following lemma characterizes the correctness of
the scheme presented in Fig. 4.

Lemma 3 (Correctness). If the family of distributions C = {Cj}j∈J satisfies
Property 1, i.e., erasure recovery of first γ coordinates in Schur product, then
for all i ∈ {−γ, . . . ,−1}, it holds that ti = uiri + vi.
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Proof. First, we prove the following claim.

Claim 4. For all i ∈ [η], it holds that ti = uiri + vi.

This claim follows from the following derivation.

ti = αiri + βi − zi = (ui − ai)ri + (aimi + bi + vi) − zi

= uiri − airi + ai(ri + xi) + bi + vi

= uiri + aixi + bi + vi − zi

= uiri + vi

From the above claim, we have that t[η] = u[η] ∗r[η] +v[η]. From the protocol,
we have that u, r ∈ Cj and v ∈ C

(2)
j . Consider t̃ = u ∗ r + v ∈ C

(2)
j . Note that

ti = t̃i for all i ∈ [η]. Hence, when client B performs erasure recovery on t[η]

for a codeword in C
(2)
j , it would get t̃[−γ]. This follows from erasure recovery

guarantee for first γ coordinates by Property 1. ��
Security of Fig. 4. To argue the security, we prove that the protocol is a secure
implementation of (ROLE(F))γ functionality against an information-theoretic
semi-honest adversary that corrupts either the sender or the receiver and leaks
at most t-bits from the secret share of the honest party at the beginning of the
protocol. At a high level, we prove the security of our protocol by reducing it
exactly to our unpredictability lemma.

Lemma 4 (Unpredictability Lemma). Let C = {Cj : j ∈ J } be a 2−δ-biased
family of linear code distributions over F

η∗
, where η∗ = γ + η. Consider the

following game between an honest challenger H and an adversary A:

1. H samples m[η] ∼ UFη .
2. A sends a leakage function L : Fη → {0, 1}t.
3. H sends L(m[η]) to A.

4. H samples j
$← J . H samples a uniform random (r−γ , . . . , r−1, r1, . . . , rη) ∈ Cj.

H computes y[η] = r[η] + m[η] and sends (y[η], j) to A.

H picks b
$← {0, 1}. If b = 0, then H sends chal = r[−γ] to A; otherwise (if b = 1)

H sends chal = u[γ] ∼ UFγ .

5. A sends b̃ ∈ {0, 1}.

The adversary A wins the game if b = b̃. For any A, the advantage of the

adversary is ε ≤ 1
2

√
|F|γ2t

2δ .

Proof. Let M[η] be the distribution corresponding to m[η]. Consider M ′
[η+γ] =

(0γ ,M[η]). By Imported Lemma 1, H̃∞(M ′|L(M ′)) ≥ η log |F| − t. Recall that
C = {Cj : j ∈ J } is a 2−δ-bias family of distributions over F

η+γ . Then, by
Theorem 5, we have the following as desired:

SD
(
(CJ ⊕ M ′, L(M ′), J ), (UFη+γ , L(M ′), J )

) ≤ 1

2

(
2t · |F|η+γ

2δ · |F|η
) 1

2

=
1

2

√
|F|γ2t

2δ
.

��
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We note that this lemma crucially relies on a family of small-bias distributions.
Next, we prove the following security lemma.

Lemma 5. The simulation error of our protocol is ε ≤
√

|F|γ2t

2δ , where t is the
number of bits of leakage, and γ and δ are the parameters in Property 1 for the
family of distributions C.
Proof. We first prove Bob privacy followed by Alice privacy.

Bob Privacy. In order to prove privacy of client B against a semi-honest client
A, it suffices to show that the adversary cannot distinguish between Bob’s
secret values (r−γ , . . . , r−1) and UFγ . We show that the statistical distance of
(r−γ , . . . , r−1) and UFγ given the view of the adversary is at most ε, where ε is
defined above.

We observe that client B’s privacy reduces directly to our unpredictability
lemma (Lemma 4) for the following variables. Let X[η] be the random variable
denoting B’s input in the initial correlations. Then, X[η] is uniform over F

η.
Note that the adversary gets L = L(X[η]) that is at most t-bits of leakage. Next,
the honest client B picks j

$← J and a random r = (r−γ , . . . , r−1, r1, . . . , rη) ∈
Cj . Client B sends m[η] = r[η] + x[η]. This is exactly the game between the
honest challenger and an semi-honest adversary in the unpredictability lemma
(see Lemma 4). Hence, the adversary cannot distinguish between r[−γ] and UFγ

with probability more than ε.

Alice Privacy. In order to prove privacy of client A against a semi-honest client
B, it suffices to show that the adversary cannot distinguish between Alice’s
secret values (u−γ , . . . , u−1) and UFγ . We show that the statistical distance of
(u−γ , . . . , u−1) and UFγ given the view of the adversary is at most ε, where ε is
defined above by reducing to our unpredictability lemma (see Lemma 4).

Let A[η] denote the random variable corresponding to the client A’s input
a[η] in the initial correlations. Then, without loss of generality, the adversary
receives t-bits of leakage L(A[η]). We show a formal reduction to Lemma 4 in
Fig. 5. Given an adversary A who can distinguish between (u−γ , . . . , u−1) and
UFγ , we construct an adversary A′ against an honest challenger H of Lemma
4 with identical advantage. It is easy to see that this reduction is perfect. The
only differences in the simulator from the actual protocol are as follows. In the
simulation, the index j of the distribution is picked by the honest challenger H
instead of client B. This is identical because client B is a semi-honest adversary.

Also, the simulator A′ generates β[η] slightly differently. We claim that the
distribution of β[η] in the simulation is identical to that of real protocol.

This holds by correctness of the protocol: t[η] = u[η]∗r[η]+v[η] = (α[η]∗r[η])+
β[η]−z[η]. Hence, β[η] = (u[η]∗r[η]+v[η])−(α[η]∗r[η])+z[η] = w[η]−(α[η]∗r[η])+z[η],
where w[−γ,η] is chosen as a random codeword in C

(2)
j . This holds because in the

real protocol v[−γ,η] is chosen as a random codeword in C
(2)
j and u[−γ,η]∗r[−γ,η] ∈

C
(2)
j . Here, we denote by [−γ, η] the set {−γ, . . . ,−1, 1, . . . , η}. ��
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Fig. 5. Simulator for Alice Privacy.

4.2 OT Embedding

The second conceptual block is the ROT embedding protocol from [9], referred
to as the BMN embedding protocol, that embeds a constant number of ROT
samples into one sample of ROLE

(
F
)
, where F is a finite field of characteristic

2. The BMN embedding protocol is a two-message perfectly semi-honest secure
protocol. For example, asymptotically, [9] embeds (s)1−o(1) samples of ROT into
one sample of the ROLE

(
GF [2s]

)
correlation. However, for reasonable values of

s, say for s ≤ 250, a recursive embedding embeds slog 10/ log 32 samples of ROT
into one sample of the ROLE

(
GF [2s]

)
correlation, and this embedding is more

efficient than the asymptotically good one. Below, we show that this protocol
composes in parallel with our protocol in Fig. 4 to give our overall round optimal
protocol for (n,m, t, ε)-correlation extractor for ROLE(F) correlation satisfying
Theorem 3.

We note that the BMN embedding protocol satisfies the following additional
properties. (1) The first message is sent by client B, and (2) this message depends
only on the first share of client B in ROLE(F) (this refers to ri in Fig. 4) and does
not depend on the second share (this refers to ti in Fig. 4). With these properties,
the BMN embedding protocol can be run in parallel with the protocol in Fig. 4.
Also, since the BMN protocol satisfies perfect correctness and perfect security,
to prove overall security, it suffices to prove the correctness and security of our
protocol in Fig. 4. This holds because we are in the semi-honest information
theoretic setting.
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4.3 Protocol for ROT Extractor (Theorem 2)

In this section, we describe a protocol to construct (ROLE(F)η)[t] using
(ROLEn)[t], that is the starting point of our protocol in Sect. 4.1. This would
prove Theorem 2. Here, ROLE := ROLE

(
GF [2]

)
. Recall that ROLE and ROT are

equivalent.
One of the several fascinating applications of algebraic function fields pio-

neered by the seminal work of Chudnovsky and Chudnovsky [14], is the appli-
cation to efficiently multiply over an extension field using multiplications over
the base field. For example, 6 multiplications over GF [2] suffice to perform one
multiplication over GF

[
23

]
, or 15 multiplications over GF [2] suffice for one mul-

tiplication over GF
[
26

]
(cf., Table 1 in [12]).

Our first step of the correlation extractor for (ROLEn)[t] uses these efficient
multiplication algorithms to (perfectly and securely) implement (ROLE(F)η)[t],
where F = GF(2α) is a finite field with characteristic 2.

We start by describing a protocol for realizing one ROLE
(
F
)

using ROLE	,
i.e., 
 independent samples of ROLE (in the absence of leakage) in Fig. 6. Our pro-
tocol implements, for instance, one sample of ROLE

(
GF

[
23

])
correlation using

6 samples from the ROT correlation in two rounds. Our protocol uses a mul-
tiplication friendly code D over {0, 1}	 and encodes messages in F. That is,
D ∗ D = D(2) ⊂ {0, 1}	 is also a code for F. Later, we show how to extend this
to the leakage setting.

Fig. 6. Perfectly secure protocol for ROLE(F) in ROLE� hybrid.

Security Guarantee. It is easy to see that the protocol in Fig. 6 is a perfectly
secure realization of ROLE(F) in the ROLE	-hybrid against a semi-honest adver-
sary using the fact that D is a multiplication friendly code for F. Moreover, [26]
proved the following useful lemma to argue t-leaky realization of ROLE(F) if the
perfect oracle call to ROLE	 is replaced by a t-leaky oracle.
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Imported Lemma 3 ([26]). Let π be a perfectly secure (resp., statistically ε
secure) realization of f in the g-hybrid model, where π makes a single call to g.
Then, π is also a perfectly secure (resp., statistically ε secure) realization of f [t]

in the g[t]-hybrid model.

Using the above lemma, we get that the protocol in Fig. 6 is a perfect real-
ization of (ROLE(F))[t] in (ROLE	)[t]-hybrid. Finally, by running the protocol of
Fig. 6 in parallel for η samples of ROLE(F) and using Imported Lemma 3, we get
a perfectly secure protocol for (ROLE(F)η)[t] in (ROLEη	)[t]-hybrid.

Round Optimality. To realize the round-optimality in Theorem 2, we can
run the protocols in Figs. 6 and 4 in parallel. We note that the first messages of
protocols in Figs. 6 and 4 can be sent together. This is because the first message of
client B in protocol of Fig. 4 is independent of the second message in Fig. 6. The
security holds because we are in the semi-honest information theoretic setting.
Hence, overall round complexity is still 2.

5 Parameter Comparison

5.1 Correlation Extractor from ROLE
(
F
)

(Theorem 3)

In this section, we compare our correlation extractor for ROLE
(
F
)

correlation,
where F is a constant size field, with the BMN correlation extractor [9].

BMN Correlation Extractor [9]. The BMN correlation extractor emphasizes
high resilience while achieving multiple ROTs as output. Roughly, they show
the following. If parties start with the IP

(
GF

[
2Δn

]1/Δ)
correlation, then they

(roughly) achieve 1
2 − Δ fractional resilience with production that depends on

(Δn). Here, Δ has to be the inverse of an even natural number � 4.
In particular, the IP

(
GF

[
2n/4

]4)
correlation12 achieves the highest produc-

tion using the BMN correlation extractor. The resilience of this correlation is
( 14 − g), where g ∈ (0, 1/4] is a positive constant. Then the BMN correlation
extractor produces at most (n/4)log 10/ log 38 ≈ (n/4)0.633 fresh samples from the
ROT correlation as output when n ≤ 250. This implies that the production is
m ≈ 2 · (n/4)0.633, because each ROT sample produces private shares that are
two-bits long. For n = 103, the production is m � 66, for n = 106 the production
is m � 5, 223, and for n = 109 the production is m � 413, 913. We emphasize
that the BMN extractor cannot increase its production any further by sacrificing
its leakage resilience and going below 1/4.

Our Correlation Extractor for ROLE
(
F
)
. We shall use F such that q = |F|

is an even power of 2. For the suitable Algebraic Geometry codes [19] to exist,
we need q � 49. Since, the last step of our construction uses the OT embedding

12 Recall that the inner-product correlation IP
(
K

s
)

over finite field K samples random
rA = (u1, . . . , us) ∈ K

s and rB = (v1, . . . , vs) ∈ K
s such that u1v1 + · · · + usvs = 0.
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Fig. 7. The production rate of our correlation extractor for ROLE
(
F
)
, where β = t/n =

1% rate of leakage using different finite fields.

Fig. 8. The production rate of our correlation extractor for ROT. We are given n-bit
shares of the ROTn/2 correlation, and fix β = t/n = 1% fractional leakage. Each row
corresponds to using our ROLE

(
F
)
-to-ROT correlation extractor as an intermediate

step. The final column represents the production rate α = m/n of our ROT-to-ROT
correlation extractor corresponding to the choice of the finite field F.

technique introduced by BMN [9], we need to consider only the smallest fields
that allow a particular number of OT embeddings. Based on this observation, for
fractional resilience β = (t/n) = 1%, Fig. 7 presents the achievable production
rate α = (m/n). Note that the Algebraic Geometry codes become better with
increasing q, but the BMN OT embedding becomes worse. So, the optimum α =
16.32% is achieved for F = GF

[
214

]
. For n = 103, for example, the production

is m = 163, for n = 106 the production is m = 163, 200, and for n = 109 the
production is m = 163, 200, 000. In Fig. 9 (Sect. 6), we demonstrate the trade-off
between leakage rate (Y-axis) with production rate (X-axis). We note that even
in the high leakage setting, for instance, for β = 20%, we have α ≈ 3%. Hence,
the production is m ≈ 30, for n = 106 the production is m ≈ 30, 000, and for
n = 109 the production is m ≈ 30, 000, 000. Our production is overwhelmingly
higher than the BMN production rate.

5.2 Correlation Extractor for ROT (Theorem 2)

In this section we compare our construction with the GIMS [22] correlation
extractor from ROT. The IKOS [26] correlation extractor is a feasibility result
with minuscule fractional resilience and production rate.
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Fig. 9. A comparison of the feasibility regions for our correlation extractors for
ROLE

(
F
)

for various finite fields F of characteristic 2. For each plot, the X-axis rep-
resents the relative production rate α = m/n and the Y -axis represents the fractional
leakage resilience β = t/n.
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GIMS Production. The GIMS correlation extractor for ROT [22] trades-off
simulation error to achieve higher production by sub-sampling the precomputed
ROTs. For β = (t/n) = 1% fractional leakage, the GIMS correlation extractor
achieves (roughly) m = n/4p production with ε = m · 2−p/4 simulation error.
To achieve negligible simulation error, suppose p = log2(n). For this setting, at
n = 103, n = 106, and n = 109, the GIMS correlation extractor obtains m = 3,
m = 625, and m = 277, 777, respectively. These numbers are significantly lower
than what our construction achieves.

Our Production. We use a bilinear multiplication algorithm to realize one
ROLE

(
F
)

by performing several ROT. For example, we use μ2(s) = 15 ROTs
to implement one ROLE

(
GF [2s]

)
, where s = 6. Thus, our original n-bit share

changes into n′-bit share, where n′ = (6/15)n while preserving the leakage t =
βn. So, the fractional leakage now becomes t = β′n′, where β′ = (15/6)β. Now,
we can compute the production m′ = α′n′ = αn.

The highest rate is achieved for s = 10, i.e., constructing the correlation
extractor for ROT via the correlation extractor for ROLE

(
GF

[
210

])
. For this

choice, our correlation extractor achieves production rate α = (m/n) = 4.20%, if
the fractional leakage is β = (t/n) = 1%. For n = 103, n = 106, and n = 109, our
construction obtains m = 42, m = 42, 000, and m = 42, 000, 000, respectively.

5.3 Close to Optimal Resilience

An interesting facet of our correlation extractor for ROLE
(
F
)

is the following.
As q = |F| increases, the maximum fractional resilience, i.e., the intercept of the
feasibility curve on the Y -axis, tends to 1/4. Ishai et al. [27] showed that any
correlation extractor cannot be resilient to fractional leakage β = (t/n) = 25%.
For every g ∈ (0, 1/4], we show that, by choosing sufficiently large q, we can
achieve positive production rate α = (m/n) for β = (1/4−g). Thus, our family of
correlation extractors (for larger, albeit constant-size, finite fields) achieve near
optimal fractional resilience. Figure 9 (Sect. 6) demonstrates this phenomenon
for a few values of q. The proof of this result, which proves Theorem 4, can be
found in the full version of our work [8].

6 Parameter Comparison Graphs

In this section we highlight the feasibility of parameters for our ROT to ROT
correlation extractor (Theorem 2) for a few representative values of q = |F|.

The shaded regions in the graphs in Fig. 9 represent the feasible parameter
choices. In particular, the X-axis represents the production rate m/n and the Y -
axis represents the leakage rate t/n given our parameter choices. The full version
of the paper [8] details the calculation of the feasible parameters.

Note that, as the size of the field F increases, the quality of the algebraic
geometric code used in our construction increases. This observation translates
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into higher possible production values and leakage resilience, which is illustrated
by increasing q = 26 to q = 214. However, as the size of the field F increases, the
efficiency of the BMN embedding [9] reduces, potentially reducing the overall
production rate (for example, increasing q = 214 to q = 220).

Finally, as noted earlier, the feasibility graphs demonstrate that our family
of correlation extractors achieve near optimal fractional resilience. That is, as
the size of the field F increases, the fractional leakage resilience approaches 1/4,
which is optimal [27].
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